Update README.md
Browse files
README.md
CHANGED
|
@@ -3,3 +3,159 @@ license: other
|
|
| 3 |
license_name: deepseek-license
|
| 4 |
license_link: LICENSE
|
| 5 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
license_name: deepseek-license
|
| 4 |
license_link: LICENSE
|
| 5 |
---
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
### 1. Introduction of Deepseek Coder
|
| 10 |
+
|
| 11 |
+
Deepseek Coder comprises a series of code language models trained on both 87% code and 13% natural language in English and Chinese, with each model pre-trained on 2T tokens. We provide various sizes of the code model, ranging from 1B to 33B versions. Each model is pre-trained on project-level code corpus by employing a window size of 16K and a extra fill-in-the-blank task, to support project-level code completion and infilling. For coding capabilities, Deepseek Coder achieves state-of-the-art performance among open-source code models on multiple programming languages and various benchmarks.
|
| 12 |
+
|
| 13 |
+
- **Massive Training Data**: Trained on 2T tokens, including 87% code and 13% linguistic data in both English and Chinese languages.
|
| 14 |
+
|
| 15 |
+
- **Highly Flexible & Scalable**: Offered in model sizes of 1.3B, 5.7B, 6.7B, and 33B, enabling users to choose the setup most suitable for their requirements.
|
| 16 |
+
|
| 17 |
+
- **Superior Model Performance**: State-of-the-art performance among publicly available code models on HumanEval, MultiPL-E, MBPP, DS-1000, and APPS benchmarks.
|
| 18 |
+
|
| 19 |
+
- **Advanced Code Completion Capabilities**: A window size of 16K and a fill-in-the-blank task, supporting project-level code completion and infilling tasks.
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
### 2. Model Summary
|
| 24 |
+
deepseek-coder-33b-base is a 33B parameter model with Grouped-Query Attention trained on 2 trillion tokens.
|
| 25 |
+
- **Home Page:** [DeepSeek](https://deepseek.com/)
|
| 26 |
+
- **Repository:** [deepseek-ai/deepseek-coder](https://github.com/deepseek-ai/deepseek-coder)
|
| 27 |
+
- **Chat With DeepSeek Coder:** [DeepSeek-Coder](https://coder.deepseek.com/)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
### 3. How to Use
|
| 31 |
+
Here give some examples of how to use our model.
|
| 32 |
+
#### 1)Code Completion
|
| 33 |
+
```python
|
| 34 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 35 |
+
import torch
|
| 36 |
+
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-33b-base", trust_remote_code=True)
|
| 37 |
+
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-33b-base", trust_remote_code=True).cuda()
|
| 38 |
+
input_text = "#write a quick sort algorithm"
|
| 39 |
+
inputs = tokenizer(input_text, return_tensors="pt").cuda()
|
| 40 |
+
outputs = model.generate(**inputs, max_length=128)
|
| 41 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 42 |
+
```
|
| 43 |
+
|
| 44 |
+
#### 2)Code Insertion
|
| 45 |
+
```python
|
| 46 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 47 |
+
import torch
|
| 48 |
+
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-33b-base", trust_remote_code=True)
|
| 49 |
+
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-33b-base", trust_remote_code=True).cuda()
|
| 50 |
+
input_text = """<|fim▁begin|>def quick_sort(arr):
|
| 51 |
+
if len(arr) <= 1:
|
| 52 |
+
return arr
|
| 53 |
+
pivot = arr[0]
|
| 54 |
+
left = []
|
| 55 |
+
right = []
|
| 56 |
+
<|fim▁hole|>
|
| 57 |
+
if arr[i] < pivot:
|
| 58 |
+
left.append(arr[i])
|
| 59 |
+
else:
|
| 60 |
+
right.append(arr[i])
|
| 61 |
+
return quick_sort(left) + [pivot] + quick_sort(right)<|fim▁end|>"""
|
| 62 |
+
inputs = tokenizer(input_text, return_tensors="pt").cuda()
|
| 63 |
+
outputs = model.generate(**inputs, max_length=128)
|
| 64 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
#### 3)Repository Level Code Completion
|
| 68 |
+
```python
|
| 69 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 70 |
+
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-33b-base", trust_remote_code=True)
|
| 71 |
+
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-33b-base", trust_remote_code=True).cuda()
|
| 72 |
+
|
| 73 |
+
input_text = """#utils.py
|
| 74 |
+
import torch
|
| 75 |
+
from sklearn import datasets
|
| 76 |
+
from sklearn.model_selection import train_test_split
|
| 77 |
+
from sklearn.preprocessing import StandardScaler
|
| 78 |
+
from sklearn.metrics import accuracy_score
|
| 79 |
+
|
| 80 |
+
def load_data():
|
| 81 |
+
iris = datasets.load_iris()
|
| 82 |
+
X = iris.data
|
| 83 |
+
y = iris.target
|
| 84 |
+
|
| 85 |
+
# Standardize the data
|
| 86 |
+
scaler = StandardScaler()
|
| 87 |
+
X = scaler.fit_transform(X)
|
| 88 |
+
|
| 89 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
|
| 90 |
+
|
| 91 |
+
# Convert numpy data to PyTorch tensors
|
| 92 |
+
X_train = torch.tensor(X_train, dtype=torch.float32)
|
| 93 |
+
X_test = torch.tensor(X_test, dtype=torch.float32)
|
| 94 |
+
y_train = torch.tensor(y_train, dtype=torch.int64)
|
| 95 |
+
y_test = torch.tensor(y_test, dtype=torch.int64)
|
| 96 |
+
|
| 97 |
+
return X_train, X_test, y_train, y_test
|
| 98 |
+
|
| 99 |
+
def evaluate_predictions(y_test, y_pred):
|
| 100 |
+
return accuracy_score(y_test, y_pred)
|
| 101 |
+
#model.py
|
| 102 |
+
import torch
|
| 103 |
+
import torch.nn as nn
|
| 104 |
+
import torch.optim as optim
|
| 105 |
+
from torch.utils.data import DataLoader, TensorDataset
|
| 106 |
+
|
| 107 |
+
class IrisClassifier(nn.Module):
|
| 108 |
+
def __init__(self):
|
| 109 |
+
super(IrisClassifier, self).__init__()
|
| 110 |
+
self.fc = nn.Sequential(
|
| 111 |
+
nn.Linear(4, 16),
|
| 112 |
+
nn.ReLU(),
|
| 113 |
+
nn.Linear(16, 3)
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
def forward(self, x):
|
| 117 |
+
return self.fc(x)
|
| 118 |
+
|
| 119 |
+
def train_model(self, X_train, y_train, epochs, lr, batch_size):
|
| 120 |
+
criterion = nn.CrossEntropyLoss()
|
| 121 |
+
optimizer = optim.Adam(self.parameters(), lr=lr)
|
| 122 |
+
|
| 123 |
+
# Create DataLoader for batches
|
| 124 |
+
dataset = TensorDataset(X_train, y_train)
|
| 125 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
| 126 |
+
|
| 127 |
+
for epoch in range(epochs):
|
| 128 |
+
for batch_X, batch_y in dataloader:
|
| 129 |
+
optimizer.zero_grad()
|
| 130 |
+
outputs = self(batch_X)
|
| 131 |
+
loss = criterion(outputs, batch_y)
|
| 132 |
+
loss.backward()
|
| 133 |
+
optimizer.step()
|
| 134 |
+
|
| 135 |
+
def predict(self, X_test):
|
| 136 |
+
with torch.no_grad():
|
| 137 |
+
outputs = self(X_test)
|
| 138 |
+
_, predicted = outputs.max(1)
|
| 139 |
+
return predicted.numpy()
|
| 140 |
+
#main.py
|
| 141 |
+
from utils import load_data, evaluate_predictions
|
| 142 |
+
from model import IrisClassifier as Classifier
|
| 143 |
+
|
| 144 |
+
def main():
|
| 145 |
+
# Model training and evaluation
|
| 146 |
+
"""
|
| 147 |
+
inputs = tokenizer(input_text, return_tensors="pt").cuda()
|
| 148 |
+
outputs = model.generate(**inputs, max_new_tokens=140)
|
| 149 |
+
print(tokenizer.decode(outputs[0]))
|
| 150 |
+
```
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
### 4. Lincense
|
| 155 |
+
This code repository is licensed under the MIT License. The use of DeepSeek Coder model and weights is subject to the Model License. DeepSeek Coder supports commercial use.
|
| 156 |
+
|
| 157 |
+
See the [LICENSE-MODEL](https://github.com/deepseek-ai/deepseek-coder/blob/main/LICENSE-MODEL) for more details.
|
| 158 |
+
|
| 159 |
+
### 5. Contact
|
| 160 |
+
|
| 161 |
+
If you have any questions, please raise an issue or contact us at [[email protected]](mailto:[email protected]).
|