Commit
·
5664e18
1
Parent(s):
1b00d9c
add script
Browse files- README.md +246 -0
- coco_detection_dataset_script.py +325 -0
README.md
CHANGED
|
@@ -1,3 +1,249 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
task_categories:
|
| 4 |
+
- object-detection
|
| 5 |
+
tags:
|
| 6 |
+
- COCO
|
| 7 |
+
- Detection
|
| 8 |
+
- '2017'
|
| 9 |
+
pretty_name: COCO detection dataset script
|
| 10 |
+
size_categories:
|
| 11 |
+
- 100K<n<1M
|
| 12 |
+
dataset_info:
|
| 13 |
+
config_name: '2017'
|
| 14 |
+
features:
|
| 15 |
+
- name: id
|
| 16 |
+
dtype: int64
|
| 17 |
+
- name: objects
|
| 18 |
+
struct:
|
| 19 |
+
- name: bbox_id
|
| 20 |
+
sequence: int64
|
| 21 |
+
- name: category_id
|
| 22 |
+
sequence:
|
| 23 |
+
class_label:
|
| 24 |
+
names:
|
| 25 |
+
'0': N/A
|
| 26 |
+
'1': person
|
| 27 |
+
'2': bicycle
|
| 28 |
+
'3': car
|
| 29 |
+
'4': motorcycle
|
| 30 |
+
'5': airplane
|
| 31 |
+
'6': bus
|
| 32 |
+
'7': train
|
| 33 |
+
'8': truck
|
| 34 |
+
'9': boat
|
| 35 |
+
'10': traffic light
|
| 36 |
+
'11': fire hydrant
|
| 37 |
+
'12': street sign
|
| 38 |
+
'13': stop sign
|
| 39 |
+
'14': parking meter
|
| 40 |
+
'15': bench
|
| 41 |
+
'16': bird
|
| 42 |
+
'17': cat
|
| 43 |
+
'18': dog
|
| 44 |
+
'19': horse
|
| 45 |
+
'20': sheep
|
| 46 |
+
'21': cow
|
| 47 |
+
'22': elephant
|
| 48 |
+
'23': bear
|
| 49 |
+
'24': zebra
|
| 50 |
+
'25': giraffe
|
| 51 |
+
'26': hat
|
| 52 |
+
'27': backpack
|
| 53 |
+
'28': umbrella
|
| 54 |
+
'29': shoe
|
| 55 |
+
'30': eye glasses
|
| 56 |
+
'31': handbag
|
| 57 |
+
'32': tie
|
| 58 |
+
'33': suitcase
|
| 59 |
+
'34': frisbee
|
| 60 |
+
'35': skis
|
| 61 |
+
'36': snowboard
|
| 62 |
+
'37': sports ball
|
| 63 |
+
'38': kite
|
| 64 |
+
'39': baseball bat
|
| 65 |
+
'40': baseball glove
|
| 66 |
+
'41': skateboard
|
| 67 |
+
'42': surfboard
|
| 68 |
+
'43': tennis racket
|
| 69 |
+
'44': bottle
|
| 70 |
+
'45': plate
|
| 71 |
+
'46': wine glass
|
| 72 |
+
'47': cup
|
| 73 |
+
'48': fork
|
| 74 |
+
'49': knife
|
| 75 |
+
'50': spoon
|
| 76 |
+
'51': bowl
|
| 77 |
+
'52': banana
|
| 78 |
+
'53': apple
|
| 79 |
+
'54': sandwich
|
| 80 |
+
'55': orange
|
| 81 |
+
'56': broccoli
|
| 82 |
+
'57': carrot
|
| 83 |
+
'58': hot dog
|
| 84 |
+
'59': pizza
|
| 85 |
+
'60': donut
|
| 86 |
+
'61': cake
|
| 87 |
+
'62': chair
|
| 88 |
+
'63': couch
|
| 89 |
+
'64': potted plant
|
| 90 |
+
'65': bed
|
| 91 |
+
'66': mirror
|
| 92 |
+
'67': dining table
|
| 93 |
+
'68': window
|
| 94 |
+
'69': desk
|
| 95 |
+
'70': toilet
|
| 96 |
+
'71': door
|
| 97 |
+
'72': tv
|
| 98 |
+
'73': laptop
|
| 99 |
+
'74': mouse
|
| 100 |
+
'75': remote
|
| 101 |
+
'76': keyboard
|
| 102 |
+
'77': cell phone
|
| 103 |
+
'78': microwave
|
| 104 |
+
'79': oven
|
| 105 |
+
'80': toaster
|
| 106 |
+
'81': sink
|
| 107 |
+
'82': refrigerator
|
| 108 |
+
'83': blender
|
| 109 |
+
'84': book
|
| 110 |
+
'85': clock
|
| 111 |
+
'86': vase
|
| 112 |
+
'87': scissors
|
| 113 |
+
'88': teddy bear
|
| 114 |
+
'89': hair drier
|
| 115 |
+
'90': toothbrush
|
| 116 |
+
- name: bbox
|
| 117 |
+
sequence:
|
| 118 |
+
sequence: float64
|
| 119 |
+
length: 4
|
| 120 |
+
- name: iscrowd
|
| 121 |
+
sequence: int64
|
| 122 |
+
- name: area
|
| 123 |
+
sequence: float64
|
| 124 |
+
- name: height
|
| 125 |
+
dtype: int64
|
| 126 |
+
- name: width
|
| 127 |
+
dtype: int64
|
| 128 |
+
- name: file_name
|
| 129 |
+
dtype: string
|
| 130 |
+
- name: coco_url
|
| 131 |
+
dtype: string
|
| 132 |
+
- name: image_path
|
| 133 |
+
dtype: string
|
| 134 |
+
splits:
|
| 135 |
+
- name: train
|
| 136 |
+
num_bytes: 87231216
|
| 137 |
+
num_examples: 117266
|
| 138 |
+
- name: validation
|
| 139 |
+
num_bytes: 3692192
|
| 140 |
+
num_examples: 4952
|
| 141 |
+
download_size: 20405354669
|
| 142 |
+
dataset_size: 90923408
|
| 143 |
---
|
| 144 |
+
## Usage
|
| 145 |
+
For using the COCO dataset (2017), you need to download it manually first:
|
| 146 |
+
```bash
|
| 147 |
+
wget http://images.cocodataset.org/zips/train2017.zip
|
| 148 |
+
wget http://images.cocodataset.org/zips/val2017.zip
|
| 149 |
+
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
|
| 150 |
+
```
|
| 151 |
+
|
| 152 |
+
Then to load the dataset:
|
| 153 |
+
```python
|
| 154 |
+
COCO_DIR = ...(path to the downloaded dataset directory)...
|
| 155 |
+
ds = datasets.load_dataset(
|
| 156 |
+
"yonigozlan/coco_2017_detection_script",
|
| 157 |
+
"2017",
|
| 158 |
+
data_dir=COCO_DIR,
|
| 159 |
+
trust_remote_code=True,
|
| 160 |
+
)
|
| 161 |
+
```
|
| 162 |
+
|
| 163 |
+
## Benchmarking
|
| 164 |
+
Here is an example of how to benchmark a 🤗 Transformers object detection model on the validation data of the COCO dataset:
|
| 165 |
+
|
| 166 |
+
```python
|
| 167 |
+
import datasets
|
| 168 |
+
import torch
|
| 169 |
+
from PIL import Image
|
| 170 |
+
from torch.utils.data import DataLoader
|
| 171 |
+
from torchmetrics.detection.mean_ap import MeanAveragePrecision
|
| 172 |
+
from tqdm import tqdm
|
| 173 |
+
|
| 174 |
+
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
| 175 |
+
|
| 176 |
+
# prepare data
|
| 177 |
+
COCO_DIR = ...(path to the downloaded dataset directory)...
|
| 178 |
+
ds = datasets.load_dataset(
|
| 179 |
+
"yonigozlan/coco_2017_detection_script",
|
| 180 |
+
"2017",
|
| 181 |
+
data_dir=COCO_DIR,
|
| 182 |
+
trust_remote_code=True,
|
| 183 |
+
)
|
| 184 |
+
val_data = ds["validation"]
|
| 185 |
+
categories = val_data.features["objects"]["category_id"].feature.names
|
| 186 |
+
id2label = {index: x for index, x in enumerate(categories, start=0)}
|
| 187 |
+
label2id = {v: k for k, v in id2label.items()}
|
| 188 |
+
checkpoint = "facebook/detr-resnet-50"
|
| 189 |
+
|
| 190 |
+
# load model and processor
|
| 191 |
+
model = AutoModelForObjectDetection.from_pretrained(
|
| 192 |
+
checkpoint, torch_dtype=torch.float16
|
| 193 |
+
).to("cuda")
|
| 194 |
+
id2label_model = model.config.id2label
|
| 195 |
+
processor = AutoImageProcessor.from_pretrained(checkpoint)
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def collate_fn(batch):
|
| 199 |
+
data = {}
|
| 200 |
+
images = [Image.open(x["image_path"]).convert("RGB") for x in batch]
|
| 201 |
+
data["images"] = images
|
| 202 |
+
annotations = []
|
| 203 |
+
for x in batch:
|
| 204 |
+
boxes = x["objects"]["bbox"]
|
| 205 |
+
# convert to xyxy format
|
| 206 |
+
boxes = [[box[0], box[1], box[0] + box[2], box[1] + box[3]] for box in boxes]
|
| 207 |
+
labels = x["objects"]["category_id"]
|
| 208 |
+
boxes = torch.tensor(boxes)
|
| 209 |
+
labels = torch.tensor(labels)
|
| 210 |
+
annotations.append({"boxes": boxes, "labels": labels})
|
| 211 |
+
data["original_size"] = [(x["height"], x["width"]) for x in batch]
|
| 212 |
+
data["annotations"] = annotations
|
| 213 |
+
return data
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
# prepare dataloader
|
| 217 |
+
dataloader = DataLoader(val_data, batch_size=8, collate_fn=collate_fn)
|
| 218 |
+
|
| 219 |
+
# prepare metric
|
| 220 |
+
metric = MeanAveragePrecision(box_format="xyxy", class_metrics=True)
|
| 221 |
+
|
| 222 |
+
# evaluation loop
|
| 223 |
+
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader)):
|
| 224 |
+
inputs = (
|
| 225 |
+
processor(batch["images"], return_tensors="pt").to("cuda").to(torch.float16)
|
| 226 |
+
)
|
| 227 |
+
with torch.no_grad():
|
| 228 |
+
outputs = model(**inputs)
|
| 229 |
+
target_sizes = torch.tensor([x for x in batch["original_size"]]).to("cuda")
|
| 230 |
+
results = processor.post_process_object_detection(
|
| 231 |
+
outputs, threshold=0.0, target_sizes=target_sizes
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
# convert predicted label id to dataset label id
|
| 235 |
+
if len(id2label_model) != len(id2label):
|
| 236 |
+
for result in results:
|
| 237 |
+
result["labels"] = torch.tensor(
|
| 238 |
+
[label2id.get(id2label_model[x.item()], 0) for x in result["labels"]]
|
| 239 |
+
)
|
| 240 |
+
# put results back to cpu
|
| 241 |
+
for result in results:
|
| 242 |
+
for k, v in result.items():
|
| 243 |
+
if isinstance(v, torch.Tensor):
|
| 244 |
+
result[k] = v.to("cpu")
|
| 245 |
+
metric.update(results, batch["annotations"])
|
| 246 |
+
|
| 247 |
+
metrics = metric.compute()
|
| 248 |
+
print(metrics)
|
| 249 |
+
```
|
coco_detection_dataset_script.py
ADDED
|
@@ -0,0 +1,325 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
import datasets
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class COCOBuilderConfig(datasets.BuilderConfig):
|
| 8 |
+
def __init__(self, name, splits, **kwargs):
|
| 9 |
+
super().__init__(name, **kwargs)
|
| 10 |
+
self.splits = splits
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# Add BibTeX citation
|
| 14 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
| 15 |
+
_CITATION = """\
|
| 16 |
+
@article{DBLP:journals/corr/LinMBHPRDZ14,
|
| 17 |
+
author = {Tsung{-}Yi Lin and
|
| 18 |
+
Michael Maire and
|
| 19 |
+
Serge J. Belongie and
|
| 20 |
+
Lubomir D. Bourdev and
|
| 21 |
+
Ross B. Girshick and
|
| 22 |
+
James Hays and
|
| 23 |
+
Pietro Perona and
|
| 24 |
+
Deva Ramanan and
|
| 25 |
+
Piotr Doll{'{a} }r and
|
| 26 |
+
C. Lawrence Zitnick},
|
| 27 |
+
title = {Microsoft {COCO:} Common Objects in Context},
|
| 28 |
+
journal = {CoRR},
|
| 29 |
+
volume = {abs/1405.0312},
|
| 30 |
+
year = {2014},
|
| 31 |
+
url = {http://arxiv.org/abs/1405.0312},
|
| 32 |
+
archivePrefix = {arXiv},
|
| 33 |
+
eprint = {1405.0312},
|
| 34 |
+
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
|
| 35 |
+
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
|
| 36 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
| 37 |
+
}
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
# Add description of the dataset here
|
| 41 |
+
# You can copy an official description
|
| 42 |
+
_DESCRIPTION = """\
|
| 43 |
+
COCO is a large-scale object detection, segmentation, and captioning dataset.
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
# Add a link to an official homepage for the dataset here
|
| 47 |
+
_HOMEPAGE = "http://cocodataset.org/#home"
|
| 48 |
+
|
| 49 |
+
# Add the licence for the dataset here if you can find it
|
| 50 |
+
_LICENSE = ""
|
| 51 |
+
|
| 52 |
+
# Add link to the official dataset URLs here
|
| 53 |
+
# The HuggingFace dataset library don't host the datasets but only point to the original files
|
| 54 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 55 |
+
|
| 56 |
+
# This script is supposed to work with local (downloaded) COCO dataset.
|
| 57 |
+
_URLs = {}
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# Name of the dataset usually match the script name with CamelCase instead of snake_case
|
| 61 |
+
class COCODataset(datasets.GeneratorBasedBuilder):
|
| 62 |
+
"""An example dataset script to work with the local (downloaded) COCO dataset"""
|
| 63 |
+
|
| 64 |
+
VERSION = datasets.Version("0.0.0")
|
| 65 |
+
|
| 66 |
+
BUILDER_CONFIG_CLASS = COCOBuilderConfig
|
| 67 |
+
BUILDER_CONFIGS = [
|
| 68 |
+
COCOBuilderConfig(name="2017", splits=["train", "val"]),
|
| 69 |
+
]
|
| 70 |
+
DEFAULT_CONFIG_NAME = "2017"
|
| 71 |
+
|
| 72 |
+
def _info(self):
|
| 73 |
+
# This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
| 74 |
+
|
| 75 |
+
feature_dict = {
|
| 76 |
+
"id": datasets.Value("int64"),
|
| 77 |
+
"objects": {
|
| 78 |
+
"bbox_id": datasets.Sequence(datasets.Value("int64")),
|
| 79 |
+
"category_id": datasets.Sequence(
|
| 80 |
+
datasets.ClassLabel(
|
| 81 |
+
names=[
|
| 82 |
+
"N/A",
|
| 83 |
+
"person",
|
| 84 |
+
"bicycle",
|
| 85 |
+
"car",
|
| 86 |
+
"motorcycle",
|
| 87 |
+
"airplane",
|
| 88 |
+
"bus",
|
| 89 |
+
"train",
|
| 90 |
+
"truck",
|
| 91 |
+
"boat",
|
| 92 |
+
"traffic light",
|
| 93 |
+
"fire hydrant",
|
| 94 |
+
"street sign",
|
| 95 |
+
"stop sign",
|
| 96 |
+
"parking meter",
|
| 97 |
+
"bench",
|
| 98 |
+
"bird",
|
| 99 |
+
"cat",
|
| 100 |
+
"dog",
|
| 101 |
+
"horse",
|
| 102 |
+
"sheep",
|
| 103 |
+
"cow",
|
| 104 |
+
"elephant",
|
| 105 |
+
"bear",
|
| 106 |
+
"zebra",
|
| 107 |
+
"giraffe",
|
| 108 |
+
"hat",
|
| 109 |
+
"backpack",
|
| 110 |
+
"umbrella",
|
| 111 |
+
"shoe",
|
| 112 |
+
"eye glasses",
|
| 113 |
+
"handbag",
|
| 114 |
+
"tie",
|
| 115 |
+
"suitcase",
|
| 116 |
+
"frisbee",
|
| 117 |
+
"skis",
|
| 118 |
+
"snowboard",
|
| 119 |
+
"sports ball",
|
| 120 |
+
"kite",
|
| 121 |
+
"baseball bat",
|
| 122 |
+
"baseball glove",
|
| 123 |
+
"skateboard",
|
| 124 |
+
"surfboard",
|
| 125 |
+
"tennis racket",
|
| 126 |
+
"bottle",
|
| 127 |
+
"plate",
|
| 128 |
+
"wine glass",
|
| 129 |
+
"cup",
|
| 130 |
+
"fork",
|
| 131 |
+
"knife",
|
| 132 |
+
"spoon",
|
| 133 |
+
"bowl",
|
| 134 |
+
"banana",
|
| 135 |
+
"apple",
|
| 136 |
+
"sandwich",
|
| 137 |
+
"orange",
|
| 138 |
+
"broccoli",
|
| 139 |
+
"carrot",
|
| 140 |
+
"hot dog",
|
| 141 |
+
"pizza",
|
| 142 |
+
"donut",
|
| 143 |
+
"cake",
|
| 144 |
+
"chair",
|
| 145 |
+
"couch",
|
| 146 |
+
"potted plant",
|
| 147 |
+
"bed",
|
| 148 |
+
"mirror",
|
| 149 |
+
"dining table",
|
| 150 |
+
"window",
|
| 151 |
+
"desk",
|
| 152 |
+
"toilet",
|
| 153 |
+
"door",
|
| 154 |
+
"tv",
|
| 155 |
+
"laptop",
|
| 156 |
+
"mouse",
|
| 157 |
+
"remote",
|
| 158 |
+
"keyboard",
|
| 159 |
+
"cell phone",
|
| 160 |
+
"microwave",
|
| 161 |
+
"oven",
|
| 162 |
+
"toaster",
|
| 163 |
+
"sink",
|
| 164 |
+
"refrigerator",
|
| 165 |
+
"blender",
|
| 166 |
+
"book",
|
| 167 |
+
"clock",
|
| 168 |
+
"vase",
|
| 169 |
+
"scissors",
|
| 170 |
+
"teddy bear",
|
| 171 |
+
"hair drier",
|
| 172 |
+
"toothbrush",
|
| 173 |
+
]
|
| 174 |
+
)
|
| 175 |
+
),
|
| 176 |
+
"bbox": datasets.Sequence(
|
| 177 |
+
datasets.Sequence(datasets.Value("float64"), length=4)
|
| 178 |
+
),
|
| 179 |
+
"iscrowd": datasets.Sequence(datasets.Value("int64")),
|
| 180 |
+
"area": datasets.Sequence(datasets.Value("float64")),
|
| 181 |
+
},
|
| 182 |
+
"height": datasets.Value("int64"),
|
| 183 |
+
"width": datasets.Value("int64"),
|
| 184 |
+
"file_name": datasets.Value("string"),
|
| 185 |
+
"coco_url": datasets.Value("string"),
|
| 186 |
+
"image_path": datasets.Value("string"),
|
| 187 |
+
}
|
| 188 |
+
|
| 189 |
+
features = datasets.Features(feature_dict)
|
| 190 |
+
|
| 191 |
+
return datasets.DatasetInfo(
|
| 192 |
+
# This is the description that will appear on the datasets page.
|
| 193 |
+
description=_DESCRIPTION,
|
| 194 |
+
# This defines the different columns of the dataset and their types
|
| 195 |
+
features=features, # Here we define them above because they are different between the two configurations
|
| 196 |
+
# If there's a common (input, target) tuple from the features,
|
| 197 |
+
# specify them here. They'll be used if as_supervised=True in
|
| 198 |
+
# builder.as_dataset.
|
| 199 |
+
supervised_keys=None,
|
| 200 |
+
# Homepage of the dataset for documentation
|
| 201 |
+
homepage=_HOMEPAGE,
|
| 202 |
+
# License for the dataset if available
|
| 203 |
+
license=_LICENSE,
|
| 204 |
+
# Citation for the dataset
|
| 205 |
+
citation=_CITATION,
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
def _split_generators(self, dl_manager):
|
| 209 |
+
"""Returns SplitGenerators."""
|
| 210 |
+
# This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
| 211 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
| 212 |
+
|
| 213 |
+
data_dir = self.config.data_dir
|
| 214 |
+
if not data_dir:
|
| 215 |
+
raise ValueError(
|
| 216 |
+
"This script is supposed to work with local (downloaded) COCO dataset. The argument `data_dir` in `load_dataset()` is required."
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
_DL_URLS = {
|
| 220 |
+
"train": os.path.join(data_dir, "train2017.zip"),
|
| 221 |
+
"val": os.path.join(data_dir, "val2017.zip"),
|
| 222 |
+
"annotations_trainval": os.path.join(
|
| 223 |
+
data_dir, "annotations_trainval2017.zip"
|
| 224 |
+
),
|
| 225 |
+
}
|
| 226 |
+
archive_path = dl_manager.download_and_extract(_DL_URLS)
|
| 227 |
+
|
| 228 |
+
splits = []
|
| 229 |
+
for split in self.config.splits:
|
| 230 |
+
if split == "train":
|
| 231 |
+
dataset = datasets.SplitGenerator(
|
| 232 |
+
name=datasets.Split.TRAIN,
|
| 233 |
+
# These kwargs will be passed to _generate_examples
|
| 234 |
+
gen_kwargs={
|
| 235 |
+
"json_path": os.path.join(
|
| 236 |
+
archive_path["annotations_trainval"],
|
| 237 |
+
"annotations",
|
| 238 |
+
"instances_train2017.json",
|
| 239 |
+
),
|
| 240 |
+
"image_dir": os.path.join(archive_path["train"], "train2017"),
|
| 241 |
+
"split": "train",
|
| 242 |
+
},
|
| 243 |
+
)
|
| 244 |
+
elif split in ["val", "valid", "validation", "dev"]:
|
| 245 |
+
dataset = datasets.SplitGenerator(
|
| 246 |
+
name=datasets.Split.VALIDATION,
|
| 247 |
+
# These kwargs will be passed to _generate_examples
|
| 248 |
+
gen_kwargs={
|
| 249 |
+
"json_path": os.path.join(
|
| 250 |
+
archive_path["annotations_trainval"],
|
| 251 |
+
"annotations",
|
| 252 |
+
"instances_val2017.json",
|
| 253 |
+
),
|
| 254 |
+
"image_dir": os.path.join(archive_path["val"], "val2017"),
|
| 255 |
+
"split": "valid",
|
| 256 |
+
},
|
| 257 |
+
)
|
| 258 |
+
else:
|
| 259 |
+
continue
|
| 260 |
+
|
| 261 |
+
splits.append(dataset)
|
| 262 |
+
|
| 263 |
+
return splits
|
| 264 |
+
|
| 265 |
+
def _generate_examples(
|
| 266 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 267 |
+
self,
|
| 268 |
+
json_path,
|
| 269 |
+
image_dir,
|
| 270 |
+
split,
|
| 271 |
+
):
|
| 272 |
+
"""Yields examples as (key, example) tuples."""
|
| 273 |
+
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
| 274 |
+
# The `key` is here for legacy reason (tfds) and is not important in itself.
|
| 275 |
+
|
| 276 |
+
features = [
|
| 277 |
+
"id",
|
| 278 |
+
"objects",
|
| 279 |
+
"height",
|
| 280 |
+
"width",
|
| 281 |
+
"file_name",
|
| 282 |
+
"coco_url",
|
| 283 |
+
"image_path",
|
| 284 |
+
]
|
| 285 |
+
object_features = [
|
| 286 |
+
"bbox_id",
|
| 287 |
+
"category_id",
|
| 288 |
+
"bbox",
|
| 289 |
+
"iscrowd",
|
| 290 |
+
"area",
|
| 291 |
+
]
|
| 292 |
+
|
| 293 |
+
with open(json_path, "r", encoding="UTF-8") as fp:
|
| 294 |
+
data = json.load(fp)
|
| 295 |
+
|
| 296 |
+
images = data["images"]
|
| 297 |
+
images_entry = {image["id"]: image for image in images}
|
| 298 |
+
for image_id, image_entry in images_entry.items():
|
| 299 |
+
image_entry["image_path"] = os.path.join(
|
| 300 |
+
image_dir, image_entry["file_name"]
|
| 301 |
+
)
|
| 302 |
+
image_entry["objects"] = []
|
| 303 |
+
|
| 304 |
+
objects = data["annotations"]
|
| 305 |
+
for id_, object_entry in enumerate(objects):
|
| 306 |
+
image_id = object_entry["image_id"]
|
| 307 |
+
|
| 308 |
+
entry = {k: v for k, v in object_entry.items() if k in object_features}
|
| 309 |
+
entry["bbox_id"] = object_entry["id"]
|
| 310 |
+
if entry["iscrowd"]:
|
| 311 |
+
continue
|
| 312 |
+
images_entry[image_id]["objects"].append(entry)
|
| 313 |
+
|
| 314 |
+
for id_, entry in images_entry.items():
|
| 315 |
+
entry = {k: v for k, v in entry.items() if k in features}
|
| 316 |
+
# collate objects
|
| 317 |
+
objects = entry.pop("objects")
|
| 318 |
+
if not objects:
|
| 319 |
+
continue
|
| 320 |
+
entry["objects"] = {
|
| 321 |
+
object_feature: [obj[object_feature] for obj in objects]
|
| 322 |
+
for object_feature in object_features
|
| 323 |
+
}
|
| 324 |
+
|
| 325 |
+
yield str(entry["id"]), entry
|