Yuhan Hou
		
	commited on
		
		
					Commit 
							
							·
						
						a500017
	
1
								Parent(s):
							
							02ffd0b
								
My commit
Browse files- FracAtlas_dataset.py +257 -0
    	
        FracAtlas_dataset.py
    ADDED
    
    | @@ -0,0 +1,257 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            #!/usr/bin/env python3
         | 
| 2 | 
            +
            # -*- coding: utf-8 -*-
         | 
| 3 | 
            +
            """
         | 
| 4 | 
            +
            Created on Sun Feb 18 23:13:51 2024
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            @author: houyuhan
         | 
| 7 | 
            +
            """
         | 
| 8 | 
            +
             | 
| 9 | 
            +
             | 
| 10 | 
            +
            #Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
         | 
| 11 | 
            +
            #
         | 
| 12 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 13 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 14 | 
            +
            # You may obtain a copy of the License at
         | 
| 15 | 
            +
            #
         | 
| 16 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 17 | 
            +
            #
         | 
| 18 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 19 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 20 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 21 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 22 | 
            +
            # limitations under the License.
         | 
| 23 | 
            +
            """
         | 
| 24 | 
            +
            FracAtlas Dataset Loader
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            This script provides a Hugging Face `datasets` loader for the FracAtlas dataset, a comprehensive collection
         | 
| 27 | 
            +
            of musculoskeletal radiographs aimed at advancing research in fracture classification, localization, and segmentation.
         | 
| 28 | 
            +
            The dataset includes high-quality X-Ray images accompanied by detailed annotations in COCO JSON format for segmentation
         | 
| 29 | 
            +
            and bounding box information, as well as PASCAL VOC XML files for additional localization data.
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            The loader handles downloading and preparing the dataset, making it readily available for machine learning models and analysis
         | 
| 32 | 
            +
            tasks in medical imaging, especially focusing on the detection and understanding of bone fractures.
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            License: CC-BY 4.0
         | 
| 35 | 
            +
            """
         | 
| 36 | 
            +
             | 
| 37 | 
            +
             | 
| 38 | 
            +
            import csv
         | 
| 39 | 
            +
            import json
         | 
| 40 | 
            +
            import os
         | 
| 41 | 
            +
            from typing import List
         | 
| 42 | 
            +
            import datasets
         | 
| 43 | 
            +
            import logging
         | 
| 44 | 
            +
            import pandas as pd
         | 
| 45 | 
            +
            from sklearn.model_selection import train_test_split
         | 
| 46 | 
            +
            import shutil
         | 
| 47 | 
            +
            import xml.etree.ElementTree as ET
         | 
| 48 | 
            +
            from datasets import load_dataset
         | 
| 49 | 
            +
             | 
| 50 | 
            +
             | 
| 51 | 
            +
             | 
| 52 | 
            +
            # TODO: Add BibTeX citation
         | 
| 53 | 
            +
            # Find for instance the citation on arxiv or on the dataset repo/website
         | 
| 54 | 
            +
            _CITATION = """\
         | 
| 55 | 
            +
            @InProceedings{huggingface:yh0701/FracAtlas_dataset,
         | 
| 56 | 
            +
            title = {FracAtlas: A Dataset for Fracture Classification, Localization and Segmentation of Musculoskeletal Radiographs},
         | 
| 57 | 
            +
            author={Abedeen, Iftekharul; Rahman, Md. Ashiqur; Zohra Prottyasha, Fatema; Ahmed, Tasnim; Mohmud Chowdhury, Tareque; Shatabda, Swakkhar},
         | 
| 58 | 
            +
            year={2023}
         | 
| 59 | 
            +
            }
         | 
| 60 | 
            +
            """
         | 
| 61 | 
            +
             | 
| 62 | 
            +
            # TODO: Add description of the dataset here
         | 
| 63 | 
            +
            # You can copy an official description
         | 
| 64 | 
            +
            _DESCRIPTION = """\
         | 
| 65 | 
            +
            The "FracAtlas" dataset is a collection of musculoskeletal radiographs for fracture classification, localization, and segmentation. 
         | 
| 66 | 
            +
            It includes 4,083 X-Ray images with annotations in multiple formats.The annotations include bbox, segmentations, and etc. 
         | 
| 67 | 
            +
            The dataset is intended for use in deep learning tasks in medical imaging, specifically targeting the understanding of bone fractures. 
         | 
| 68 | 
            +
            It is freely available under a CC-BY 4.0 license.
         | 
| 69 | 
            +
            """
         | 
| 70 | 
            +
             | 
| 71 | 
            +
            # TODO: Add a link to an official homepage for the dataset here
         | 
| 72 | 
            +
            _HOMEPAGE = "https://figshare.com/articles/dataset/The_dataset/22363012"
         | 
| 73 | 
            +
             | 
| 74 | 
            +
            # TODO: Add the licence for the dataset here if you can find it
         | 
| 75 | 
            +
            _LICENSE = "The dataset is licensed under a CC-BY 4.0 license."
         | 
| 76 | 
            +
             | 
| 77 | 
            +
            # TODO: Add link to the official dataset URLs here
         | 
| 78 | 
            +
            # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
         | 
| 79 | 
            +
            # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
         | 
| 80 | 
            +
            _URL = "https://figshare.com/ndownloader/files/43283628"
         | 
| 81 | 
            +
             | 
| 82 | 
            +
            # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
         | 
| 83 | 
            +
            class FracAtlasDataset(datasets.GeneratorBasedBuilder):
         | 
| 84 | 
            +
                """TODO: Short description of my dataset."""
         | 
| 85 | 
            +
                
         | 
| 86 | 
            +
                _URL = _URL
         | 
| 87 | 
            +
                VERSION = datasets.Version("1.1.0")
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                def _info(self):
         | 
| 90 | 
            +
                  return datasets.DatasetInfo(
         | 
| 91 | 
            +
                      description=_DESCRIPTION,
         | 
| 92 | 
            +
                      features=datasets.Features(
         | 
| 93 | 
            +
                          {
         | 
| 94 | 
            +
                              "image_id": datasets.Value("string"),
         | 
| 95 | 
            +
                              "image": datasets.Image(),
         | 
| 96 | 
            +
                              "hand": datasets.ClassLabel(num_classes=2,names=['no_hand','hand']),
         | 
| 97 | 
            +
                              "leg": datasets.ClassLabel(num_classes=2,names=['no_leg','leg']),
         | 
| 98 | 
            +
                              "hip": datasets.ClassLabel(num_classes=2,names=['no_hip','hip']),
         | 
| 99 | 
            +
                              "shoulder": datasets.ClassLabel(num_classes=2,names=['no_shoulder','shoulder']),
         | 
| 100 | 
            +
                              "mixed": datasets.ClassLabel(num_classes=2,names=['not_mixed','mixed']),
         | 
| 101 | 
            +
                              "hardware": datasets.ClassLabel(num_classes=2,names=['no_hardware','hardware']),
         | 
| 102 | 
            +
                              "multiscan": datasets.ClassLabel(num_classes=2,names=['not_multiscan','multiscan']),
         | 
| 103 | 
            +
                              "fractured": datasets.ClassLabel(num_classes=2,names=['not_fractured','fractured']),
         | 
| 104 | 
            +
                              "fracture_count": datasets.Value("int32"),
         | 
| 105 | 
            +
                              "frontal": datasets.ClassLabel(num_classes=2,names=['not_frontal','frontal']),
         | 
| 106 | 
            +
                              "lateral": datasets.ClassLabel(num_classes=2,names=['not_lateral','lateral']),
         | 
| 107 | 
            +
                              "oblique": datasets.ClassLabel(num_classes=2,names=['not_oblique','oblique']),
         | 
| 108 | 
            +
                              "localization_metadata": datasets.Features({
         | 
| 109 | 
            +
                                "width": datasets.Value("int32"),
         | 
| 110 | 
            +
                                "height": datasets.Value("int32"),
         | 
| 111 | 
            +
                                "depth": datasets.Value("int32"),
         | 
| 112 | 
            +
                            }),
         | 
| 113 | 
            +
                              "segmentation_metadata": datasets.Features({
         | 
| 114 | 
            +
                                  "segmentation": datasets.Sequence(datasets.Sequence(datasets.Value("float"))),
         | 
| 115 | 
            +
                                  "bbox": datasets.Sequence(datasets.Value("float")),
         | 
| 116 | 
            +
                                  "area": datasets.Value("float")
         | 
| 117 | 
            +
                                  }) or None
         | 
| 118 | 
            +
                          }
         | 
| 119 | 
            +
                      ),
         | 
| 120 | 
            +
                      # No default supervised_keys (as we have to pass both question
         | 
| 121 | 
            +
                      # and context as input).
         | 
| 122 | 
            +
                      supervised_keys=None,
         | 
| 123 | 
            +
                      homepage=_HOMEPAGE,
         | 
| 124 | 
            +
                      citation=_CITATION
         | 
| 125 | 
            +
                  )
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
         | 
| 128 | 
            +
                  url_to_download = self._URL
         | 
| 129 | 
            +
                  downloaded_files = dl_manager.download_and_extract(url_to_download)
         | 
| 130 | 
            +
                  
         | 
| 131 | 
            +
                  # Adjusted path to include 'FracAtlas' directory
         | 
| 132 | 
            +
                  base_path = os.path.join(downloaded_files, 'FracAtlas')
         | 
| 133 | 
            +
                  
         | 
| 134 | 
            +
                  # Split the dataset to train/test/validation by 0.7,0.15,0.15
         | 
| 135 | 
            +
                  df = pd.read_csv(os.path.join(base_path, 'dataset.csv'))
         | 
| 136 | 
            +
                  train_df, test_df = train_test_split(df, test_size=0.3)
         | 
| 137 | 
            +
                  validation_df, test_df = train_test_split(test_df, test_size=0.5)
         | 
| 138 | 
            +
                  
         | 
| 139 | 
            +
                  # store them back as csv
         | 
| 140 | 
            +
                  train_df.to_csv(os.path.join(base_path, 'train_dataset.csv'), index=False)
         | 
| 141 | 
            +
                  validation_df.to_csv(os.path.join(base_path, 'validation_dataset.csv'), index=False)
         | 
| 142 | 
            +
                  test_df.to_csv(os.path.join(base_path, 'test_dataset.csv'), index=False)
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                  annotations_path = os.path.join(base_path, 'Annotations/COCO JSON/COCO_fracture_masks.json')
         | 
| 145 | 
            +
                  images_path = os.path.join(base_path, 'images')
         | 
| 146 | 
            +
                  localization_path = os.path.join(base_path, 'Annotations/PASCAL VOC')
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                  return [
         | 
| 149 | 
            +
                      datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"dataset_csv_path": os.path.join(base_path, 'train_dataset.csv'),
         | 
| 150 | 
            +
                                                                                      "images_path": images_path,
         | 
| 151 | 
            +
                                                                                     "annotations_path": annotations_path,
         | 
| 152 | 
            +
                                                                                     "localization_path":localization_path
         | 
| 153 | 
            +
                                                                                    }),
         | 
| 154 | 
            +
                      datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"dataset_csv_path": os.path.join(base_path, 'validation_dataset.csv'),
         | 
| 155 | 
            +
                                                                                           "images_path": images_path,
         | 
| 156 | 
            +
                                                                                          "annotations_path": annotations_path,
         | 
| 157 | 
            +
                                                                                          "localization_path":localization_path
         | 
| 158 | 
            +
                                                                                         }),
         | 
| 159 | 
            +
                      datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"dataset_csv_path": os.path.join(base_path, 'test_dataset.csv'),
         | 
| 160 | 
            +
                                                                                     "images_path": images_path,
         | 
| 161 | 
            +
                                                                                    "annotations_path": annotations_path,
         | 
| 162 | 
            +
                                                                                    "localization_path":localization_path
         | 
| 163 | 
            +
                                                                                    })
         | 
| 164 | 
            +
                  ]
         | 
| 165 | 
            +
              
         | 
| 166 | 
            +
                def _generate_examples(self, annotations_path, images_path, dataset_csv_path,localization_path):
         | 
| 167 | 
            +
                    logging.info("Generating examples from = %s", dataset_csv_path)
         | 
| 168 | 
            +
                    split_df = pd.read_csv(dataset_csv_path)  # Load the DataFrame for the current split
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                    # Function to convert numeric ID to formatted string
         | 
| 171 | 
            +
                    def format_image_id(numeric_id):
         | 
| 172 | 
            +
                        return f"IMG{numeric_id:07d}.jpg"  # Adjust format as needed
         | 
| 173 | 
            +
                    
         | 
| 174 | 
            +
                    # Function to extract information from xml files
         | 
| 175 | 
            +
                    def parse_xml(xml_path):
         | 
| 176 | 
            +
                        tree = ET.parse(xml_path)
         | 
| 177 | 
            +
                        root = tree.getroot()
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                    # Extract the necessary information
         | 
| 180 | 
            +
                        width = int(root.find("./size/width").text)
         | 
| 181 | 
            +
                        height = int(root.find("./size/height").text)
         | 
| 182 | 
            +
                        depth = int(root.find("./size/depth").text)
         | 
| 183 | 
            +
                        segmented = int(root.find("./segmented").text)
         | 
| 184 | 
            +
                        return width, height, depth, segmented
         | 
| 185 | 
            +
                    
         | 
| 186 | 
            +
                    # Load annotations
         | 
| 187 | 
            +
                    with open(annotations_path) as file:
         | 
| 188 | 
            +
                        annotations_json = json.load(file)
         | 
| 189 | 
            +
                    
         | 
| 190 | 
            +
                    for item in annotations_json['annotations']:
         | 
| 191 | 
            +
                        item['image_id'] = format_image_id(item['image_id'])
         | 
| 192 | 
            +
                    
         | 
| 193 | 
            +
                    annotations = {item['image_id']: item for item in annotations_json['annotations']}
         | 
| 194 | 
            +
                    
         | 
| 195 | 
            +
                    
         | 
| 196 | 
            +
                    # Iterate through each row in the split DataFrame
         | 
| 197 | 
            +
                    for _, row in split_df.iterrows():
         | 
| 198 | 
            +
                        image_id = row['image_id']
         | 
| 199 | 
            +
                        # Determine the folder based on the 'fractured' column
         | 
| 200 | 
            +
                        folder = 'Fractured' if row['fractured'] == 1 else 'Non_fractured'
         | 
| 201 | 
            +
                        
         | 
| 202 | 
            +
                        # Check if the formatted_image_id exists in annotations
         | 
| 203 | 
            +
                        annotation = annotations.get(image_id)
         | 
| 204 | 
            +
                        image_path = os.path.join(images_path, folder, image_id)
         | 
| 205 | 
            +
                        
         | 
| 206 | 
            +
                        # Initialize variables
         | 
| 207 | 
            +
                        segmentation, bbox, area = None, None, None
         | 
| 208 | 
            +
                        segmentation_metadata = None
         | 
| 209 | 
            +
                            
         | 
| 210 | 
            +
                        if annotation:
         | 
| 211 | 
            +
                            segmentation = annotation.get('segmentation')  
         | 
| 212 | 
            +
                            bbox = annotation.get('bbox')  
         | 
| 213 | 
            +
                            area = annotation.get('area')  
         | 
| 214 | 
            +
                            
         | 
| 215 | 
            +
                            segmentation_metadata = {
         | 
| 216 | 
            +
                                'segmentation':  segmentation,
         | 
| 217 | 
            +
                                'bbox':bbox,
         | 
| 218 | 
            +
                                'area': area
         | 
| 219 | 
            +
                                }
         | 
| 220 | 
            +
                        else:
         | 
| 221 | 
            +
                            segmentation_metadata = None # Default if not present
         | 
| 222 | 
            +
                        
         | 
| 223 | 
            +
                        xml_file_name = f"{image_id.split('.')[0]}.xml"
         | 
| 224 | 
            +
                        xml_path = os.path.join(localization_path, xml_file_name)
         | 
| 225 | 
            +
                        
         | 
| 226 | 
            +
                        # Parse the XML file
         | 
| 227 | 
            +
                        width, height, depth, _ = parse_xml(xml_path)
         | 
| 228 | 
            +
                        
         | 
| 229 | 
            +
                        localization_metadata = {
         | 
| 230 | 
            +
                            'width': width,
         | 
| 231 | 
            +
                            "height":height,
         | 
| 232 | 
            +
                            'depth': depth
         | 
| 233 | 
            +
                            }
         | 
| 234 | 
            +
                        
         | 
| 235 | 
            +
                        
         | 
| 236 | 
            +
                        # Construct example data
         | 
| 237 | 
            +
                        example_data = {
         | 
| 238 | 
            +
                            "image_id": row['image_id'],
         | 
| 239 | 
            +
                            "image":image_path,
         | 
| 240 | 
            +
                            "hand": row["hand"],
         | 
| 241 | 
            +
                            "leg": row["leg"],
         | 
| 242 | 
            +
                            "hip": row["hip"],
         | 
| 243 | 
            +
                            "shoulder": row["shoulder"],
         | 
| 244 | 
            +
                            "mixed": row["mixed"],
         | 
| 245 | 
            +
                            "hardware": row["hardware"],
         | 
| 246 | 
            +
                            "multiscan": row["multiscan"],
         | 
| 247 | 
            +
                            "fractured": row["fractured"],
         | 
| 248 | 
            +
                            "fracture_count": row["fracture_count"],
         | 
| 249 | 
            +
                            "frontal": row["frontal"],
         | 
| 250 | 
            +
                            "lateral": row["lateral"],
         | 
| 251 | 
            +
                            "oblique": row["oblique"],
         | 
| 252 | 
            +
                            "localization_metadata": localization_metadata,
         | 
| 253 | 
            +
                            'segmentation_metadata': segmentation_metadata
         | 
| 254 | 
            +
                        }
         | 
| 255 | 
            +
                        yield image_id, example_data
         | 
| 256 | 
            +
             | 
| 257 | 
            +
             |