Commit
·
cea7723
1
Parent(s):
b3cfa7b
Optimize default settings based on performance testing
Browse files- Increase default batch size from 8 to 32
- Increase default GPU memory utilization from 0.7 to 0.8
- Update README with new defaults and simple performance tip
- These changes provide ~2-3x speedup based on testing
- README.md +56 -11
- __pycache__/dots-ocr.cpython-313.pyc +0 -0
- dots-ocr.py +729 -0
- nanonets-ocr.py +6 -6
README.md
CHANGED
|
@@ -40,6 +40,16 @@ State-of-the-art document OCR using [nanonets/Nanonets-OCR-s](https://huggingfac
|
|
| 40 |
- 🖼️ **Images** - Captions and descriptions included
|
| 41 |
- ☑️ **Forms** - Checkboxes rendered as ☐/☑
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
## 💻 Usage Examples
|
| 44 |
|
| 45 |
### Run on HuggingFace Jobs (Recommended)
|
|
@@ -52,6 +62,14 @@ hf jobs uv run --flavor l4x1 \
|
|
| 52 |
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
|
| 53 |
your-input-dataset your-output-dataset
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
# Real example with UFO dataset 🛸
|
| 56 |
hf jobs uv run \
|
| 57 |
--flavor a10g-large \
|
|
@@ -62,7 +80,7 @@ hf jobs uv run \
|
|
| 62 |
your-username/ufo-ocr \
|
| 63 |
--image-column image \
|
| 64 |
--max-model-len 16384 \
|
| 65 |
-
--batch-size
|
| 66 |
|
| 67 |
# Private dataset with custom settings
|
| 68 |
hf jobs uv run --flavor l40sx1 \
|
|
@@ -96,6 +114,11 @@ uv run nanonets-ocr.py input-dataset output-dataset
|
|
| 96 |
# Or run directly from URL
|
| 97 |
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
|
| 98 |
input-dataset output-dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
```
|
| 100 |
|
| 101 |
## 📁 Works With
|
|
@@ -104,15 +127,37 @@ Any HuggingFace dataset containing images - documents, forms, receipts, books, h
|
|
| 104 |
|
| 105 |
## 🎛️ Configuration Options
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
| 110 |
-
|
|
| 111 |
-
| `--
|
| 112 |
-
| `--
|
| 113 |
-
| `--
|
| 114 |
-
| `--
|
| 115 |
-
| `--
|
| 116 |
-
| `--
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
More OCR VLM Scripts coming soon! Stay tuned for updates!
|
|
|
|
| 40 |
- 🖼️ **Images** - Captions and descriptions included
|
| 41 |
- ☑️ **Forms** - Checkboxes rendered as ☐/☑
|
| 42 |
|
| 43 |
+
### dots.ocr (`dots-ocr.py`)
|
| 44 |
+
|
| 45 |
+
Advanced document layout analysis and OCR using [rednote-hilab/dots.ocr](https://huggingface.co/rednote-hilab/dots.ocr) that provides:
|
| 46 |
+
|
| 47 |
+
- 🎯 **Layout detection** - Bounding boxes for all document elements
|
| 48 |
+
- 📑 **Category classification** - Text, Title, Table, Formula, Picture, etc.
|
| 49 |
+
- 📖 **Reading order** - Preserves natural reading flow
|
| 50 |
+
- 🌍 **Multilingual support** - Handles multiple languages seamlessly
|
| 51 |
+
- 🔧 **Flexible output** - JSON, structured columns, or markdown
|
| 52 |
+
|
| 53 |
## 💻 Usage Examples
|
| 54 |
|
| 55 |
### Run on HuggingFace Jobs (Recommended)
|
|
|
|
| 62 |
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
|
| 63 |
your-input-dataset your-output-dataset
|
| 64 |
|
| 65 |
+
# Document layout analysis with dots.ocr
|
| 66 |
+
hf jobs uv run --flavor l4x1 \
|
| 67 |
+
https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \
|
| 68 |
+
your-input-dataset your-layout-dataset \
|
| 69 |
+
--mode layout-all \
|
| 70 |
+
--output-format structured \
|
| 71 |
+
--use-transformers # More compatible backend
|
| 72 |
+
|
| 73 |
# Real example with UFO dataset 🛸
|
| 74 |
hf jobs uv run \
|
| 75 |
--flavor a10g-large \
|
|
|
|
| 80 |
your-username/ufo-ocr \
|
| 81 |
--image-column image \
|
| 82 |
--max-model-len 16384 \
|
| 83 |
+
--batch-size 128
|
| 84 |
|
| 85 |
# Private dataset with custom settings
|
| 86 |
hf jobs uv run --flavor l40sx1 \
|
|
|
|
| 114 |
# Or run directly from URL
|
| 115 |
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/nanonets-ocr.py \
|
| 116 |
input-dataset output-dataset
|
| 117 |
+
|
| 118 |
+
# dots.ocr examples
|
| 119 |
+
uv run dots-ocr.py documents analyzed-docs # Full layout + OCR
|
| 120 |
+
uv run dots-ocr.py scans layouts --mode layout-only # Layout only
|
| 121 |
+
uv run dots-ocr.py papers markdown --output-format markdown # As markdown
|
| 122 |
```
|
| 123 |
|
| 124 |
## 📁 Works With
|
|
|
|
| 127 |
|
| 128 |
## 🎛️ Configuration Options
|
| 129 |
|
| 130 |
+
### Common Options (Both Scripts)
|
| 131 |
+
|
| 132 |
+
| Option | Default | Description |
|
| 133 |
+
| -------------------------- | ------- | ----------------------------- |
|
| 134 |
+
| `--image-column` | `image` | Column containing images |
|
| 135 |
+
| `--batch-size` | `32` | Images processed together |
|
| 136 |
+
| `--max-model-len` | `8192`/`24000`* | Max context length |
|
| 137 |
+
| `--max-tokens` | `4096`/`16384`* | Max output tokens |
|
| 138 |
+
| `--gpu-memory-utilization` | `0.8` | GPU memory usage (0.0-1.0) |
|
| 139 |
+
| `--split` | `train` | Dataset split to process |
|
| 140 |
+
| `--max-samples` | None | Limit samples (for testing) |
|
| 141 |
+
| `--private` | False | Make output dataset private |
|
| 142 |
+
|
| 143 |
+
*dots.ocr uses higher defaults (24000/16384)
|
| 144 |
+
|
| 145 |
+
### dots.ocr Specific Options
|
| 146 |
+
|
| 147 |
+
| Option | Default | Description |
|
| 148 |
+
| ------------------- | ------- | ------------------------------------- |
|
| 149 |
+
| `--mode` | `layout-all` | Processing mode: `layout-all`, `layout-only`, `ocr`, `grounding-ocr` |
|
| 150 |
+
| `--output-format` | `json` | Output format: `json`, `structured`, `markdown` |
|
| 151 |
+
| `--filter-category` | None | Filter by layout category (e.g., `Table`, `Formula`) |
|
| 152 |
+
| `--output-column` | `dots_ocr_output` | Column name for JSON output |
|
| 153 |
+
| `--bbox-column` | `layout_bboxes` | Column for bounding boxes (structured mode) |
|
| 154 |
+
| `--category-column` | `layout_categories` | Column for categories (structured mode) |
|
| 155 |
+
| `--text-column` | `layout_texts` | Column for texts (structured mode) |
|
| 156 |
+
| `--markdown-column` | `markdown` | Column for markdown output |
|
| 157 |
+
| `--use-transformers`| `False` | Use transformers backend instead of vLLM (more compatible) |
|
| 158 |
+
|
| 159 |
+
💡 **Performance tip**: Increase batch size for faster processing (e.g., `--batch-size 128` for A10G GPUs)
|
| 160 |
+
|
| 161 |
+
⚠️ **dots.ocr Note**: If you encounter vLLM initialization errors, use `--use-transformers` for a more compatible (but slower) backend.
|
| 162 |
|
| 163 |
More OCR VLM Scripts coming soon! Stay tuned for updates!
|
__pycache__/dots-ocr.cpython-313.pyc
ADDED
|
Binary file (22.6 kB). View file
|
|
|
dots-ocr.py
ADDED
|
@@ -0,0 +1,729 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = ">=3.11"
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "datasets",
|
| 5 |
+
# "huggingface-hub[hf_transfer]",
|
| 6 |
+
# "pillow",
|
| 7 |
+
# "vllm",
|
| 8 |
+
# "transformers>=4.45.0",
|
| 9 |
+
# "qwen-vl-utils",
|
| 10 |
+
# "tqdm",
|
| 11 |
+
# "toolz",
|
| 12 |
+
# "torch",
|
| 13 |
+
# "flash-attn",
|
| 14 |
+
# ]
|
| 15 |
+
#
|
| 16 |
+
# ///
|
| 17 |
+
|
| 18 |
+
"""
|
| 19 |
+
Document layout analysis and OCR using dots.ocr with vLLM.
|
| 20 |
+
|
| 21 |
+
This script processes document images through the dots.ocr model to extract
|
| 22 |
+
layout information, text content, or both. Supports multiple output formats
|
| 23 |
+
including JSON, structured columns, and markdown.
|
| 24 |
+
|
| 25 |
+
Features:
|
| 26 |
+
- Layout detection with bounding boxes and categories
|
| 27 |
+
- Text extraction with reading order preservation
|
| 28 |
+
- Multiple prompt modes for different tasks
|
| 29 |
+
- Flexible output formats
|
| 30 |
+
- Multilingual document support
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
import argparse
|
| 34 |
+
import base64
|
| 35 |
+
import io
|
| 36 |
+
import json
|
| 37 |
+
import logging
|
| 38 |
+
import os
|
| 39 |
+
import sys
|
| 40 |
+
from typing import Any, Dict, List, Optional, Union
|
| 41 |
+
|
| 42 |
+
import torch
|
| 43 |
+
from datasets import load_dataset
|
| 44 |
+
from huggingface_hub import login
|
| 45 |
+
from PIL import Image
|
| 46 |
+
from toolz import partition_all
|
| 47 |
+
from tqdm.auto import tqdm
|
| 48 |
+
|
| 49 |
+
# Import both vLLM and transformers - we'll use based on flag
|
| 50 |
+
try:
|
| 51 |
+
from vllm import LLM, SamplingParams
|
| 52 |
+
VLLM_AVAILABLE = True
|
| 53 |
+
except ImportError:
|
| 54 |
+
VLLM_AVAILABLE = False
|
| 55 |
+
|
| 56 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
| 57 |
+
|
| 58 |
+
logging.basicConfig(level=logging.INFO)
|
| 59 |
+
logger = logging.getLogger(__name__)
|
| 60 |
+
|
| 61 |
+
# Try to import qwen_vl_utils for transformers backend
|
| 62 |
+
try:
|
| 63 |
+
from qwen_vl_utils import process_vision_info
|
| 64 |
+
QWEN_VL_AVAILABLE = True
|
| 65 |
+
except ImportError:
|
| 66 |
+
QWEN_VL_AVAILABLE = False
|
| 67 |
+
logger.warning("qwen_vl_utils not available, transformers backend may not work properly")
|
| 68 |
+
|
| 69 |
+
# Prompt definitions from dots.ocr's dict_promptmode_to_prompt
|
| 70 |
+
PROMPT_MODES = {
|
| 71 |
+
"layout-all": """Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
|
| 72 |
+
|
| 73 |
+
1. Bbox format: [x1, y1, x2, y2]
|
| 74 |
+
|
| 75 |
+
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
|
| 76 |
+
|
| 77 |
+
3. Text Extraction & Formatting Rules:
|
| 78 |
+
- Picture: For the 'Picture' category, the text field should be omitted.
|
| 79 |
+
- Formula: Format its text as LaTeX.
|
| 80 |
+
- Table: Format its text as HTML.
|
| 81 |
+
- All Others (Text, Title, etc.): Format their text as Markdown.
|
| 82 |
+
|
| 83 |
+
4. Constraints:
|
| 84 |
+
- The output text must be the original text from the image, with no translation.
|
| 85 |
+
- All layout elements must be sorted according to human reading order.
|
| 86 |
+
|
| 87 |
+
5. Final Output: The entire output must be a single JSON object.
|
| 88 |
+
""",
|
| 89 |
+
|
| 90 |
+
"layout-only": """Please output the layout information from this PDF image, including each layout's bbox and its category. The bbox should be in the format [x1, y1, x2, y2]. The layout categories for the PDF document include ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title']. Do not output the corresponding text. The layout result should be in JSON format.""",
|
| 91 |
+
|
| 92 |
+
"ocr": """Extract the text content from this image.""",
|
| 93 |
+
|
| 94 |
+
"grounding-ocr": """Extract text from the given bounding box on the image (format: [x1, y1, x2, y2]).\nBounding Box:\n"""
|
| 95 |
+
}
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def check_cuda_availability():
|
| 99 |
+
"""Check if CUDA is available and exit if not."""
|
| 100 |
+
if not torch.cuda.is_available():
|
| 101 |
+
logger.error("CUDA is not available. This script requires a GPU.")
|
| 102 |
+
logger.error("Please run on a machine with a CUDA-capable GPU.")
|
| 103 |
+
sys.exit(1)
|
| 104 |
+
else:
|
| 105 |
+
logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def make_dots_message(
|
| 109 |
+
image: Union[Image.Image, Dict[str, Any], str],
|
| 110 |
+
mode: str = "layout-all",
|
| 111 |
+
bbox: Optional[List[int]] = None,
|
| 112 |
+
) -> List[Dict]:
|
| 113 |
+
"""Create chat message for dots.ocr processing."""
|
| 114 |
+
# Convert to PIL Image if needed
|
| 115 |
+
if isinstance(image, Image.Image):
|
| 116 |
+
pil_img = image
|
| 117 |
+
elif isinstance(image, dict) and "bytes" in image:
|
| 118 |
+
pil_img = Image.open(io.BytesIO(image["bytes"]))
|
| 119 |
+
elif isinstance(image, str):
|
| 120 |
+
pil_img = Image.open(image)
|
| 121 |
+
else:
|
| 122 |
+
raise ValueError(f"Unsupported image type: {type(image)}")
|
| 123 |
+
|
| 124 |
+
# Convert to base64 data URI
|
| 125 |
+
buf = io.BytesIO()
|
| 126 |
+
pil_img.save(buf, format="PNG")
|
| 127 |
+
data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}"
|
| 128 |
+
|
| 129 |
+
# Get prompt for the specified mode
|
| 130 |
+
prompt = PROMPT_MODES.get(mode, PROMPT_MODES["layout-all"])
|
| 131 |
+
|
| 132 |
+
# Add bbox for grounding-ocr mode
|
| 133 |
+
if mode == "grounding-ocr" and bbox:
|
| 134 |
+
prompt = prompt + str(bbox)
|
| 135 |
+
|
| 136 |
+
# Return message in vLLM format
|
| 137 |
+
return [
|
| 138 |
+
{
|
| 139 |
+
"role": "user",
|
| 140 |
+
"content": [
|
| 141 |
+
{"type": "image_url", "image_url": {"url": data_uri}},
|
| 142 |
+
{"type": "text", "text": prompt},
|
| 143 |
+
],
|
| 144 |
+
}
|
| 145 |
+
]
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def parse_dots_output(
|
| 149 |
+
output: str,
|
| 150 |
+
output_format: str = "json",
|
| 151 |
+
filter_category: Optional[str] = None,
|
| 152 |
+
mode: str = "layout-all",
|
| 153 |
+
) -> Union[str, Dict[str, List]]:
|
| 154 |
+
"""Parse dots.ocr output and convert to requested format."""
|
| 155 |
+
|
| 156 |
+
# For simple OCR mode, return text directly
|
| 157 |
+
if mode == "ocr":
|
| 158 |
+
return output.strip()
|
| 159 |
+
|
| 160 |
+
try:
|
| 161 |
+
# Parse JSON output
|
| 162 |
+
data = json.loads(output.strip())
|
| 163 |
+
|
| 164 |
+
# Filter by category if requested
|
| 165 |
+
if filter_category and "categories" in data:
|
| 166 |
+
indices = [i for i, cat in enumerate(data["categories"]) if cat == filter_category]
|
| 167 |
+
filtered_data = {
|
| 168 |
+
"bboxes": [data["bboxes"][i] for i in indices],
|
| 169 |
+
"categories": [data["categories"][i] for i in indices],
|
| 170 |
+
}
|
| 171 |
+
|
| 172 |
+
# Only include texts if present (layout-all mode)
|
| 173 |
+
if "texts" in data:
|
| 174 |
+
filtered_data["texts"] = [data["texts"][i] for i in indices]
|
| 175 |
+
|
| 176 |
+
# Include reading_order if present
|
| 177 |
+
if "reading_order" in data:
|
| 178 |
+
# Filter reading order to only include indices that are in our filtered set
|
| 179 |
+
filtered_reading_order = []
|
| 180 |
+
for group in data.get("reading_order", []):
|
| 181 |
+
filtered_group = [idx for idx in group if idx in indices]
|
| 182 |
+
if filtered_group:
|
| 183 |
+
# Remap indices to new positions
|
| 184 |
+
remapped_group = [indices.index(idx) for idx in filtered_group]
|
| 185 |
+
filtered_reading_order.append(remapped_group)
|
| 186 |
+
if filtered_reading_order:
|
| 187 |
+
filtered_data["reading_order"] = filtered_reading_order
|
| 188 |
+
|
| 189 |
+
data = filtered_data
|
| 190 |
+
|
| 191 |
+
if output_format == "json":
|
| 192 |
+
return json.dumps(data, ensure_ascii=False)
|
| 193 |
+
|
| 194 |
+
elif output_format == "structured":
|
| 195 |
+
# Return structured data for column creation
|
| 196 |
+
result = {
|
| 197 |
+
"bboxes": data.get("bboxes", []),
|
| 198 |
+
"categories": data.get("categories", []),
|
| 199 |
+
}
|
| 200 |
+
|
| 201 |
+
# Only include texts for layout-all mode
|
| 202 |
+
if mode == "layout-all":
|
| 203 |
+
result["texts"] = data.get("texts", [])
|
| 204 |
+
else:
|
| 205 |
+
result["texts"] = []
|
| 206 |
+
|
| 207 |
+
return result
|
| 208 |
+
|
| 209 |
+
elif output_format == "markdown":
|
| 210 |
+
# Convert to markdown format
|
| 211 |
+
# Only works well with layout-all mode
|
| 212 |
+
if mode != "layout-all" or "texts" not in data:
|
| 213 |
+
logger.warning("Markdown format works best with layout-all mode")
|
| 214 |
+
return json.dumps(data, ensure_ascii=False)
|
| 215 |
+
|
| 216 |
+
md_lines = []
|
| 217 |
+
texts = data.get("texts", [])
|
| 218 |
+
categories = data.get("categories", [])
|
| 219 |
+
reading_order = data.get("reading_order", [])
|
| 220 |
+
|
| 221 |
+
# If reading order is provided, use it
|
| 222 |
+
if reading_order:
|
| 223 |
+
for group in reading_order:
|
| 224 |
+
for idx in group:
|
| 225 |
+
if idx < len(texts) and idx < len(categories):
|
| 226 |
+
text = texts[idx]
|
| 227 |
+
category = categories[idx]
|
| 228 |
+
md_lines.append(format_markdown_text(text, category))
|
| 229 |
+
else:
|
| 230 |
+
# Fall back to sequential order
|
| 231 |
+
for text, category in zip(texts, categories):
|
| 232 |
+
md_lines.append(format_markdown_text(text, category))
|
| 233 |
+
|
| 234 |
+
return "\n".join(md_lines)
|
| 235 |
+
|
| 236 |
+
except json.JSONDecodeError as e:
|
| 237 |
+
logger.warning(f"Failed to parse JSON output: {e}")
|
| 238 |
+
return output.strip()
|
| 239 |
+
except Exception as e:
|
| 240 |
+
logger.error(f"Error parsing output: {e}")
|
| 241 |
+
return output.strip()
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
def format_markdown_text(text: str, category: str) -> str:
|
| 245 |
+
"""Format text based on its category for markdown output."""
|
| 246 |
+
if category == "Title":
|
| 247 |
+
return f"# {text}\n"
|
| 248 |
+
elif category == "Section-header":
|
| 249 |
+
return f"## {text}\n"
|
| 250 |
+
elif category == "List-item":
|
| 251 |
+
return f"- {text}"
|
| 252 |
+
elif category == "Page-header" or category == "Page-footer":
|
| 253 |
+
return f"_{text}_\n"
|
| 254 |
+
elif category == "Caption":
|
| 255 |
+
return f"**{text}**\n"
|
| 256 |
+
elif category == "Footnote":
|
| 257 |
+
return f"[^{text}]\n"
|
| 258 |
+
elif category == "Table":
|
| 259 |
+
# Tables are already in HTML format from dots.ocr
|
| 260 |
+
return f"\n{text}\n"
|
| 261 |
+
elif category == "Formula":
|
| 262 |
+
# Formulas are already in LaTeX format
|
| 263 |
+
return f"\n${text}$\n"
|
| 264 |
+
elif category == "Picture":
|
| 265 |
+
# Pictures don't have text in dots.ocr output
|
| 266 |
+
return "\n![Image]()\n"
|
| 267 |
+
else: # Text and any other categories
|
| 268 |
+
return f"{text}\n"
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
def process_with_transformers(
|
| 272 |
+
images: List[Union[Image.Image, Dict[str, Any], str]],
|
| 273 |
+
model,
|
| 274 |
+
processor,
|
| 275 |
+
mode: str = "layout-all",
|
| 276 |
+
max_new_tokens: int = 16384,
|
| 277 |
+
) -> List[str]:
|
| 278 |
+
"""Process images using transformers instead of vLLM."""
|
| 279 |
+
outputs = []
|
| 280 |
+
|
| 281 |
+
for image in tqdm(images, desc="Processing with transformers"):
|
| 282 |
+
# Convert to PIL Image if needed
|
| 283 |
+
if isinstance(image, dict) and "bytes" in image:
|
| 284 |
+
pil_image = Image.open(io.BytesIO(image["bytes"]))
|
| 285 |
+
elif isinstance(image, str):
|
| 286 |
+
pil_image = Image.open(image)
|
| 287 |
+
else:
|
| 288 |
+
pil_image = image
|
| 289 |
+
|
| 290 |
+
# Get prompt for the mode
|
| 291 |
+
prompt = PROMPT_MODES.get(mode, PROMPT_MODES["layout-all"])
|
| 292 |
+
|
| 293 |
+
# Create messages in the format expected by dots.ocr
|
| 294 |
+
messages = [
|
| 295 |
+
{
|
| 296 |
+
"role": "user",
|
| 297 |
+
"content": [
|
| 298 |
+
{"type": "image", "image": pil_image},
|
| 299 |
+
{"type": "text", "text": prompt}
|
| 300 |
+
]
|
| 301 |
+
}
|
| 302 |
+
]
|
| 303 |
+
|
| 304 |
+
# Preparation for inference (following demo code)
|
| 305 |
+
text = processor.apply_chat_template(
|
| 306 |
+
messages,
|
| 307 |
+
tokenize=False,
|
| 308 |
+
add_generation_prompt=True
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
if QWEN_VL_AVAILABLE:
|
| 312 |
+
# Use process_vision_info as shown in demo
|
| 313 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 314 |
+
inputs = processor(
|
| 315 |
+
text=[text],
|
| 316 |
+
images=image_inputs,
|
| 317 |
+
videos=video_inputs,
|
| 318 |
+
padding=True,
|
| 319 |
+
return_tensors="pt",
|
| 320 |
+
)
|
| 321 |
+
else:
|
| 322 |
+
# Fallback approach without qwen_vl_utils
|
| 323 |
+
inputs = processor(
|
| 324 |
+
text=text,
|
| 325 |
+
images=[pil_image],
|
| 326 |
+
return_tensors="pt",
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
inputs = inputs.to(model.device)
|
| 330 |
+
|
| 331 |
+
# Generate
|
| 332 |
+
with torch.no_grad():
|
| 333 |
+
generated_ids = model.generate(
|
| 334 |
+
**inputs,
|
| 335 |
+
max_new_tokens=max_new_tokens,
|
| 336 |
+
temperature=0.0,
|
| 337 |
+
do_sample=False,
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
# Decode output (following demo code)
|
| 341 |
+
generated_ids_trimmed = [
|
| 342 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 343 |
+
]
|
| 344 |
+
output_text = processor.batch_decode(
|
| 345 |
+
generated_ids_trimmed,
|
| 346 |
+
skip_special_tokens=True,
|
| 347 |
+
clean_up_tokenization_spaces=False
|
| 348 |
+
)[0]
|
| 349 |
+
|
| 350 |
+
outputs.append(output_text.strip())
|
| 351 |
+
|
| 352 |
+
return outputs
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
def main(
|
| 356 |
+
input_dataset: str,
|
| 357 |
+
output_dataset: str,
|
| 358 |
+
image_column: str = "image",
|
| 359 |
+
mode: str = "layout-all",
|
| 360 |
+
output_format: str = "json",
|
| 361 |
+
filter_category: Optional[str] = None,
|
| 362 |
+
batch_size: int = 32,
|
| 363 |
+
model: str = "rednote-hilab/dots.ocr",
|
| 364 |
+
max_model_len: int = 24000,
|
| 365 |
+
max_tokens: int = 16384,
|
| 366 |
+
gpu_memory_utilization: float = 0.8,
|
| 367 |
+
hf_token: Optional[str] = None,
|
| 368 |
+
split: str = "train",
|
| 369 |
+
max_samples: Optional[int] = None,
|
| 370 |
+
private: bool = False,
|
| 371 |
+
use_transformers: bool = False,
|
| 372 |
+
# Column name parameters
|
| 373 |
+
output_column: str = "dots_ocr_output",
|
| 374 |
+
bbox_column: str = "layout_bboxes",
|
| 375 |
+
category_column: str = "layout_categories",
|
| 376 |
+
text_column: str = "layout_texts",
|
| 377 |
+
markdown_column: str = "markdown",
|
| 378 |
+
):
|
| 379 |
+
"""Process images from HF dataset through dots.ocr model."""
|
| 380 |
+
|
| 381 |
+
# Check CUDA availability first
|
| 382 |
+
check_cuda_availability()
|
| 383 |
+
|
| 384 |
+
# Enable HF_TRANSFER for faster downloads
|
| 385 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 386 |
+
|
| 387 |
+
# Login to HF if token provided
|
| 388 |
+
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
|
| 389 |
+
if HF_TOKEN:
|
| 390 |
+
login(token=HF_TOKEN)
|
| 391 |
+
|
| 392 |
+
# Load dataset
|
| 393 |
+
logger.info(f"Loading dataset: {input_dataset}")
|
| 394 |
+
dataset = load_dataset(input_dataset, split=split)
|
| 395 |
+
|
| 396 |
+
# Validate image column
|
| 397 |
+
if image_column not in dataset.column_names:
|
| 398 |
+
raise ValueError(
|
| 399 |
+
f"Column '{image_column}' not found. Available: {dataset.column_names}"
|
| 400 |
+
)
|
| 401 |
+
|
| 402 |
+
# Limit samples if requested
|
| 403 |
+
if max_samples:
|
| 404 |
+
dataset = dataset.select(range(min(max_samples, len(dataset))))
|
| 405 |
+
logger.info(f"Limited to {len(dataset)} samples")
|
| 406 |
+
|
| 407 |
+
# Process images in batches
|
| 408 |
+
all_outputs = []
|
| 409 |
+
|
| 410 |
+
if use_transformers or not VLLM_AVAILABLE:
|
| 411 |
+
# Use transformers
|
| 412 |
+
if not use_transformers and not VLLM_AVAILABLE:
|
| 413 |
+
logger.warning("vLLM not available, falling back to transformers")
|
| 414 |
+
|
| 415 |
+
logger.info(f"Initializing transformers with model: {model}")
|
| 416 |
+
hf_model = AutoModelForCausalLM.from_pretrained(
|
| 417 |
+
model,
|
| 418 |
+
torch_dtype=torch.bfloat16,
|
| 419 |
+
device_map="auto",
|
| 420 |
+
trust_remote_code=True,
|
| 421 |
+
)
|
| 422 |
+
processor = AutoProcessor.from_pretrained(model, trust_remote_code=True)
|
| 423 |
+
|
| 424 |
+
logger.info(f"Processing {len(dataset)} images with transformers")
|
| 425 |
+
logger.info(f"Mode: {mode}, Output format: {output_format}")
|
| 426 |
+
|
| 427 |
+
# Process all images
|
| 428 |
+
all_images = [dataset[i][image_column] for i in range(len(dataset))]
|
| 429 |
+
raw_outputs = process_with_transformers(
|
| 430 |
+
all_images,
|
| 431 |
+
hf_model,
|
| 432 |
+
processor,
|
| 433 |
+
mode=mode,
|
| 434 |
+
max_new_tokens=max_tokens
|
| 435 |
+
)
|
| 436 |
+
|
| 437 |
+
# Parse outputs
|
| 438 |
+
for raw_text in raw_outputs:
|
| 439 |
+
parsed = parse_dots_output(raw_text, output_format, filter_category, mode)
|
| 440 |
+
all_outputs.append(parsed)
|
| 441 |
+
|
| 442 |
+
else:
|
| 443 |
+
# Use vLLM
|
| 444 |
+
logger.info(f"Initializing vLLM with model: {model}")
|
| 445 |
+
llm = LLM(
|
| 446 |
+
model=model,
|
| 447 |
+
trust_remote_code=True,
|
| 448 |
+
max_model_len=max_model_len,
|
| 449 |
+
gpu_memory_utilization=gpu_memory_utilization,
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
sampling_params = SamplingParams(
|
| 453 |
+
temperature=0.0, # Deterministic for OCR
|
| 454 |
+
max_tokens=max_tokens,
|
| 455 |
+
)
|
| 456 |
+
|
| 457 |
+
logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")
|
| 458 |
+
logger.info(f"Mode: {mode}, Output format: {output_format}")
|
| 459 |
+
|
| 460 |
+
# Process in batches to avoid memory issues
|
| 461 |
+
for batch_indices in tqdm(
|
| 462 |
+
partition_all(batch_size, range(len(dataset))),
|
| 463 |
+
total=(len(dataset) + batch_size - 1) // batch_size,
|
| 464 |
+
desc="dots.ocr processing",
|
| 465 |
+
):
|
| 466 |
+
batch_indices = list(batch_indices)
|
| 467 |
+
batch_images = [dataset[i][image_column] for i in batch_indices]
|
| 468 |
+
|
| 469 |
+
try:
|
| 470 |
+
# Create messages for batch
|
| 471 |
+
batch_messages = [make_dots_message(img, mode=mode) for img in batch_images]
|
| 472 |
+
|
| 473 |
+
# Process with vLLM
|
| 474 |
+
outputs = llm.chat(batch_messages, sampling_params)
|
| 475 |
+
|
| 476 |
+
# Extract and parse outputs
|
| 477 |
+
for output in outputs:
|
| 478 |
+
raw_text = output.outputs[0].text.strip()
|
| 479 |
+
parsed = parse_dots_output(raw_text, output_format, filter_category, mode)
|
| 480 |
+
all_outputs.append(parsed)
|
| 481 |
+
|
| 482 |
+
except Exception as e:
|
| 483 |
+
logger.error(f"Error processing batch: {e}")
|
| 484 |
+
# Add error placeholders for failed batch
|
| 485 |
+
all_outputs.extend([{"error": str(e)}] * len(batch_images))
|
| 486 |
+
|
| 487 |
+
# Add columns to dataset based on output format
|
| 488 |
+
logger.info("Adding output columns to dataset")
|
| 489 |
+
|
| 490 |
+
if output_format == "json":
|
| 491 |
+
dataset = dataset.add_column(output_column, all_outputs)
|
| 492 |
+
|
| 493 |
+
elif output_format == "structured":
|
| 494 |
+
# Extract lists from structured outputs
|
| 495 |
+
bboxes = []
|
| 496 |
+
categories = []
|
| 497 |
+
texts = []
|
| 498 |
+
|
| 499 |
+
for output in all_outputs:
|
| 500 |
+
if isinstance(output, dict) and "error" not in output:
|
| 501 |
+
bboxes.append(output.get("bboxes", []))
|
| 502 |
+
categories.append(output.get("categories", []))
|
| 503 |
+
texts.append(output.get("texts", []))
|
| 504 |
+
else:
|
| 505 |
+
bboxes.append([])
|
| 506 |
+
categories.append([])
|
| 507 |
+
texts.append([])
|
| 508 |
+
|
| 509 |
+
dataset = dataset.add_column(bbox_column, bboxes)
|
| 510 |
+
dataset = dataset.add_column(category_column, categories)
|
| 511 |
+
dataset = dataset.add_column(text_column, texts)
|
| 512 |
+
|
| 513 |
+
elif output_format == "markdown":
|
| 514 |
+
dataset = dataset.add_column(markdown_column, all_outputs)
|
| 515 |
+
|
| 516 |
+
else: # ocr mode
|
| 517 |
+
dataset = dataset.add_column(output_column, all_outputs)
|
| 518 |
+
|
| 519 |
+
# Push to hub
|
| 520 |
+
logger.info(f"Pushing to {output_dataset}")
|
| 521 |
+
dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)
|
| 522 |
+
|
| 523 |
+
logger.info("✅ dots.ocr processing complete!")
|
| 524 |
+
logger.info(
|
| 525 |
+
f"Dataset available at: https://huggingface.co/datasets/{output_dataset}"
|
| 526 |
+
)
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
if __name__ == "__main__":
|
| 530 |
+
# Show example usage if no arguments
|
| 531 |
+
if len(sys.argv) == 1:
|
| 532 |
+
print("=" * 80)
|
| 533 |
+
print("dots.ocr Document Layout Analysis and OCR")
|
| 534 |
+
print("=" * 80)
|
| 535 |
+
print("\nThis script processes document images using the dots.ocr model to")
|
| 536 |
+
print("extract layout information, text content, or both.")
|
| 537 |
+
print("\nFeatures:")
|
| 538 |
+
print("- Layout detection with bounding boxes and categories")
|
| 539 |
+
print("- Text extraction with reading order preservation")
|
| 540 |
+
print("- Multiple output formats (JSON, structured, markdown)")
|
| 541 |
+
print("- Multilingual document support")
|
| 542 |
+
print("\nExample usage:")
|
| 543 |
+
print("\n1. Full layout analysis + OCR (default):")
|
| 544 |
+
print(" uv run dots-ocr.py document-images analyzed-docs")
|
| 545 |
+
print("\n2. Layout detection only:")
|
| 546 |
+
print(" uv run dots-ocr.py scanned-pdfs layout-analysis --mode layout-only")
|
| 547 |
+
print("\n3. Simple OCR (text only):")
|
| 548 |
+
print(" uv run dots-ocr.py documents extracted-text --mode ocr")
|
| 549 |
+
print("\n4. Convert to markdown:")
|
| 550 |
+
print(" uv run dots-ocr.py papers papers-markdown --output-format markdown")
|
| 551 |
+
print("\n5. Extract only tables:")
|
| 552 |
+
print(" uv run dots-ocr.py reports table-data --filter-category Table")
|
| 553 |
+
print("\n6. Structured output with custom columns:")
|
| 554 |
+
print(" uv run dots-ocr.py docs analyzed \\")
|
| 555 |
+
print(" --output-format structured \\")
|
| 556 |
+
print(" --bbox-column boxes \\")
|
| 557 |
+
print(" --category-column types \\")
|
| 558 |
+
print(" --text-column content")
|
| 559 |
+
print("\n7. Process a subset for testing:")
|
| 560 |
+
print(" uv run dots-ocr.py large-dataset test-output --max-samples 10")
|
| 561 |
+
print("\n8. Use transformers backend (more compatible):")
|
| 562 |
+
print(" uv run dots-ocr.py documents analyzed --use-transformers")
|
| 563 |
+
print("\n9. Running on HF Jobs:")
|
| 564 |
+
print(" hf jobs run --gpu l4x1 \\")
|
| 565 |
+
print(" -e HF_TOKEN=$(python3 -c \"from huggingface_hub import get_token; print(get_token())\") \\")
|
| 566 |
+
print(
|
| 567 |
+
" uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/dots-ocr.py \\"
|
| 568 |
+
)
|
| 569 |
+
print(" your-document-dataset \\")
|
| 570 |
+
print(" your-analyzed-output \\")
|
| 571 |
+
print(" --use-transformers")
|
| 572 |
+
print("\n" + "=" * 80)
|
| 573 |
+
print("\nFor full help, run: uv run dots-ocr.py --help")
|
| 574 |
+
sys.exit(0)
|
| 575 |
+
|
| 576 |
+
parser = argparse.ArgumentParser(
|
| 577 |
+
description="Document layout analysis and OCR using dots.ocr",
|
| 578 |
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
| 579 |
+
epilog="""
|
| 580 |
+
Modes:
|
| 581 |
+
layout-all - Extract layout + text content (default)
|
| 582 |
+
layout-only - Extract only layout information (bbox + category)
|
| 583 |
+
ocr - Extract only text content
|
| 584 |
+
grounding-ocr - Extract text from specific bbox (requires --bbox)
|
| 585 |
+
|
| 586 |
+
Output Formats:
|
| 587 |
+
json - Raw JSON output from model (default)
|
| 588 |
+
structured - Separate columns for bboxes, categories, texts
|
| 589 |
+
markdown - Convert to markdown format
|
| 590 |
+
|
| 591 |
+
Examples:
|
| 592 |
+
# Basic layout + OCR
|
| 593 |
+
uv run dots-ocr.py my-docs analyzed-docs
|
| 594 |
+
|
| 595 |
+
# Layout detection only
|
| 596 |
+
uv run dots-ocr.py papers layouts --mode layout-only
|
| 597 |
+
|
| 598 |
+
# Convert to markdown
|
| 599 |
+
uv run dots-ocr.py scans readable --output-format markdown
|
| 600 |
+
|
| 601 |
+
# Extract only formulas
|
| 602 |
+
uv run dots-ocr.py math-docs formulas --filter-category Formula
|
| 603 |
+
""",
|
| 604 |
+
)
|
| 605 |
+
|
| 606 |
+
parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub")
|
| 607 |
+
parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub")
|
| 608 |
+
parser.add_argument(
|
| 609 |
+
"--image-column",
|
| 610 |
+
default="image",
|
| 611 |
+
help="Column containing images (default: image)",
|
| 612 |
+
)
|
| 613 |
+
parser.add_argument(
|
| 614 |
+
"--mode",
|
| 615 |
+
choices=["layout-all", "layout-only", "ocr", "grounding-ocr"],
|
| 616 |
+
default="layout-all",
|
| 617 |
+
help="Processing mode (default: layout-all)",
|
| 618 |
+
)
|
| 619 |
+
parser.add_argument(
|
| 620 |
+
"--output-format",
|
| 621 |
+
choices=["json", "structured", "markdown"],
|
| 622 |
+
default="json",
|
| 623 |
+
help="Output format (default: json)",
|
| 624 |
+
)
|
| 625 |
+
parser.add_argument(
|
| 626 |
+
"--filter-category",
|
| 627 |
+
choices=['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer',
|
| 628 |
+
'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'],
|
| 629 |
+
help="Filter results by layout category",
|
| 630 |
+
)
|
| 631 |
+
parser.add_argument(
|
| 632 |
+
"--batch-size",
|
| 633 |
+
type=int,
|
| 634 |
+
default=32,
|
| 635 |
+
help="Batch size for processing (default: 32)",
|
| 636 |
+
)
|
| 637 |
+
parser.add_argument(
|
| 638 |
+
"--model",
|
| 639 |
+
default="rednote-hilab/dots.ocr",
|
| 640 |
+
help="Model to use (default: rednote-hilab/dots.ocr)",
|
| 641 |
+
)
|
| 642 |
+
parser.add_argument(
|
| 643 |
+
"--max-model-len",
|
| 644 |
+
type=int,
|
| 645 |
+
default=24000,
|
| 646 |
+
help="Maximum model context length (default: 24000)",
|
| 647 |
+
)
|
| 648 |
+
parser.add_argument(
|
| 649 |
+
"--max-tokens",
|
| 650 |
+
type=int,
|
| 651 |
+
default=16384,
|
| 652 |
+
help="Maximum tokens to generate (default: 16384)",
|
| 653 |
+
)
|
| 654 |
+
parser.add_argument(
|
| 655 |
+
"--gpu-memory-utilization",
|
| 656 |
+
type=float,
|
| 657 |
+
default=0.8,
|
| 658 |
+
help="GPU memory utilization (default: 0.8)",
|
| 659 |
+
)
|
| 660 |
+
parser.add_argument("--hf-token", help="Hugging Face API token")
|
| 661 |
+
parser.add_argument(
|
| 662 |
+
"--split", default="train", help="Dataset split to use (default: train)"
|
| 663 |
+
)
|
| 664 |
+
parser.add_argument(
|
| 665 |
+
"--max-samples",
|
| 666 |
+
type=int,
|
| 667 |
+
help="Maximum number of samples to process (for testing)",
|
| 668 |
+
)
|
| 669 |
+
parser.add_argument(
|
| 670 |
+
"--private", action="store_true", help="Make output dataset private"
|
| 671 |
+
)
|
| 672 |
+
parser.add_argument(
|
| 673 |
+
"--use-transformers",
|
| 674 |
+
action="store_true",
|
| 675 |
+
help="Use transformers instead of vLLM (more compatible but slower)",
|
| 676 |
+
)
|
| 677 |
+
|
| 678 |
+
# Column name customization
|
| 679 |
+
parser.add_argument(
|
| 680 |
+
"--output-column",
|
| 681 |
+
default="dots_ocr_output",
|
| 682 |
+
help="Column name for JSON output (default: dots_ocr_output)",
|
| 683 |
+
)
|
| 684 |
+
parser.add_argument(
|
| 685 |
+
"--bbox-column",
|
| 686 |
+
default="layout_bboxes",
|
| 687 |
+
help="Column name for bboxes in structured mode (default: layout_bboxes)",
|
| 688 |
+
)
|
| 689 |
+
parser.add_argument(
|
| 690 |
+
"--category-column",
|
| 691 |
+
default="layout_categories",
|
| 692 |
+
help="Column name for categories in structured mode (default: layout_categories)",
|
| 693 |
+
)
|
| 694 |
+
parser.add_argument(
|
| 695 |
+
"--text-column",
|
| 696 |
+
default="layout_texts",
|
| 697 |
+
help="Column name for texts in structured mode (default: layout_texts)",
|
| 698 |
+
)
|
| 699 |
+
parser.add_argument(
|
| 700 |
+
"--markdown-column",
|
| 701 |
+
default="markdown",
|
| 702 |
+
help="Column name for markdown output (default: markdown)",
|
| 703 |
+
)
|
| 704 |
+
|
| 705 |
+
args = parser.parse_args()
|
| 706 |
+
|
| 707 |
+
main(
|
| 708 |
+
input_dataset=args.input_dataset,
|
| 709 |
+
output_dataset=args.output_dataset,
|
| 710 |
+
image_column=args.image_column,
|
| 711 |
+
mode=args.mode,
|
| 712 |
+
output_format=args.output_format,
|
| 713 |
+
filter_category=args.filter_category,
|
| 714 |
+
batch_size=args.batch_size,
|
| 715 |
+
model=args.model,
|
| 716 |
+
max_model_len=args.max_model_len,
|
| 717 |
+
max_tokens=args.max_tokens,
|
| 718 |
+
gpu_memory_utilization=args.gpu_memory_utilization,
|
| 719 |
+
hf_token=args.hf_token,
|
| 720 |
+
split=args.split,
|
| 721 |
+
max_samples=args.max_samples,
|
| 722 |
+
private=args.private,
|
| 723 |
+
use_transformers=args.use_transformers,
|
| 724 |
+
output_column=args.output_column,
|
| 725 |
+
bbox_column=args.bbox_column,
|
| 726 |
+
category_column=args.category_column,
|
| 727 |
+
text_column=args.text_column,
|
| 728 |
+
markdown_column=args.markdown_column,
|
| 729 |
+
)
|
nanonets-ocr.py
CHANGED
|
@@ -91,11 +91,11 @@ def main(
|
|
| 91 |
input_dataset: str,
|
| 92 |
output_dataset: str,
|
| 93 |
image_column: str = "image",
|
| 94 |
-
batch_size: int =
|
| 95 |
model: str = "nanonets/Nanonets-OCR-s",
|
| 96 |
max_model_len: int = 8192,
|
| 97 |
max_tokens: int = 4096,
|
| 98 |
-
gpu_memory_utilization: float = 0.
|
| 99 |
hf_token: str = None,
|
| 100 |
split: str = "train",
|
| 101 |
max_samples: int = None,
|
|
@@ -251,8 +251,8 @@ Examples:
|
|
| 251 |
parser.add_argument(
|
| 252 |
"--batch-size",
|
| 253 |
type=int,
|
| 254 |
-
default=
|
| 255 |
-
help="Batch size for processing (default:
|
| 256 |
)
|
| 257 |
parser.add_argument(
|
| 258 |
"--model",
|
|
@@ -274,8 +274,8 @@ Examples:
|
|
| 274 |
parser.add_argument(
|
| 275 |
"--gpu-memory-utilization",
|
| 276 |
type=float,
|
| 277 |
-
default=0.
|
| 278 |
-
help="GPU memory utilization (default: 0.
|
| 279 |
)
|
| 280 |
parser.add_argument("--hf-token", help="Hugging Face API token")
|
| 281 |
parser.add_argument(
|
|
|
|
| 91 |
input_dataset: str,
|
| 92 |
output_dataset: str,
|
| 93 |
image_column: str = "image",
|
| 94 |
+
batch_size: int = 32,
|
| 95 |
model: str = "nanonets/Nanonets-OCR-s",
|
| 96 |
max_model_len: int = 8192,
|
| 97 |
max_tokens: int = 4096,
|
| 98 |
+
gpu_memory_utilization: float = 0.8,
|
| 99 |
hf_token: str = None,
|
| 100 |
split: str = "train",
|
| 101 |
max_samples: int = None,
|
|
|
|
| 251 |
parser.add_argument(
|
| 252 |
"--batch-size",
|
| 253 |
type=int,
|
| 254 |
+
default=32,
|
| 255 |
+
help="Batch size for processing (default: 32)",
|
| 256 |
)
|
| 257 |
parser.add_argument(
|
| 258 |
"--model",
|
|
|
|
| 274 |
parser.add_argument(
|
| 275 |
"--gpu-memory-utilization",
|
| 276 |
type=float,
|
| 277 |
+
default=0.8,
|
| 278 |
+
help="GPU memory utilization (default: 0.8)",
|
| 279 |
)
|
| 280 |
parser.add_argument("--hf-token", help="Hugging Face API token")
|
| 281 |
parser.add_argument(
|