Commit
·
88db448
1
Parent(s):
cf61cef
prompt
Browse files- deepseek-ocr-vllm-test.py +0 -226
- deepseek-ocr-vllm.py +33 -11
deepseek-ocr-vllm-test.py
DELETED
|
@@ -1,226 +0,0 @@
|
|
| 1 |
-
# /// script
|
| 2 |
-
# requires-python = ">=3.11"
|
| 3 |
-
# dependencies = [
|
| 4 |
-
# "vllm",
|
| 5 |
-
# "pillow",
|
| 6 |
-
# "datasets",
|
| 7 |
-
# "torch",
|
| 8 |
-
# "huggingface-hub",
|
| 9 |
-
# ]
|
| 10 |
-
#
|
| 11 |
-
# [[tool.uv.index]]
|
| 12 |
-
# url = "https://wheels.vllm.ai/nightly"
|
| 13 |
-
#
|
| 14 |
-
# [tool.uv]
|
| 15 |
-
# prerelease = "allow"
|
| 16 |
-
# ///
|
| 17 |
-
|
| 18 |
-
"""
|
| 19 |
-
Minimal test script for DeepSeek-OCR with vLLM.
|
| 20 |
-
|
| 21 |
-
This is an MVP script to validate that DeepSeek-OCR works with vLLM.
|
| 22 |
-
Installs vLLM from nightly wheels (PR #27247 now merged to main).
|
| 23 |
-
|
| 24 |
-
Use this to test in Colab before building the full production script.
|
| 25 |
-
|
| 26 |
-
Usage:
|
| 27 |
-
# Test with a HF dataset image
|
| 28 |
-
uv run deepseek-ocr-vllm-test.py --dataset pixparse/idl-wds --index 0
|
| 29 |
-
|
| 30 |
-
# Test with local image
|
| 31 |
-
uv run deepseek-ocr-vllm-test.py --image path/to/image.png
|
| 32 |
-
|
| 33 |
-
# Test with different resolution mode
|
| 34 |
-
uv run deepseek-ocr-vllm-test.py --dataset pixparse/idl-wds --resolution-mode tiny
|
| 35 |
-
"""
|
| 36 |
-
|
| 37 |
-
import argparse
|
| 38 |
-
import base64
|
| 39 |
-
import io
|
| 40 |
-
import logging
|
| 41 |
-
import sys
|
| 42 |
-
from typing import List, Dict
|
| 43 |
-
|
| 44 |
-
import torch
|
| 45 |
-
from PIL import Image
|
| 46 |
-
from datasets import load_dataset
|
| 47 |
-
from vllm import LLM, SamplingParams
|
| 48 |
-
|
| 49 |
-
logging.basicConfig(level=logging.INFO)
|
| 50 |
-
logger = logging.getLogger(__name__)
|
| 51 |
-
|
| 52 |
-
# Resolution mode presets from DeepSeek-OCR
|
| 53 |
-
RESOLUTION_MODES = {
|
| 54 |
-
"tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
|
| 55 |
-
"small": {"base_size": 640, "image_size": 640, "crop_mode": False},
|
| 56 |
-
"base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
|
| 57 |
-
"large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
|
| 58 |
-
"gundam": {"base_size": 1024, "image_size": 640, "crop_mode": True},
|
| 59 |
-
}
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
def check_cuda():
|
| 63 |
-
"""Check CUDA availability."""
|
| 64 |
-
if not torch.cuda.is_available():
|
| 65 |
-
logger.error("❌ CUDA not available. DeepSeek-OCR requires a GPU.")
|
| 66 |
-
logger.error("Please run in Colab with GPU runtime or on a GPU machine.")
|
| 67 |
-
sys.exit(1)
|
| 68 |
-
logger.info(f"✅ CUDA available: {torch.cuda.get_device_name(0)}")
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
def make_message(image: Image.Image, prompt: str) -> List[Dict]:
|
| 72 |
-
"""Create vLLM chat message with base64 encoded image."""
|
| 73 |
-
# Convert to RGB
|
| 74 |
-
image = image.convert("RGB")
|
| 75 |
-
|
| 76 |
-
# Encode as base64 data URI
|
| 77 |
-
buf = io.BytesIO()
|
| 78 |
-
image.save(buf, format="PNG")
|
| 79 |
-
data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}"
|
| 80 |
-
|
| 81 |
-
return [
|
| 82 |
-
{
|
| 83 |
-
"role": "user",
|
| 84 |
-
"content": [
|
| 85 |
-
{"type": "image_url", "image_url": {"url": data_uri}},
|
| 86 |
-
{"type": "text", "text": prompt},
|
| 87 |
-
],
|
| 88 |
-
}
|
| 89 |
-
]
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
def main():
|
| 93 |
-
parser = argparse.ArgumentParser(
|
| 94 |
-
description="Test DeepSeek-OCR with vLLM",
|
| 95 |
-
formatter_class=argparse.RawDescriptionHelpFormatter,
|
| 96 |
-
epilog="""
|
| 97 |
-
Examples:
|
| 98 |
-
# Test with HF dataset
|
| 99 |
-
uv run deepseek-ocr-vllm-test.py --dataset pixparse/idl-wds --index 0
|
| 100 |
-
|
| 101 |
-
# Test with local image
|
| 102 |
-
uv run deepseek-ocr-vllm-test.py --image document.png
|
| 103 |
-
|
| 104 |
-
# Test different resolution
|
| 105 |
-
uv run deepseek-ocr-vllm-test.py --dataset pixparse/idl-wds --resolution-mode large
|
| 106 |
-
""",
|
| 107 |
-
)
|
| 108 |
-
|
| 109 |
-
# Image source (one required)
|
| 110 |
-
source_group = parser.add_mutually_exclusive_group(required=True)
|
| 111 |
-
source_group.add_argument("--image", help="Path to local image file")
|
| 112 |
-
source_group.add_argument(
|
| 113 |
-
"--dataset",
|
| 114 |
-
help="HF dataset ID (will use first image from train split)",
|
| 115 |
-
)
|
| 116 |
-
|
| 117 |
-
parser.add_argument(
|
| 118 |
-
"--index",
|
| 119 |
-
type=int,
|
| 120 |
-
default=0,
|
| 121 |
-
help="Dataset index to use (default: 0)",
|
| 122 |
-
)
|
| 123 |
-
parser.add_argument(
|
| 124 |
-
"--image-column",
|
| 125 |
-
default="image",
|
| 126 |
-
help="Column name for images in dataset (default: image)",
|
| 127 |
-
)
|
| 128 |
-
parser.add_argument(
|
| 129 |
-
"--split",
|
| 130 |
-
default="train",
|
| 131 |
-
help="Dataset split to use (default: train)",
|
| 132 |
-
)
|
| 133 |
-
parser.add_argument(
|
| 134 |
-
"--resolution-mode",
|
| 135 |
-
choices=list(RESOLUTION_MODES.keys()),
|
| 136 |
-
default="gundam",
|
| 137 |
-
help="Resolution mode preset (default: gundam)",
|
| 138 |
-
)
|
| 139 |
-
parser.add_argument(
|
| 140 |
-
"--prompt",
|
| 141 |
-
default="<image>\n<|grounding|>Convert the document to markdown.",
|
| 142 |
-
help="OCR prompt",
|
| 143 |
-
)
|
| 144 |
-
parser.add_argument(
|
| 145 |
-
"--model",
|
| 146 |
-
default="deepseek-ai/DeepSeek-OCR",
|
| 147 |
-
help="Model ID (default: deepseek-ai/DeepSeek-OCR)",
|
| 148 |
-
)
|
| 149 |
-
|
| 150 |
-
args = parser.parse_args()
|
| 151 |
-
|
| 152 |
-
# Check CUDA
|
| 153 |
-
check_cuda()
|
| 154 |
-
|
| 155 |
-
# Load image
|
| 156 |
-
logger.info("📷 Loading image...")
|
| 157 |
-
if args.image:
|
| 158 |
-
image = Image.open(args.image)
|
| 159 |
-
logger.info(f"Loaded from file: {args.image}")
|
| 160 |
-
else:
|
| 161 |
-
dataset = load_dataset(args.dataset, split=args.split, streaming=False)
|
| 162 |
-
if args.image_column not in dataset.column_names:
|
| 163 |
-
logger.error(f"Column '{args.image_column}' not found in dataset")
|
| 164 |
-
logger.error(f"Available columns: {dataset.column_names}")
|
| 165 |
-
sys.exit(1)
|
| 166 |
-
image = dataset[args.index][args.image_column]
|
| 167 |
-
if isinstance(image, dict) and "bytes" in image:
|
| 168 |
-
image = Image.open(io.BytesIO(image["bytes"]))
|
| 169 |
-
logger.info(f"Loaded from dataset: {args.dataset}[{args.index}]")
|
| 170 |
-
|
| 171 |
-
logger.info(f"Image size: {image.size}")
|
| 172 |
-
|
| 173 |
-
# Get resolution settings
|
| 174 |
-
resolution = RESOLUTION_MODES[args.resolution_mode]
|
| 175 |
-
logger.info(f"Resolution mode: {args.resolution_mode}")
|
| 176 |
-
logger.info(f" base_size={resolution['base_size']}, image_size={resolution['image_size']}, crop_mode={resolution['crop_mode']}")
|
| 177 |
-
|
| 178 |
-
# Initialize vLLM
|
| 179 |
-
logger.info(f"🚀 Loading model: {args.model}")
|
| 180 |
-
logger.info("This may take a few minutes on first run...")
|
| 181 |
-
|
| 182 |
-
try:
|
| 183 |
-
llm = LLM(
|
| 184 |
-
model=args.model,
|
| 185 |
-
trust_remote_code=True,
|
| 186 |
-
max_model_len=8192,
|
| 187 |
-
gpu_memory_utilization=0.8,
|
| 188 |
-
limit_mm_per_prompt={"image": 1},
|
| 189 |
-
enforce_eager=False,
|
| 190 |
-
)
|
| 191 |
-
logger.info("✅ Model loaded successfully!")
|
| 192 |
-
except Exception as e:
|
| 193 |
-
logger.error(f"❌ Failed to load model: {e}")
|
| 194 |
-
logger.error("\nThis might mean:")
|
| 195 |
-
logger.error(" 1. The model architecture is not recognized")
|
| 196 |
-
logger.error(" 2. Missing dependencies")
|
| 197 |
-
logger.error(" 3. Insufficient GPU memory")
|
| 198 |
-
sys.exit(1)
|
| 199 |
-
|
| 200 |
-
# Run inference
|
| 201 |
-
logger.info("🔍 Running OCR...")
|
| 202 |
-
sampling_params = SamplingParams(
|
| 203 |
-
temperature=0.0,
|
| 204 |
-
max_tokens=8192,
|
| 205 |
-
)
|
| 206 |
-
|
| 207 |
-
message = make_message(image, args.prompt)
|
| 208 |
-
|
| 209 |
-
try:
|
| 210 |
-
outputs = llm.chat([message], sampling_params)
|
| 211 |
-
result = outputs[0].outputs[0].text.strip()
|
| 212 |
-
|
| 213 |
-
logger.info("✅ OCR Complete!")
|
| 214 |
-
print("\n" + "=" * 80)
|
| 215 |
-
print("MARKDOWN OUTPUT:")
|
| 216 |
-
print("=" * 80)
|
| 217 |
-
print(result)
|
| 218 |
-
print("=" * 80)
|
| 219 |
-
|
| 220 |
-
except Exception as e:
|
| 221 |
-
logger.error(f"❌ Inference failed: {e}")
|
| 222 |
-
sys.exit(1)
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
if __name__ == "__main__":
|
| 226 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
deepseek-ocr-vllm.py
CHANGED
|
@@ -63,9 +63,14 @@ RESOLUTION_MODES = {
|
|
| 63 |
"small": {"base_size": 640, "image_size": 640, "crop_mode": False},
|
| 64 |
"base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
|
| 65 |
"large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
|
| 66 |
-
"gundam": {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
}
|
| 68 |
|
|
|
|
| 69 |
def check_cuda_availability():
|
| 70 |
"""Check if CUDA is available and exit if not."""
|
| 71 |
if not torch.cuda.is_available():
|
|
@@ -75,9 +80,10 @@ def check_cuda_availability():
|
|
| 75 |
else:
|
| 76 |
logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")
|
| 77 |
|
|
|
|
| 78 |
def make_ocr_message(
|
| 79 |
image: Union[Image.Image, Dict[str, Any], str],
|
| 80 |
-
prompt: str = "<image>\n<|grounding|>Convert the document to markdown.",
|
| 81 |
) -> List[Dict]:
|
| 82 |
"""Create chat message for OCR processing."""
|
| 83 |
# Convert to PIL Image if needed
|
|
@@ -109,6 +115,7 @@ def make_ocr_message(
|
|
| 109 |
}
|
| 110 |
]
|
| 111 |
|
|
|
|
| 112 |
def create_dataset_card(
|
| 113 |
source_dataset: str,
|
| 114 |
model: str,
|
|
@@ -229,6 +236,7 @@ uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm
|
|
| 229 |
Generated with 🤖 [UV Scripts](https://huggingface.co/uv-scripts)
|
| 230 |
"""
|
| 231 |
|
|
|
|
| 232 |
def main(
|
| 233 |
input_dataset: str,
|
| 234 |
output_dataset: str,
|
|
@@ -269,9 +277,15 @@ def main(
|
|
| 269 |
# Determine resolution settings
|
| 270 |
if resolution_mode in RESOLUTION_MODES:
|
| 271 |
mode_config = RESOLUTION_MODES[resolution_mode]
|
| 272 |
-
final_base_size =
|
| 273 |
-
|
| 274 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
logger.info(f"Using resolution mode: {resolution_mode}")
|
| 276 |
else:
|
| 277 |
# Custom mode - require all parameters
|
|
@@ -314,7 +328,7 @@ def main(
|
|
| 314 |
# Initialize vLLM
|
| 315 |
logger.info(f"Initializing vLLM with model: {model}")
|
| 316 |
logger.info("This may take a few minutes on first run...")
|
| 317 |
-
|
| 318 |
# Add specific parameters for DeepSeek-OCR compatibility
|
| 319 |
llm = LLM(
|
| 320 |
model=model,
|
|
@@ -331,7 +345,9 @@ def main(
|
|
| 331 |
)
|
| 332 |
|
| 333 |
logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")
|
| 334 |
-
logger.info(
|
|
|
|
|
|
|
| 335 |
|
| 336 |
# Process images in batches
|
| 337 |
all_markdown = []
|
|
@@ -465,11 +481,15 @@ if __name__ == "__main__":
|
|
| 465 |
print("\n1. Basic OCR conversion (Gundam mode - dynamic resolution):")
|
| 466 |
print(" uv run deepseek-ocr-vllm.py document-images markdown-docs")
|
| 467 |
print("\n2. High quality mode (Large - 1280×1280):")
|
| 468 |
-
print(
|
|
|
|
|
|
|
| 469 |
print("\n3. Fast processing (Tiny - 512×512):")
|
| 470 |
print(" uv run deepseek-ocr-vllm.py quick-test output --resolution-mode tiny")
|
| 471 |
print("\n4. Process a subset for testing:")
|
| 472 |
-
print(
|
|
|
|
|
|
|
| 473 |
print("\n5. Custom resolution:")
|
| 474 |
print(" uv run deepseek-ocr-vllm.py dataset output \\")
|
| 475 |
print(" --base-size 1024 --image-size 640 --crop-mode")
|
|
@@ -477,7 +497,9 @@ if __name__ == "__main__":
|
|
| 477 |
print(" hf jobs uv run --flavor l4x1 \\")
|
| 478 |
print(" -s HF_TOKEN \\")
|
| 479 |
print(" -e UV_TORCH_BACKEND=auto \\")
|
| 480 |
-
print(
|
|
|
|
|
|
|
| 481 |
print(" your-document-dataset \\")
|
| 482 |
print(" your-markdown-output")
|
| 483 |
print("\n" + "=" * 80)
|
|
@@ -621,4 +643,4 @@ Examples:
|
|
| 621 |
private=args.private,
|
| 622 |
shuffle=args.shuffle,
|
| 623 |
seed=args.seed,
|
| 624 |
-
)
|
|
|
|
| 63 |
"small": {"base_size": 640, "image_size": 640, "crop_mode": False},
|
| 64 |
"base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
|
| 65 |
"large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
|
| 66 |
+
"gundam": {
|
| 67 |
+
"base_size": 1024,
|
| 68 |
+
"image_size": 640,
|
| 69 |
+
"crop_mode": True,
|
| 70 |
+
}, # Dynamic resolution
|
| 71 |
}
|
| 72 |
|
| 73 |
+
|
| 74 |
def check_cuda_availability():
|
| 75 |
"""Check if CUDA is available and exit if not."""
|
| 76 |
if not torch.cuda.is_available():
|
|
|
|
| 80 |
else:
|
| 81 |
logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")
|
| 82 |
|
| 83 |
+
|
| 84 |
def make_ocr_message(
|
| 85 |
image: Union[Image.Image, Dict[str, Any], str],
|
| 86 |
+
prompt: str = "<image>\n<|grounding|>Convert the document to markdown. ",
|
| 87 |
) -> List[Dict]:
|
| 88 |
"""Create chat message for OCR processing."""
|
| 89 |
# Convert to PIL Image if needed
|
|
|
|
| 115 |
}
|
| 116 |
]
|
| 117 |
|
| 118 |
+
|
| 119 |
def create_dataset_card(
|
| 120 |
source_dataset: str,
|
| 121 |
model: str,
|
|
|
|
| 236 |
Generated with 🤖 [UV Scripts](https://huggingface.co/uv-scripts)
|
| 237 |
"""
|
| 238 |
|
| 239 |
+
|
| 240 |
def main(
|
| 241 |
input_dataset: str,
|
| 242 |
output_dataset: str,
|
|
|
|
| 277 |
# Determine resolution settings
|
| 278 |
if resolution_mode in RESOLUTION_MODES:
|
| 279 |
mode_config = RESOLUTION_MODES[resolution_mode]
|
| 280 |
+
final_base_size = (
|
| 281 |
+
base_size if base_size is not None else mode_config["base_size"]
|
| 282 |
+
)
|
| 283 |
+
final_image_size = (
|
| 284 |
+
image_size if image_size is not None else mode_config["image_size"]
|
| 285 |
+
)
|
| 286 |
+
final_crop_mode = (
|
| 287 |
+
crop_mode if crop_mode is not None else mode_config["crop_mode"]
|
| 288 |
+
)
|
| 289 |
logger.info(f"Using resolution mode: {resolution_mode}")
|
| 290 |
else:
|
| 291 |
# Custom mode - require all parameters
|
|
|
|
| 328 |
# Initialize vLLM
|
| 329 |
logger.info(f"Initializing vLLM with model: {model}")
|
| 330 |
logger.info("This may take a few minutes on first run...")
|
| 331 |
+
|
| 332 |
# Add specific parameters for DeepSeek-OCR compatibility
|
| 333 |
llm = LLM(
|
| 334 |
model=model,
|
|
|
|
| 345 |
)
|
| 346 |
|
| 347 |
logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")
|
| 348 |
+
logger.info(
|
| 349 |
+
"Using vLLM for batch processing - should be faster than sequential processing"
|
| 350 |
+
)
|
| 351 |
|
| 352 |
# Process images in batches
|
| 353 |
all_markdown = []
|
|
|
|
| 481 |
print("\n1. Basic OCR conversion (Gundam mode - dynamic resolution):")
|
| 482 |
print(" uv run deepseek-ocr-vllm.py document-images markdown-docs")
|
| 483 |
print("\n2. High quality mode (Large - 1280×1280):")
|
| 484 |
+
print(
|
| 485 |
+
" uv run deepseek-ocr-vllm.py scanned-pdfs extracted-text --resolution-mode large"
|
| 486 |
+
)
|
| 487 |
print("\n3. Fast processing (Tiny - 512×512):")
|
| 488 |
print(" uv run deepseek-ocr-vllm.py quick-test output --resolution-mode tiny")
|
| 489 |
print("\n4. Process a subset for testing:")
|
| 490 |
+
print(
|
| 491 |
+
" uv run deepseek-ocr-vllm.py large-dataset test-output --max-samples 10"
|
| 492 |
+
)
|
| 493 |
print("\n5. Custom resolution:")
|
| 494 |
print(" uv run deepseek-ocr-vllm.py dataset output \\")
|
| 495 |
print(" --base-size 1024 --image-size 640 --crop-mode")
|
|
|
|
| 497 |
print(" hf jobs uv run --flavor l4x1 \\")
|
| 498 |
print(" -s HF_TOKEN \\")
|
| 499 |
print(" -e UV_TORCH_BACKEND=auto \\")
|
| 500 |
+
print(
|
| 501 |
+
" https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm.py \\"
|
| 502 |
+
)
|
| 503 |
print(" your-document-dataset \\")
|
| 504 |
print(" your-markdown-output")
|
| 505 |
print("\n" + "=" * 80)
|
|
|
|
| 643 |
private=args.private,
|
| 644 |
shuffle=args.shuffle,
|
| 645 |
seed=args.seed,
|
| 646 |
+
)
|