Commit
Β·
76273a4
1
Parent(s):
ddf6b7f
Add PaddleOCR-VL script for document processing with vLLM support
Browse files- paddleocr-vl.py +676 -0
paddleocr-vl.py
ADDED
|
@@ -0,0 +1,676 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = ">=3.11"
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "datasets",
|
| 5 |
+
# "huggingface-hub[hf_transfer]",
|
| 6 |
+
# "pillow",
|
| 7 |
+
# "vllm",
|
| 8 |
+
# "tqdm",
|
| 9 |
+
# "toolz",
|
| 10 |
+
# "torch",
|
| 11 |
+
# ]
|
| 12 |
+
#
|
| 13 |
+
# [[tool.uv.index]]
|
| 14 |
+
# url = "https://wheels.vllm.ai/nightly"
|
| 15 |
+
#
|
| 16 |
+
# [tool.uv]
|
| 17 |
+
# prerelease = "allow"
|
| 18 |
+
# ///
|
| 19 |
+
|
| 20 |
+
"""
|
| 21 |
+
Convert document images to text/tables/formulas using PaddleOCR-VL with vLLM.
|
| 22 |
+
|
| 23 |
+
PaddleOCR-VL is a compact 0.9B OCR model with task-specific capabilities for
|
| 24 |
+
document parsing. It combines a NaViT-style dynamic resolution visual encoder
|
| 25 |
+
with the ERNIE-4.5-0.3B language model for accurate element recognition.
|
| 26 |
+
|
| 27 |
+
Features:
|
| 28 |
+
- π― Ultra-compact: Only 0.9B parameters (smallest OCR model)
|
| 29 |
+
- π OCR mode: General text extraction to markdown
|
| 30 |
+
- π Table mode: HTML table recognition and extraction
|
| 31 |
+
- π Formula mode: LaTeX mathematical notation
|
| 32 |
+
- π Chart mode: Structured chart analysis
|
| 33 |
+
- π Multilingual support
|
| 34 |
+
- β‘ Fast initialization due to small size
|
| 35 |
+
- π§ Based on ERNIE-4.5 (different from Qwen-based models)
|
| 36 |
+
|
| 37 |
+
Model: PaddlePaddle/PaddleOCR-VL
|
| 38 |
+
vLLM: Requires nightly build for full support
|
| 39 |
+
"""
|
| 40 |
+
|
| 41 |
+
import argparse
|
| 42 |
+
import base64
|
| 43 |
+
import io
|
| 44 |
+
import json
|
| 45 |
+
import logging
|
| 46 |
+
import math
|
| 47 |
+
import os
|
| 48 |
+
import sys
|
| 49 |
+
from typing import Any, Dict, List, Union
|
| 50 |
+
from datetime import datetime
|
| 51 |
+
|
| 52 |
+
import torch
|
| 53 |
+
from datasets import load_dataset
|
| 54 |
+
from huggingface_hub import DatasetCard, login
|
| 55 |
+
from PIL import Image
|
| 56 |
+
from toolz import partition_all
|
| 57 |
+
from tqdm.auto import tqdm
|
| 58 |
+
from vllm import LLM, SamplingParams
|
| 59 |
+
|
| 60 |
+
logging.basicConfig(level=logging.INFO)
|
| 61 |
+
logger = logging.getLogger(__name__)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
# Task mode configurations from official PaddleOCR-VL documentation
|
| 65 |
+
TASK_MODES = {
|
| 66 |
+
"ocr": "OCR:",
|
| 67 |
+
"table": "Table Recognition:",
|
| 68 |
+
"formula": "Formula Recognition:",
|
| 69 |
+
"chart": "Chart Recognition:",
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
# Task descriptions for dataset card
|
| 73 |
+
TASK_DESCRIPTIONS = {
|
| 74 |
+
"ocr": "General text extraction to markdown format",
|
| 75 |
+
"table": "Table extraction to HTML format",
|
| 76 |
+
"formula": "Mathematical formula recognition to LaTeX",
|
| 77 |
+
"chart": "Chart and diagram analysis",
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def check_cuda_availability():
|
| 82 |
+
"""Check if CUDA is available and exit if not."""
|
| 83 |
+
if not torch.cuda.is_available():
|
| 84 |
+
logger.error("CUDA is not available. This script requires a GPU.")
|
| 85 |
+
logger.error("Please run on a machine with a CUDA-capable GPU.")
|
| 86 |
+
sys.exit(1)
|
| 87 |
+
else:
|
| 88 |
+
logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def smart_resize(
|
| 92 |
+
height: int,
|
| 93 |
+
width: int,
|
| 94 |
+
factor: int = 28,
|
| 95 |
+
min_pixels: int = 28 * 28 * 130,
|
| 96 |
+
max_pixels: int = 28 * 28 * 1280,
|
| 97 |
+
) -> tuple[int, int]:
|
| 98 |
+
"""
|
| 99 |
+
PaddleOCR-VL's intelligent resize logic.
|
| 100 |
+
|
| 101 |
+
Rescales the image so that:
|
| 102 |
+
1. Both dimensions are divisible by 'factor' (28)
|
| 103 |
+
2. Total pixels are within [min_pixels, max_pixels]
|
| 104 |
+
3. Aspect ratio is maintained as closely as possible
|
| 105 |
+
|
| 106 |
+
Args:
|
| 107 |
+
height: Original image height
|
| 108 |
+
width: Original image width
|
| 109 |
+
factor: Dimension divisibility factor (default: 28)
|
| 110 |
+
min_pixels: Minimum total pixels (default: 100,880)
|
| 111 |
+
max_pixels: Maximum total pixels (default: 1,003,520)
|
| 112 |
+
|
| 113 |
+
Returns:
|
| 114 |
+
Tuple of (new_height, new_width)
|
| 115 |
+
"""
|
| 116 |
+
if height < factor:
|
| 117 |
+
width = round((width * factor) / height)
|
| 118 |
+
height = factor
|
| 119 |
+
|
| 120 |
+
if width < factor:
|
| 121 |
+
height = round((height * factor) / width)
|
| 122 |
+
width = factor
|
| 123 |
+
|
| 124 |
+
if max(height, width) / min(height, width) > 200:
|
| 125 |
+
logger.warning(
|
| 126 |
+
f"Extreme aspect ratio detected: {max(height, width) / min(height, width):.1f}"
|
| 127 |
+
)
|
| 128 |
+
# Continue anyway, but warn about potential issues
|
| 129 |
+
|
| 130 |
+
h_bar = round(height / factor) * factor
|
| 131 |
+
w_bar = round(width / factor) * factor
|
| 132 |
+
|
| 133 |
+
if h_bar * w_bar > max_pixels:
|
| 134 |
+
beta = math.sqrt((height * width) / max_pixels)
|
| 135 |
+
h_bar = math.floor(height / beta / factor) * factor
|
| 136 |
+
w_bar = math.floor(width / beta / factor) * factor
|
| 137 |
+
elif h_bar * w_bar < min_pixels:
|
| 138 |
+
beta = math.sqrt(min_pixels / (height * width))
|
| 139 |
+
h_bar = math.ceil(height * beta / factor) * factor
|
| 140 |
+
w_bar = math.ceil(width * beta / factor) * factor
|
| 141 |
+
|
| 142 |
+
return h_bar, w_bar
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
def make_ocr_message(
|
| 146 |
+
image: Union[Image.Image, Dict[str, Any], str],
|
| 147 |
+
task_mode: str = "ocr",
|
| 148 |
+
apply_smart_resize: bool = True,
|
| 149 |
+
) -> List[Dict]:
|
| 150 |
+
"""
|
| 151 |
+
Create chat message for PaddleOCR-VL processing.
|
| 152 |
+
|
| 153 |
+
PaddleOCR-VL expects a specific format with the task prefix after the image.
|
| 154 |
+
"""
|
| 155 |
+
# Convert to PIL Image if needed
|
| 156 |
+
if isinstance(image, Image.Image):
|
| 157 |
+
pil_img = image
|
| 158 |
+
elif isinstance(image, dict) and "bytes" in image:
|
| 159 |
+
pil_img = Image.open(io.BytesIO(image["bytes"]))
|
| 160 |
+
elif isinstance(image, str):
|
| 161 |
+
pil_img = Image.open(image)
|
| 162 |
+
else:
|
| 163 |
+
raise ValueError(f"Unsupported image type: {type(image)}")
|
| 164 |
+
|
| 165 |
+
# Convert to RGB
|
| 166 |
+
pil_img = pil_img.convert("RGB")
|
| 167 |
+
|
| 168 |
+
# Apply smart resize if requested
|
| 169 |
+
if apply_smart_resize:
|
| 170 |
+
original_size = pil_img.size
|
| 171 |
+
new_width, new_height = smart_resize(pil_img.height, pil_img.width)
|
| 172 |
+
if (new_width, new_height) != (pil_img.width, pil_img.height):
|
| 173 |
+
pil_img = pil_img.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
| 174 |
+
logger.debug(f"Resized image from {original_size} to {pil_img.size}")
|
| 175 |
+
|
| 176 |
+
# Convert to base64 data URI
|
| 177 |
+
buf = io.BytesIO()
|
| 178 |
+
pil_img.save(buf, format="PNG")
|
| 179 |
+
data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}"
|
| 180 |
+
|
| 181 |
+
# PaddleOCR-VL message format: image first, then task prefix
|
| 182 |
+
return [
|
| 183 |
+
{
|
| 184 |
+
"role": "user",
|
| 185 |
+
"content": [
|
| 186 |
+
{"type": "image_url", "image_url": {"url": data_uri}},
|
| 187 |
+
{"type": "text", "text": TASK_MODES[task_mode]},
|
| 188 |
+
],
|
| 189 |
+
}
|
| 190 |
+
]
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
def create_dataset_card(
|
| 194 |
+
source_dataset: str,
|
| 195 |
+
model: str,
|
| 196 |
+
task_mode: str,
|
| 197 |
+
num_samples: int,
|
| 198 |
+
processing_time: str,
|
| 199 |
+
batch_size: int,
|
| 200 |
+
max_model_len: int,
|
| 201 |
+
max_tokens: int,
|
| 202 |
+
gpu_memory_utilization: float,
|
| 203 |
+
temperature: float,
|
| 204 |
+
apply_smart_resize: bool,
|
| 205 |
+
image_column: str = "image",
|
| 206 |
+
split: str = "train",
|
| 207 |
+
) -> str:
|
| 208 |
+
"""Create a dataset card documenting the OCR process."""
|
| 209 |
+
task_description = TASK_DESCRIPTIONS[task_mode]
|
| 210 |
+
|
| 211 |
+
return f"""---
|
| 212 |
+
tags:
|
| 213 |
+
- ocr
|
| 214 |
+
- document-processing
|
| 215 |
+
- paddleocr-vl
|
| 216 |
+
- {task_mode}
|
| 217 |
+
- uv-script
|
| 218 |
+
- generated
|
| 219 |
+
---
|
| 220 |
+
|
| 221 |
+
# Document Processing using PaddleOCR-VL ({task_mode.upper()} mode)
|
| 222 |
+
|
| 223 |
+
This dataset contains {task_mode.upper()} results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using PaddleOCR-VL, an ultra-compact 0.9B OCR model.
|
| 224 |
+
|
| 225 |
+
## Processing Details
|
| 226 |
+
|
| 227 |
+
- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset})
|
| 228 |
+
- **Model**: [{model}](https://huggingface.co/{model})
|
| 229 |
+
- **Task Mode**: `{task_mode}` - {task_description}
|
| 230 |
+
- **Number of Samples**: {num_samples:,}
|
| 231 |
+
- **Processing Time**: {processing_time}
|
| 232 |
+
- **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")}
|
| 233 |
+
|
| 234 |
+
### Configuration
|
| 235 |
+
|
| 236 |
+
- **Image Column**: `{image_column}`
|
| 237 |
+
- **Output Column**: `paddleocr_{task_mode}`
|
| 238 |
+
- **Dataset Split**: `{split}`
|
| 239 |
+
- **Batch Size**: {batch_size}
|
| 240 |
+
- **Smart Resize**: {"Enabled" if apply_smart_resize else "Disabled"}
|
| 241 |
+
- **Max Model Length**: {max_model_len:,} tokens
|
| 242 |
+
- **Max Output Tokens**: {max_tokens:,}
|
| 243 |
+
- **Temperature**: {temperature}
|
| 244 |
+
- **GPU Memory Utilization**: {gpu_memory_utilization:.1%}
|
| 245 |
+
|
| 246 |
+
## Model Information
|
| 247 |
+
|
| 248 |
+
PaddleOCR-VL is a state-of-the-art, resource-efficient model tailored for document parsing:
|
| 249 |
+
- π― **Ultra-compact** - Only 0.9B parameters (smallest OCR model)
|
| 250 |
+
- π **OCR mode** - General text extraction
|
| 251 |
+
- π **Table mode** - HTML table recognition
|
| 252 |
+
- π **Formula mode** - LaTeX mathematical notation
|
| 253 |
+
- π **Chart mode** - Structured chart analysis
|
| 254 |
+
- π **Multilingual** - Support for multiple languages
|
| 255 |
+
- β‘ **Fast** - Quick initialization and inference
|
| 256 |
+
- π§ **ERNIE-4.5 based** - Different architecture from Qwen models
|
| 257 |
+
|
| 258 |
+
### Task Modes
|
| 259 |
+
|
| 260 |
+
- **OCR**: Extract text content to markdown format
|
| 261 |
+
- **Table Recognition**: Extract tables to HTML format
|
| 262 |
+
- **Formula Recognition**: Extract mathematical formulas to LaTeX
|
| 263 |
+
- **Chart Recognition**: Analyze and describe charts/diagrams
|
| 264 |
+
|
| 265 |
+
## Dataset Structure
|
| 266 |
+
|
| 267 |
+
The dataset contains all original columns plus:
|
| 268 |
+
- `paddleocr_{task_mode}`: The extracted content based on task mode
|
| 269 |
+
- `inference_info`: JSON list tracking all OCR models applied to this dataset
|
| 270 |
+
|
| 271 |
+
## Usage
|
| 272 |
+
|
| 273 |
+
```python
|
| 274 |
+
from datasets import load_dataset
|
| 275 |
+
import json
|
| 276 |
+
|
| 277 |
+
# Load the dataset
|
| 278 |
+
dataset = load_dataset("{{output_dataset_id}}", split="{split}")
|
| 279 |
+
|
| 280 |
+
# Access the extracted content
|
| 281 |
+
for example in dataset:
|
| 282 |
+
print(example["paddleocr_{task_mode}"])
|
| 283 |
+
break
|
| 284 |
+
|
| 285 |
+
# View all OCR models applied to this dataset
|
| 286 |
+
inference_info = json.loads(dataset[0]["inference_info"])
|
| 287 |
+
for info in inference_info:
|
| 288 |
+
print(f"Task: {{info['task_mode']}} - Model: {{info['model_id']}}")
|
| 289 |
+
```
|
| 290 |
+
|
| 291 |
+
## Reproduction
|
| 292 |
+
|
| 293 |
+
This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) PaddleOCR-VL script:
|
| 294 |
+
|
| 295 |
+
```bash
|
| 296 |
+
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/paddleocr-vl.py \\
|
| 297 |
+
{source_dataset} \\
|
| 298 |
+
<output-dataset> \\
|
| 299 |
+
--task-mode {task_mode} \\
|
| 300 |
+
--image-column {image_column} \\
|
| 301 |
+
--batch-size {batch_size} \\
|
| 302 |
+
--max-model-len {max_model_len} \\
|
| 303 |
+
--max-tokens {max_tokens} \\
|
| 304 |
+
--gpu-memory-utilization {gpu_memory_utilization}
|
| 305 |
+
```
|
| 306 |
+
|
| 307 |
+
## Performance
|
| 308 |
+
|
| 309 |
+
- **Model Size**: 0.9B parameters (smallest among OCR models)
|
| 310 |
+
- **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.2f} images/second
|
| 311 |
+
- **Architecture**: NaViT visual encoder + ERNIE-4.5-0.3B language model
|
| 312 |
+
|
| 313 |
+
Generated with π€ [UV Scripts](https://huggingface.co/uv-scripts)
|
| 314 |
+
"""
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
def main(
|
| 318 |
+
input_dataset: str,
|
| 319 |
+
output_dataset: str,
|
| 320 |
+
image_column: str = "image",
|
| 321 |
+
batch_size: int = 16,
|
| 322 |
+
task_mode: str = "ocr",
|
| 323 |
+
max_model_len: int = 8192,
|
| 324 |
+
max_tokens: int = 4096,
|
| 325 |
+
temperature: float = 0.0,
|
| 326 |
+
gpu_memory_utilization: float = 0.8,
|
| 327 |
+
apply_smart_resize: bool = True,
|
| 328 |
+
hf_token: str = None,
|
| 329 |
+
split: str = "train",
|
| 330 |
+
max_samples: int = None,
|
| 331 |
+
private: bool = False,
|
| 332 |
+
shuffle: bool = False,
|
| 333 |
+
seed: int = 42,
|
| 334 |
+
output_column: str = None,
|
| 335 |
+
):
|
| 336 |
+
"""Process images from HF dataset through PaddleOCR-VL model."""
|
| 337 |
+
|
| 338 |
+
# Check CUDA availability first
|
| 339 |
+
check_cuda_availability()
|
| 340 |
+
|
| 341 |
+
# Track processing start time
|
| 342 |
+
start_time = datetime.now()
|
| 343 |
+
|
| 344 |
+
# Enable HF_TRANSFER for faster downloads
|
| 345 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
| 346 |
+
|
| 347 |
+
# Login to HF if token provided
|
| 348 |
+
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
|
| 349 |
+
if HF_TOKEN:
|
| 350 |
+
login(token=HF_TOKEN)
|
| 351 |
+
|
| 352 |
+
# Validate task mode
|
| 353 |
+
if task_mode not in TASK_MODES:
|
| 354 |
+
raise ValueError(
|
| 355 |
+
f"Invalid task_mode '{task_mode}'. Choose from: {list(TASK_MODES.keys())}"
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
# Auto-generate output column name based on task mode
|
| 359 |
+
if output_column is None:
|
| 360 |
+
output_column = f"paddleocr_{task_mode}"
|
| 361 |
+
|
| 362 |
+
logger.info(f"Using task mode: {task_mode} - {TASK_DESCRIPTIONS[task_mode]}")
|
| 363 |
+
logger.info(f"Output will be written to column: {output_column}")
|
| 364 |
+
|
| 365 |
+
# Load dataset
|
| 366 |
+
logger.info(f"Loading dataset: {input_dataset}")
|
| 367 |
+
dataset = load_dataset(input_dataset, split=split)
|
| 368 |
+
|
| 369 |
+
# Validate image column
|
| 370 |
+
if image_column not in dataset.column_names:
|
| 371 |
+
raise ValueError(
|
| 372 |
+
f"Column '{image_column}' not found. Available: {dataset.column_names}"
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
# Shuffle if requested
|
| 376 |
+
if shuffle:
|
| 377 |
+
logger.info(f"Shuffling dataset with seed {seed}")
|
| 378 |
+
dataset = dataset.shuffle(seed=seed)
|
| 379 |
+
|
| 380 |
+
# Limit samples if requested
|
| 381 |
+
if max_samples:
|
| 382 |
+
dataset = dataset.select(range(min(max_samples, len(dataset))))
|
| 383 |
+
logger.info(f"Limited to {len(dataset)} samples")
|
| 384 |
+
|
| 385 |
+
# Initialize vLLM model
|
| 386 |
+
model_name = "PaddlePaddle/PaddleOCR-VL"
|
| 387 |
+
logger.info(f"Initializing vLLM with {model_name}")
|
| 388 |
+
logger.info("This may take a minute on first run (model is only 0.9B)...")
|
| 389 |
+
|
| 390 |
+
llm = LLM(
|
| 391 |
+
model=model_name,
|
| 392 |
+
trust_remote_code=True,
|
| 393 |
+
max_model_len=max_model_len,
|
| 394 |
+
gpu_memory_utilization=gpu_memory_utilization,
|
| 395 |
+
limit_mm_per_prompt={"image": 1},
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
# Sampling parameters - deterministic for OCR
|
| 399 |
+
sampling_params = SamplingParams(
|
| 400 |
+
temperature=temperature,
|
| 401 |
+
max_tokens=max_tokens,
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")
|
| 405 |
+
if apply_smart_resize:
|
| 406 |
+
logger.info("Smart resize enabled (PaddleOCR-VL's adaptive resolution)")
|
| 407 |
+
|
| 408 |
+
# Process images in batches
|
| 409 |
+
all_outputs = []
|
| 410 |
+
|
| 411 |
+
for batch_indices in tqdm(
|
| 412 |
+
partition_all(batch_size, range(len(dataset))),
|
| 413 |
+
total=(len(dataset) + batch_size - 1) // batch_size,
|
| 414 |
+
desc=f"PaddleOCR-VL {task_mode.upper()} processing",
|
| 415 |
+
):
|
| 416 |
+
batch_indices = list(batch_indices)
|
| 417 |
+
batch_images = [dataset[i][image_column] for i in batch_indices]
|
| 418 |
+
|
| 419 |
+
try:
|
| 420 |
+
# Create messages for batch with task-specific prefix
|
| 421 |
+
batch_messages = [
|
| 422 |
+
make_ocr_message(img, task_mode=task_mode, apply_smart_resize=apply_smart_resize)
|
| 423 |
+
for img in batch_images
|
| 424 |
+
]
|
| 425 |
+
|
| 426 |
+
# Process with vLLM
|
| 427 |
+
outputs = llm.chat(batch_messages, sampling_params)
|
| 428 |
+
|
| 429 |
+
# Extract outputs
|
| 430 |
+
for output in outputs:
|
| 431 |
+
text = output.outputs[0].text.strip()
|
| 432 |
+
all_outputs.append(text)
|
| 433 |
+
|
| 434 |
+
except Exception as e:
|
| 435 |
+
logger.error(f"Error processing batch: {e}")
|
| 436 |
+
# Add error placeholders for failed batch
|
| 437 |
+
all_outputs.extend([f"[{task_mode.upper()} ERROR]"] * len(batch_images))
|
| 438 |
+
|
| 439 |
+
# Calculate processing time
|
| 440 |
+
processing_duration = datetime.now() - start_time
|
| 441 |
+
processing_time_str = f"{processing_duration.total_seconds() / 60:.1f} min"
|
| 442 |
+
|
| 443 |
+
# Add output column to dataset
|
| 444 |
+
logger.info(f"Adding '{output_column}' column to dataset")
|
| 445 |
+
dataset = dataset.add_column(output_column, all_outputs)
|
| 446 |
+
|
| 447 |
+
# Handle inference_info tracking (for multi-model comparisons)
|
| 448 |
+
inference_entry = {
|
| 449 |
+
"model_id": model_name,
|
| 450 |
+
"model_name": "PaddleOCR-VL",
|
| 451 |
+
"model_size": "0.9B",
|
| 452 |
+
"task_mode": task_mode,
|
| 453 |
+
"column_name": output_column,
|
| 454 |
+
"timestamp": datetime.now().isoformat(),
|
| 455 |
+
"temperature": temperature,
|
| 456 |
+
"max_tokens": max_tokens,
|
| 457 |
+
"smart_resize": apply_smart_resize,
|
| 458 |
+
}
|
| 459 |
+
|
| 460 |
+
if "inference_info" in dataset.column_names:
|
| 461 |
+
# Append to existing inference info
|
| 462 |
+
logger.info("Updating existing inference_info column")
|
| 463 |
+
|
| 464 |
+
def update_inference_info(example):
|
| 465 |
+
try:
|
| 466 |
+
existing_info = json.loads(example["inference_info"]) if example["inference_info"] else []
|
| 467 |
+
except (json.JSONDecodeError, TypeError):
|
| 468 |
+
existing_info = []
|
| 469 |
+
|
| 470 |
+
existing_info.append(inference_entry)
|
| 471 |
+
return {"inference_info": json.dumps(existing_info)}
|
| 472 |
+
|
| 473 |
+
dataset = dataset.map(update_inference_info)
|
| 474 |
+
else:
|
| 475 |
+
# Create new inference_info column
|
| 476 |
+
logger.info("Creating new inference_info column")
|
| 477 |
+
inference_list = [json.dumps([inference_entry])] * len(dataset)
|
| 478 |
+
dataset = dataset.add_column("inference_info", inference_list)
|
| 479 |
+
|
| 480 |
+
# Push to hub
|
| 481 |
+
logger.info(f"Pushing to {output_dataset}")
|
| 482 |
+
dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)
|
| 483 |
+
|
| 484 |
+
# Create and push dataset card
|
| 485 |
+
logger.info("Creating dataset card")
|
| 486 |
+
card_content = create_dataset_card(
|
| 487 |
+
source_dataset=input_dataset,
|
| 488 |
+
model=model_name,
|
| 489 |
+
task_mode=task_mode,
|
| 490 |
+
num_samples=len(dataset),
|
| 491 |
+
processing_time=processing_time_str,
|
| 492 |
+
batch_size=batch_size,
|
| 493 |
+
max_model_len=max_model_len,
|
| 494 |
+
max_tokens=max_tokens,
|
| 495 |
+
gpu_memory_utilization=gpu_memory_utilization,
|
| 496 |
+
temperature=temperature,
|
| 497 |
+
apply_smart_resize=apply_smart_resize,
|
| 498 |
+
image_column=image_column,
|
| 499 |
+
split=split,
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
card = DatasetCard(card_content)
|
| 503 |
+
card.push_to_hub(output_dataset, token=HF_TOKEN)
|
| 504 |
+
|
| 505 |
+
logger.info("β
PaddleOCR-VL processing complete!")
|
| 506 |
+
logger.info(f"Dataset available at: https://huggingface.co/datasets/{output_dataset}")
|
| 507 |
+
logger.info(f"Processing time: {processing_time_str}")
|
| 508 |
+
logger.info(f"Task mode: {task_mode} - {TASK_DESCRIPTIONS[task_mode]}")
|
| 509 |
+
|
| 510 |
+
|
| 511 |
+
if __name__ == "__main__":
|
| 512 |
+
# Show example usage if no arguments
|
| 513 |
+
if len(sys.argv) == 1:
|
| 514 |
+
print("=" * 80)
|
| 515 |
+
print("PaddleOCR-VL Document Processing")
|
| 516 |
+
print("=" * 80)
|
| 517 |
+
print("\nUltra-compact 0.9B OCR model with task-specific capabilities")
|
| 518 |
+
print("\nFeatures:")
|
| 519 |
+
print("- π― Smallest OCR model - Only 0.9B parameters")
|
| 520 |
+
print("- π OCR mode - General text extraction")
|
| 521 |
+
print("- π Table mode - HTML table recognition")
|
| 522 |
+
print("- π Formula mode - LaTeX mathematical notation")
|
| 523 |
+
print("- π Chart mode - Structured chart analysis")
|
| 524 |
+
print("- π Multilingual support")
|
| 525 |
+
print("- β‘ Fast initialization and inference")
|
| 526 |
+
print("- π§ Based on ERNIE-4.5 (unique architecture)")
|
| 527 |
+
print("\nTask Modes:")
|
| 528 |
+
for mode, description in TASK_DESCRIPTIONS.items():
|
| 529 |
+
print(f" {mode:8} - {description}")
|
| 530 |
+
print("\nExample usage:")
|
| 531 |
+
print("\n1. Basic OCR (default mode):")
|
| 532 |
+
print(" uv run paddleocr-vl.py input-dataset output-dataset")
|
| 533 |
+
print("\n2. Table extraction:")
|
| 534 |
+
print(" uv run paddleocr-vl.py docs tables-extracted --task-mode table")
|
| 535 |
+
print("\n3. Formula recognition:")
|
| 536 |
+
print(" uv run paddleocr-vl.py papers formulas --task-mode formula --batch-size 32")
|
| 537 |
+
print("\n4. Chart analysis:")
|
| 538 |
+
print(" uv run paddleocr-vl.py diagrams charts-analyzed --task-mode chart")
|
| 539 |
+
print("\n5. Test with small sample:")
|
| 540 |
+
print(" uv run paddleocr-vl.py dataset test --max-samples 10 --shuffle")
|
| 541 |
+
print("\n6. Running on HF Jobs:")
|
| 542 |
+
print(" hf jobs uv run --flavor l4x1 \\")
|
| 543 |
+
print(" -e HF_TOKEN=$(python3 -c \"from huggingface_hub import get_token; print(get_token())\") \\")
|
| 544 |
+
print(" -e HF_HUB_ENABLE_HF_TRANSFER=1 \\")
|
| 545 |
+
print(" https://huggingface.co/datasets/uv-scripts/ocr/raw/main/paddleocr-vl.py \\")
|
| 546 |
+
print(" input-dataset output-dataset --task-mode ocr")
|
| 547 |
+
print("\n" + "=" * 80)
|
| 548 |
+
print("\nFor full help, run: uv run paddleocr-vl.py --help")
|
| 549 |
+
sys.exit(0)
|
| 550 |
+
|
| 551 |
+
parser = argparse.ArgumentParser(
|
| 552 |
+
description="Document processing using PaddleOCR-VL (0.9B task-specific model)",
|
| 553 |
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
| 554 |
+
epilog="""
|
| 555 |
+
Task Modes:
|
| 556 |
+
ocr General text extraction to markdown (default)
|
| 557 |
+
table Table extraction to HTML format
|
| 558 |
+
formula Mathematical formula recognition to LaTeX
|
| 559 |
+
chart Chart and diagram analysis
|
| 560 |
+
|
| 561 |
+
Examples:
|
| 562 |
+
# Basic text OCR
|
| 563 |
+
uv run paddleocr-vl.py my-docs analyzed-docs
|
| 564 |
+
|
| 565 |
+
# Extract tables from documents
|
| 566 |
+
uv run paddleocr-vl.py papers tables --task-mode table
|
| 567 |
+
|
| 568 |
+
# Recognize mathematical formulas
|
| 569 |
+
uv run paddleocr-vl.py textbooks formulas --task-mode formula
|
| 570 |
+
|
| 571 |
+
# Analyze charts and diagrams
|
| 572 |
+
uv run paddleocr-vl.py reports charts --task-mode chart
|
| 573 |
+
|
| 574 |
+
# Test with random sampling
|
| 575 |
+
uv run paddleocr-vl.py large-dataset test --max-samples 50 --shuffle --task-mode ocr
|
| 576 |
+
|
| 577 |
+
# Disable smart resize for original resolution
|
| 578 |
+
uv run paddleocr-vl.py images output --no-smart-resize
|
| 579 |
+
""",
|
| 580 |
+
)
|
| 581 |
+
|
| 582 |
+
parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub")
|
| 583 |
+
parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub")
|
| 584 |
+
parser.add_argument(
|
| 585 |
+
"--image-column",
|
| 586 |
+
default="image",
|
| 587 |
+
help="Column containing images (default: image)",
|
| 588 |
+
)
|
| 589 |
+
parser.add_argument(
|
| 590 |
+
"--batch-size",
|
| 591 |
+
type=int,
|
| 592 |
+
default=16,
|
| 593 |
+
help="Batch size for processing (default: 16)",
|
| 594 |
+
)
|
| 595 |
+
parser.add_argument(
|
| 596 |
+
"--task-mode",
|
| 597 |
+
choices=list(TASK_MODES.keys()),
|
| 598 |
+
default="ocr",
|
| 599 |
+
help="Task type: ocr (default), table, formula, or chart",
|
| 600 |
+
)
|
| 601 |
+
parser.add_argument(
|
| 602 |
+
"--max-model-len",
|
| 603 |
+
type=int,
|
| 604 |
+
default=8192,
|
| 605 |
+
help="Maximum model context length (default: 8192)",
|
| 606 |
+
)
|
| 607 |
+
parser.add_argument(
|
| 608 |
+
"--max-tokens",
|
| 609 |
+
type=int,
|
| 610 |
+
default=4096,
|
| 611 |
+
help="Maximum tokens to generate (default: 4096)",
|
| 612 |
+
)
|
| 613 |
+
parser.add_argument(
|
| 614 |
+
"--temperature",
|
| 615 |
+
type=float,
|
| 616 |
+
default=0.0,
|
| 617 |
+
help="Sampling temperature (default: 0.0 for deterministic)",
|
| 618 |
+
)
|
| 619 |
+
parser.add_argument(
|
| 620 |
+
"--gpu-memory-utilization",
|
| 621 |
+
type=float,
|
| 622 |
+
default=0.8,
|
| 623 |
+
help="GPU memory utilization (default: 0.8)",
|
| 624 |
+
)
|
| 625 |
+
parser.add_argument(
|
| 626 |
+
"--no-smart-resize",
|
| 627 |
+
action="store_true",
|
| 628 |
+
help="Disable PaddleOCR-VL's smart resize, use original image size",
|
| 629 |
+
)
|
| 630 |
+
parser.add_argument("--hf-token", help="Hugging Face API token")
|
| 631 |
+
parser.add_argument(
|
| 632 |
+
"--split", default="train", help="Dataset split to use (default: train)"
|
| 633 |
+
)
|
| 634 |
+
parser.add_argument(
|
| 635 |
+
"--max-samples",
|
| 636 |
+
type=int,
|
| 637 |
+
help="Maximum number of samples to process (for testing)",
|
| 638 |
+
)
|
| 639 |
+
parser.add_argument(
|
| 640 |
+
"--private", action="store_true", help="Make output dataset private"
|
| 641 |
+
)
|
| 642 |
+
parser.add_argument(
|
| 643 |
+
"--shuffle", action="store_true", help="Shuffle dataset before processing"
|
| 644 |
+
)
|
| 645 |
+
parser.add_argument(
|
| 646 |
+
"--seed",
|
| 647 |
+
type=int,
|
| 648 |
+
default=42,
|
| 649 |
+
help="Random seed for shuffling (default: 42)",
|
| 650 |
+
)
|
| 651 |
+
parser.add_argument(
|
| 652 |
+
"--output-column",
|
| 653 |
+
help="Column name for output (default: paddleocr_[task_mode])",
|
| 654 |
+
)
|
| 655 |
+
|
| 656 |
+
args = parser.parse_args()
|
| 657 |
+
|
| 658 |
+
main(
|
| 659 |
+
input_dataset=args.input_dataset,
|
| 660 |
+
output_dataset=args.output_dataset,
|
| 661 |
+
image_column=args.image_column,
|
| 662 |
+
batch_size=args.batch_size,
|
| 663 |
+
task_mode=args.task_mode,
|
| 664 |
+
max_model_len=args.max_model_len,
|
| 665 |
+
max_tokens=args.max_tokens,
|
| 666 |
+
temperature=args.temperature,
|
| 667 |
+
gpu_memory_utilization=args.gpu_memory_utilization,
|
| 668 |
+
apply_smart_resize=not args.no_smart_resize,
|
| 669 |
+
hf_token=args.hf_token,
|
| 670 |
+
split=args.split,
|
| 671 |
+
max_samples=args.max_samples,
|
| 672 |
+
private=args.private,
|
| 673 |
+
shuffle=args.shuffle,
|
| 674 |
+
seed=args.seed,
|
| 675 |
+
output_column=args.output_column,
|
| 676 |
+
)
|