ocr / paddleocr-vl.py
davanstrien's picture
davanstrien HF Staff
Update PaddleOCR-VL configuration for vLLM compatibility and enhance model parameters
c7d345d
# /// script
# requires-python = ">=3.11"
# dependencies = [
# "datasets",
# "huggingface-hub",
# "pillow",
# "vllm",
# "tqdm",
# "toolz",
# "torch",
# "pyarrow",
# "transformers",
# ]
#
# [[tool.uv.index]]
# url = "https://wheels.vllm.ai/nightly"
#
# [tool.uv]
# prerelease = "allow"
# ///
"""
Convert document images to text/tables/formulas using PaddleOCR-VL with vLLM.
PaddleOCR-VL is a compact 0.9B OCR model with task-specific capabilities for
document parsing. It combines a NaViT-style dynamic resolution visual encoder
with the ERNIE-4.5-0.3B language model for accurate element recognition.
Features:
- 🎯 Ultra-compact: Only 0.9B parameters (smallest OCR model)
- πŸ“ OCR mode: General text extraction to markdown
- πŸ“Š Table mode: HTML table recognition and extraction
- πŸ“ Formula mode: LaTeX mathematical notation
- πŸ“ˆ Chart mode: Structured chart analysis
- 🌍 Multilingual support
- ⚑ Fast initialization due to small size
- πŸ”§ Based on ERNIE-4.5 (different from Qwen-based models)
Model: PaddlePaddle/PaddleOCR-VL
vLLM: Requires nightly build for full support
"""
import argparse
import base64
import io
import json
import logging
import math
import os
import sys
from typing import Any, Dict, List, Union
from datetime import datetime
import torch
from datasets import load_dataset
from huggingface_hub import DatasetCard, login
from PIL import Image
from toolz import partition_all
from tqdm.auto import tqdm
from vllm import LLM, SamplingParams
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Task mode configurations from official PaddleOCR-VL documentation
TASK_MODES = {
"ocr": "OCR:",
"table": "Table Recognition:",
"formula": "Formula Recognition:",
"chart": "Chart Recognition:",
}
# Task descriptions for dataset card
TASK_DESCRIPTIONS = {
"ocr": "General text extraction to markdown format",
"table": "Table extraction to HTML format",
"formula": "Mathematical formula recognition to LaTeX",
"chart": "Chart and diagram analysis",
}
def check_cuda_availability():
"""Check if CUDA is available and exit if not."""
if not torch.cuda.is_available():
logger.error("CUDA is not available. This script requires a GPU.")
logger.error("Please run on a machine with a CUDA-capable GPU.")
sys.exit(1)
else:
logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")
def smart_resize(
height: int,
width: int,
factor: int = 28,
min_pixels: int = 28 * 28 * 130,
max_pixels: int = 28 * 28 * 1280,
) -> tuple[int, int]:
"""
PaddleOCR-VL's intelligent resize logic.
Rescales the image so that:
1. Both dimensions are divisible by 'factor' (28)
2. Total pixels are within [min_pixels, max_pixels]
3. Aspect ratio is maintained as closely as possible
Args:
height: Original image height
width: Original image width
factor: Dimension divisibility factor (default: 28)
min_pixels: Minimum total pixels (default: 100,880)
max_pixels: Maximum total pixels (default: 1,003,520)
Returns:
Tuple of (new_height, new_width)
"""
if height < factor:
width = round((width * factor) / height)
height = factor
if width < factor:
height = round((height * factor) / width)
width = factor
if max(height, width) / min(height, width) > 200:
logger.warning(
f"Extreme aspect ratio detected: {max(height, width) / min(height, width):.1f}"
)
# Continue anyway, but warn about potential issues
h_bar = round(height / factor) * factor
w_bar = round(width / factor) * factor
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = math.floor(height / beta / factor) * factor
w_bar = math.floor(width / beta / factor) * factor
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = math.ceil(height * beta / factor) * factor
w_bar = math.ceil(width * beta / factor) * factor
return h_bar, w_bar
def make_ocr_message(
image: Union[Image.Image, Dict[str, Any], str],
task_mode: str = "ocr",
apply_smart_resize: bool = True,
) -> List[Dict]:
"""
Create chat message for PaddleOCR-VL processing.
PaddleOCR-VL expects a specific format with the task prefix after the image.
"""
# Convert to PIL Image if needed
if isinstance(image, Image.Image):
pil_img = image
elif isinstance(image, dict) and "bytes" in image:
pil_img = Image.open(io.BytesIO(image["bytes"]))
elif isinstance(image, str):
pil_img = Image.open(image)
else:
raise ValueError(f"Unsupported image type: {type(image)}")
# Convert to RGB
pil_img = pil_img.convert("RGB")
# Apply smart resize if requested
if apply_smart_resize:
original_size = pil_img.size
new_width, new_height = smart_resize(pil_img.height, pil_img.width)
if (new_width, new_height) != (pil_img.width, pil_img.height):
pil_img = pil_img.resize((new_width, new_height), Image.Resampling.LANCZOS)
logger.debug(f"Resized image from {original_size} to {pil_img.size}")
# Convert to base64 data URI
buf = io.BytesIO()
pil_img.save(buf, format="PNG")
data_uri = f"data:image/png;base64,{base64.b64encode(buf.getvalue()).decode()}"
# PaddleOCR-VL message format: image first, then task prefix
return [
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": data_uri}},
{"type": "text", "text": TASK_MODES[task_mode]},
],
}
]
def create_dataset_card(
source_dataset: str,
model: str,
task_mode: str,
num_samples: int,
processing_time: str,
batch_size: int,
max_model_len: int,
max_tokens: int,
gpu_memory_utilization: float,
temperature: float,
apply_smart_resize: bool,
image_column: str = "image",
split: str = "train",
) -> str:
"""Create a dataset card documenting the OCR process."""
task_description = TASK_DESCRIPTIONS[task_mode]
return f"""---
tags:
- ocr
- document-processing
- paddleocr-vl
- {task_mode}
- uv-script
- generated
---
# Document Processing using PaddleOCR-VL ({task_mode.upper()} mode)
This dataset contains {task_mode.upper()} results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using PaddleOCR-VL, an ultra-compact 0.9B OCR model.
## Processing Details
- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset})
- **Model**: [{model}](https://huggingface.co/{model})
- **Task Mode**: `{task_mode}` - {task_description}
- **Number of Samples**: {num_samples:,}
- **Processing Time**: {processing_time}
- **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")}
### Configuration
- **Image Column**: `{image_column}`
- **Output Column**: `paddleocr_{task_mode}`
- **Dataset Split**: `{split}`
- **Batch Size**: {batch_size}
- **Smart Resize**: {"Enabled" if apply_smart_resize else "Disabled"}
- **Max Model Length**: {max_model_len:,} tokens
- **Max Output Tokens**: {max_tokens:,}
- **Temperature**: {temperature}
- **GPU Memory Utilization**: {gpu_memory_utilization:.1%}
## Model Information
PaddleOCR-VL is a state-of-the-art, resource-efficient model tailored for document parsing:
- 🎯 **Ultra-compact** - Only 0.9B parameters (smallest OCR model)
- πŸ“ **OCR mode** - General text extraction
- πŸ“Š **Table mode** - HTML table recognition
- πŸ“ **Formula mode** - LaTeX mathematical notation
- πŸ“ˆ **Chart mode** - Structured chart analysis
- 🌍 **Multilingual** - Support for multiple languages
- ⚑ **Fast** - Quick initialization and inference
- πŸ”§ **ERNIE-4.5 based** - Different architecture from Qwen models
### Task Modes
- **OCR**: Extract text content to markdown format
- **Table Recognition**: Extract tables to HTML format
- **Formula Recognition**: Extract mathematical formulas to LaTeX
- **Chart Recognition**: Analyze and describe charts/diagrams
## Dataset Structure
The dataset contains all original columns plus:
- `paddleocr_{task_mode}`: The extracted content based on task mode
- `inference_info`: JSON list tracking all OCR models applied to this dataset
## Usage
```python
from datasets import load_dataset
import json
# Load the dataset
dataset = load_dataset("{{output_dataset_id}}", split="{split}")
# Access the extracted content
for example in dataset:
print(example["paddleocr_{task_mode}"])
break
# View all OCR models applied to this dataset
inference_info = json.loads(dataset[0]["inference_info"])
for info in inference_info:
print(f"Task: {{info['task_mode']}} - Model: {{info['model_id']}}")
```
## Reproduction
This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) PaddleOCR-VL script:
```bash
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/paddleocr-vl.py \\
{source_dataset} \\
<output-dataset> \\
--task-mode {task_mode} \\
--image-column {image_column} \\
--batch-size {batch_size} \\
--max-model-len {max_model_len} \\
--max-tokens {max_tokens} \\
--gpu-memory-utilization {gpu_memory_utilization}
```
## Performance
- **Model Size**: 0.9B parameters (smallest among OCR models)
- **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.2f} images/second
- **Architecture**: NaViT visual encoder + ERNIE-4.5-0.3B language model
Generated with πŸ€– [UV Scripts](https://huggingface.co/uv-scripts)
"""
def main(
input_dataset: str,
output_dataset: str,
image_column: str = "image",
batch_size: int = 16,
task_mode: str = "ocr",
max_model_len: int = 8192,
max_tokens: int = 4096,
temperature: float = 0.0,
gpu_memory_utilization: float = 0.8,
apply_smart_resize: bool = True,
hf_token: str = None,
split: str = "train",
max_samples: int = None,
private: bool = False,
shuffle: bool = False,
seed: int = 42,
output_column: str = None,
):
"""Process images from HF dataset through PaddleOCR-VL model."""
# Check CUDA availability first
check_cuda_availability()
# Track processing start time
start_time = datetime.now()
# Enable HF_TRANSFER for faster downloads
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
# Login to HF if token provided
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
if HF_TOKEN:
login(token=HF_TOKEN)
# Validate task mode
if task_mode not in TASK_MODES:
raise ValueError(
f"Invalid task_mode '{task_mode}'. Choose from: {list(TASK_MODES.keys())}"
)
# Auto-generate output column name based on task mode
if output_column is None:
output_column = f"paddleocr_{task_mode}"
logger.info(f"Using task mode: {task_mode} - {TASK_DESCRIPTIONS[task_mode]}")
logger.info(f"Output will be written to column: {output_column}")
# Load dataset
logger.info(f"Loading dataset: {input_dataset}")
dataset = load_dataset(input_dataset, split=split)
# Validate image column
if image_column not in dataset.column_names:
raise ValueError(
f"Column '{image_column}' not found. Available: {dataset.column_names}"
)
# Shuffle if requested
if shuffle:
logger.info(f"Shuffling dataset with seed {seed}")
dataset = dataset.shuffle(seed=seed)
# Limit samples if requested
if max_samples:
dataset = dataset.select(range(min(max_samples, len(dataset))))
logger.info(f"Limited to {len(dataset)} samples")
# Initialize vLLM model
model_name = "PaddlePaddle/PaddleOCR-VL"
logger.info(f"Initializing vLLM with {model_name}")
logger.info("This may take a minute on first run (model is only 0.9B)...")
# Note: PaddleOCR-VL requires specific vLLM configuration
# The model needs custom implementation files to be loaded
os.environ["VLLM_USE_V1"] = "0" # Disable V1 engine for compatibility
llm = LLM(
model=model_name,
trust_remote_code=True,
max_model_len=max_model_len,
gpu_memory_utilization=gpu_memory_utilization,
limit_mm_per_prompt={"image": 1},
max_num_batched_tokens=16384, # Match server config
enable_prefix_caching=False, # Disable prefix caching like server
enforce_eager=True, # Use eager mode instead of CUDA graphs
)
# Sampling parameters - deterministic for OCR
sampling_params = SamplingParams(
temperature=temperature,
max_tokens=max_tokens,
)
logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")
if apply_smart_resize:
logger.info("Smart resize enabled (PaddleOCR-VL's adaptive resolution)")
# Process images in batches
all_outputs = []
for batch_indices in tqdm(
partition_all(batch_size, range(len(dataset))),
total=(len(dataset) + batch_size - 1) // batch_size,
desc=f"PaddleOCR-VL {task_mode.upper()} processing",
):
batch_indices = list(batch_indices)
batch_images = [dataset[i][image_column] for i in batch_indices]
try:
# Create messages for batch with task-specific prefix
batch_messages = [
make_ocr_message(
img, task_mode=task_mode, apply_smart_resize=apply_smart_resize
)
for img in batch_images
]
# Process with vLLM
outputs = llm.chat(batch_messages, sampling_params)
# Extract outputs
for output in outputs:
text = output.outputs[0].text.strip()
all_outputs.append(text)
except Exception as e:
logger.error(f"Error processing batch: {e}")
# Add error placeholders for failed batch
all_outputs.extend([f"[{task_mode.upper()} ERROR]"] * len(batch_images))
# Calculate processing time
processing_duration = datetime.now() - start_time
processing_time_str = f"{processing_duration.total_seconds() / 60:.1f} min"
# Add output column to dataset
logger.info(f"Adding '{output_column}' column to dataset")
dataset = dataset.add_column(output_column, all_outputs)
# Handle inference_info tracking (for multi-model comparisons)
inference_entry = {
"model_id": model_name,
"model_name": "PaddleOCR-VL",
"model_size": "0.9B",
"task_mode": task_mode,
"column_name": output_column,
"timestamp": datetime.now().isoformat(),
"temperature": temperature,
"max_tokens": max_tokens,
"smart_resize": apply_smart_resize,
}
if "inference_info" in dataset.column_names:
# Append to existing inference info
logger.info("Updating existing inference_info column")
def update_inference_info(example):
try:
existing_info = (
json.loads(example["inference_info"])
if example["inference_info"]
else []
)
except (json.JSONDecodeError, TypeError):
existing_info = []
existing_info.append(inference_entry)
return {"inference_info": json.dumps(existing_info)}
dataset = dataset.map(update_inference_info)
else:
# Create new inference_info column
logger.info("Creating new inference_info column")
inference_list = [json.dumps([inference_entry])] * len(dataset)
dataset = dataset.add_column("inference_info", inference_list)
# Push to hub
logger.info(f"Pushing to {output_dataset}")
dataset.push_to_hub(output_dataset, private=private, token=HF_TOKEN)
# Create and push dataset card
logger.info("Creating dataset card")
card_content = create_dataset_card(
source_dataset=input_dataset,
model=model_name,
task_mode=task_mode,
num_samples=len(dataset),
processing_time=processing_time_str,
batch_size=batch_size,
max_model_len=max_model_len,
max_tokens=max_tokens,
gpu_memory_utilization=gpu_memory_utilization,
temperature=temperature,
apply_smart_resize=apply_smart_resize,
image_column=image_column,
split=split,
)
card = DatasetCard(card_content)
card.push_to_hub(output_dataset, token=HF_TOKEN)
logger.info("βœ… PaddleOCR-VL processing complete!")
logger.info(
f"Dataset available at: https://huggingface.co/datasets/{output_dataset}"
)
logger.info(f"Processing time: {processing_time_str}")
logger.info(f"Task mode: {task_mode} - {TASK_DESCRIPTIONS[task_mode]}")
if __name__ == "__main__":
# Show example usage if no arguments
if len(sys.argv) == 1:
print("=" * 80)
print("PaddleOCR-VL Document Processing")
print("=" * 80)
print("\nUltra-compact 0.9B OCR model with task-specific capabilities")
print("\nFeatures:")
print("- 🎯 Smallest OCR model - Only 0.9B parameters")
print("- πŸ“ OCR mode - General text extraction")
print("- πŸ“Š Table mode - HTML table recognition")
print("- πŸ“ Formula mode - LaTeX mathematical notation")
print("- πŸ“ˆ Chart mode - Structured chart analysis")
print("- 🌍 Multilingual support")
print("- ⚑ Fast initialization and inference")
print("- πŸ”§ Based on ERNIE-4.5 (unique architecture)")
print("\nTask Modes:")
for mode, description in TASK_DESCRIPTIONS.items():
print(f" {mode:8} - {description}")
print("\nExample usage:")
print("\n1. Basic OCR (default mode):")
print(" uv run paddleocr-vl.py input-dataset output-dataset")
print("\n2. Table extraction:")
print(" uv run paddleocr-vl.py docs tables-extracted --task-mode table")
print("\n3. Formula recognition:")
print(
" uv run paddleocr-vl.py papers formulas --task-mode formula --batch-size 32"
)
print("\n4. Chart analysis:")
print(" uv run paddleocr-vl.py diagrams charts-analyzed --task-mode chart")
print("\n5. Test with small sample:")
print(" uv run paddleocr-vl.py dataset test --max-samples 10 --shuffle")
print("\n6. Running on HF Jobs:")
print(" hf jobs uv run --flavor l4x1 \\")
print(
' -e HF_TOKEN=$(python3 -c "from huggingface_hub import get_token; print(get_token())") \\'
)
print(" -e HF_HUB_ENABLE_HF_TRANSFER=1 \\")
print(
" https://huggingface.co/datasets/uv-scripts/ocr/raw/main/paddleocr-vl.py \\"
)
print(" input-dataset output-dataset --task-mode ocr")
print("\n" + "=" * 80)
print("\nFor full help, run: uv run paddleocr-vl.py --help")
sys.exit(0)
parser = argparse.ArgumentParser(
description="Document processing using PaddleOCR-VL (0.9B task-specific model)",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Task Modes:
ocr General text extraction to markdown (default)
table Table extraction to HTML format
formula Mathematical formula recognition to LaTeX
chart Chart and diagram analysis
Examples:
# Basic text OCR
uv run paddleocr-vl.py my-docs analyzed-docs
# Extract tables from documents
uv run paddleocr-vl.py papers tables --task-mode table
# Recognize mathematical formulas
uv run paddleocr-vl.py textbooks formulas --task-mode formula
# Analyze charts and diagrams
uv run paddleocr-vl.py reports charts --task-mode chart
# Test with random sampling
uv run paddleocr-vl.py large-dataset test --max-samples 50 --shuffle --task-mode ocr
# Disable smart resize for original resolution
uv run paddleocr-vl.py images output --no-smart-resize
""",
)
parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub")
parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub")
parser.add_argument(
"--image-column",
default="image",
help="Column containing images (default: image)",
)
parser.add_argument(
"--batch-size",
type=int,
default=16,
help="Batch size for processing (default: 16)",
)
parser.add_argument(
"--task-mode",
choices=list(TASK_MODES.keys()),
default="ocr",
help="Task type: ocr (default), table, formula, or chart",
)
parser.add_argument(
"--max-model-len",
type=int,
default=8192,
help="Maximum model context length (default: 8192)",
)
parser.add_argument(
"--max-tokens",
type=int,
default=4096,
help="Maximum tokens to generate (default: 4096)",
)
parser.add_argument(
"--temperature",
type=float,
default=0.0,
help="Sampling temperature (default: 0.0 for deterministic)",
)
parser.add_argument(
"--gpu-memory-utilization",
type=float,
default=0.8,
help="GPU memory utilization (default: 0.8)",
)
parser.add_argument(
"--no-smart-resize",
action="store_true",
help="Disable PaddleOCR-VL's smart resize, use original image size",
)
parser.add_argument("--hf-token", help="Hugging Face API token")
parser.add_argument(
"--split", default="train", help="Dataset split to use (default: train)"
)
parser.add_argument(
"--max-samples",
type=int,
help="Maximum number of samples to process (for testing)",
)
parser.add_argument(
"--private", action="store_true", help="Make output dataset private"
)
parser.add_argument(
"--shuffle", action="store_true", help="Shuffle dataset before processing"
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="Random seed for shuffling (default: 42)",
)
parser.add_argument(
"--output-column",
help="Column name for output (default: paddleocr_[task_mode])",
)
args = parser.parse_args()
main(
input_dataset=args.input_dataset,
output_dataset=args.output_dataset,
image_column=args.image_column,
batch_size=args.batch_size,
task_mode=args.task_mode,
max_model_len=args.max_model_len,
max_tokens=args.max_tokens,
temperature=args.temperature,
gpu_memory_utilization=args.gpu_memory_utilization,
apply_smart_resize=not args.no_smart_resize,
hf_token=args.hf_token,
split=args.split,
max_samples=args.max_samples,
private=args.private,
shuffle=args.shuffle,
seed=args.seed,
output_column=args.output_column,
)