File size: 3,175 Bytes
			
			| 7b0b1a6 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This loads the UnpredicTable-unique dataset."""
import json
import os
import pandas as pd
import datasets
_DESCRIPTION = """\
The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance. For more details please see the accompanying dataset card.
"""
_LICENSE = "Apache 2.0"
_URL = "https://huggingface.co/datasets/unpredictable/unpredictable_unique/resolve/main/unpredictable_unique.jsonl"
logger = datasets.logging.get_logger(__name__)
class UnpredicTable(datasets.GeneratorBasedBuilder):
    """
    The UnpredicTable dataset consists of web tables formatted as few-shot tasks for fine-tuning language models to improve their few-shot performance. For more details please see the accompanying dataset card.
    """
    VERSION = datasets.Version("1.0.0")
    def _info(self):
        features = datasets.Features(
            {
                "task": datasets.Value("string"),
                "input": datasets.Value("string"),
                "output": datasets.Value("string"),
                "options": datasets.Sequence([datasets.Value("string")]),
                "pageTitle": datasets.Value("string"),
                "outputColName": datasets.Value("string"),
                "url": datasets.Value("string"),
                "wdcFile": datasets.Value("string")
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            license=_LICENSE,
        )
    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        data_dir = dl_manager.download_and_extract(_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": data_dir},
            ),
        ]
    def _generate_examples(self, filepath):
        """Yields examples."""
        with open(filepath, encoding="utf-8") as f:
            for i, row in enumerate(f):
                data = json.loads(row)
                key = f"{data['task']}_{i}"
                yield key, {
                    "task": data["task"],
                    "input": data["input"],
                    "output": data["output"],
                    "options": data["options"],
                    "pageTitle": data["pageTitle"],
                    "outputColName": data["outputColName"],
                    "url": data["url"],
                    "wdcFile": data["wdcFile"],
                } |