Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
named-entity-recognition
Languages:
English
Size:
100K - 1M
ArXiv:
License:
| """ NER dataset compiled by T-NER library https://github.com/asahi417/tner/tree/master/tner """ | |
| import json | |
| from itertools import chain | |
| import datasets | |
| logger = datasets.logging.get_logger(__name__) | |
| _DESCRIPTION = """[TweetNER7](TBA)""" | |
| _NAME = "tweetner7" | |
| _VERSION = "1.0.4" | |
| _CITATION = """ | |
| TBA | |
| """ | |
| _HOME_PAGE = "https://github.com/asahi417/tner" | |
| _URL = f'https://huggingface.co/datasets/tner/{_NAME}/raw/main/dataset' | |
| _URLS = { | |
| # str(datasets.Split.TEST): [f'{_URL}/2021.test.json'], | |
| # str(datasets.Split.VALIDATION): [f'{_URL}/2020.dev.json'], | |
| # str(datasets.Split.TRAIN): [f'{_URL}/2020.train.json'], | |
| f'{str(datasets.Split.TEST)}_2020': [f'{_URL}/2020.test.json'], | |
| f'{str(datasets.Split.TEST)}_2021': [f'{_URL}/2021.test.json'], | |
| # f'{str(datasets.Split.TEST)}_all': [f'{_URL}/2020.test.json', f'{_URL}/2021.test.json'], | |
| f'{str(datasets.Split.VALIDATION)}_2020': [f'{_URL}/2020.dev.json'], | |
| f'{str(datasets.Split.VALIDATION)}_2021': [f'{_URL}/2021.dev.json'], | |
| # f'{str(datasets.Split.VALIDATION)}_all': [f'{_URL}/2020.dev.json', f'{_URL}/2021.dev.json'], | |
| f'{str(datasets.Split.TRAIN)}_2020': [f'{_URL}/2020.train.json'], | |
| f'{str(datasets.Split.TRAIN)}_2021': [f'{_URL}/2021.train.json'], | |
| f'{str(datasets.Split.TRAIN)}_all': [f'{_URL}/2020.train.json', f'{_URL}/2021.train.json'], | |
| f'{str(datasets.Split.VALIDATION)}_random': [f'{_URL}/random.dev.json'], | |
| f'{str(datasets.Split.TRAIN)}_random': [f'{_URL}/random.train.json'], | |
| f'extra_2020': [f'{_URL}/extra/2020.extra{i:02d}.json' for i in range(9)], | |
| f'extra_2021': [f'{_URL}/extra/2021.extra{i:02d}.json' for i in range(10)] | |
| } | |
| class TweetNER7Config(datasets.BuilderConfig): | |
| """BuilderConfig""" | |
| def __init__(self, **kwargs): | |
| """BuilderConfig. | |
| Args: | |
| **kwargs: keyword arguments forwarded to super. | |
| """ | |
| super(TweetNER7Config, self).__init__(**kwargs) | |
| class TweetNER7(datasets.GeneratorBasedBuilder): | |
| """Dataset.""" | |
| BUILDER_CONFIGS = [ | |
| TweetNER7Config(name=_NAME, version=datasets.Version(_VERSION), description=_DESCRIPTION), | |
| ] | |
| def _split_generators(self, dl_manager): | |
| downloaded_file = dl_manager.download_and_extract(_URLS) | |
| return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[i]}) for i in _URLS.keys()] | |
| def _generate_examples(self, filepaths): | |
| _key = 0 | |
| for filepath in filepaths: | |
| logger.info(f"generating examples from = {filepath}") | |
| with open(filepath, encoding="utf-8") as f: | |
| _list = [i for i in f.read().split('\n') if len(i) > 0] | |
| for i in _list: | |
| data = json.loads(i) | |
| yield _key, data | |
| _key += 1 | |
| def _info(self): | |
| names = ['B-corporation', 'B-creative_work', 'B-event', 'B-group', 'B-location', 'B-person', 'B-product', 'I-corporation', 'I-creative_work', 'I-event', 'I-group', 'I-location', 'I-person', 'I-product', 'O'] | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "tokens": datasets.Sequence(datasets.Value("string")), | |
| "tags": datasets.Sequence(datasets.features.ClassLabel(names=names)), | |
| "id": datasets.Value("string"), | |
| "date": datasets.Value("string") | |
| } | |
| ), | |
| supervised_keys=None, | |
| homepage=_HOME_PAGE, | |
| citation=_CITATION, | |
| ) | |