Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
English
Size:
1K - 10K
ArXiv:
Tags:
conversational-qa
License:
Commit
·
9df4273
1
Parent(s):
7315a18
Delete loading script
Browse files
coqa.py
DELETED
|
@@ -1,91 +0,0 @@
|
|
| 1 |
-
"""CoQA dataset."""
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
import json
|
| 5 |
-
|
| 6 |
-
import datasets
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
_HOMEPAGE = "https://stanfordnlp.github.io/coqa/"
|
| 10 |
-
|
| 11 |
-
_CITATION = """\
|
| 12 |
-
@article{reddy-etal-2019-coqa,
|
| 13 |
-
title = "{C}o{QA}: A Conversational Question Answering Challenge",
|
| 14 |
-
author = "Reddy, Siva and
|
| 15 |
-
Chen, Danqi and
|
| 16 |
-
Manning, Christopher D.",
|
| 17 |
-
journal = "Transactions of the Association for Computational Linguistics",
|
| 18 |
-
volume = "7",
|
| 19 |
-
year = "2019",
|
| 20 |
-
address = "Cambridge, MA",
|
| 21 |
-
publisher = "MIT Press",
|
| 22 |
-
url = "https://aclanthology.org/Q19-1016",
|
| 23 |
-
doi = "10.1162/tacl_a_00266",
|
| 24 |
-
pages = "249--266",
|
| 25 |
-
}
|
| 26 |
-
"""
|
| 27 |
-
|
| 28 |
-
_DESCRIPTION = """\
|
| 29 |
-
CoQA: A Conversational Question Answering Challenge
|
| 30 |
-
"""
|
| 31 |
-
|
| 32 |
-
_TRAIN_DATA_URL = "https://nlp.stanford.edu/data/coqa/coqa-train-v1.0.json"
|
| 33 |
-
_DEV_DATA_URL = "https://nlp.stanford.edu/data/coqa/coqa-dev-v1.0.json"
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
class Coqa(datasets.GeneratorBasedBuilder):
|
| 37 |
-
|
| 38 |
-
VERSION = datasets.Version("1.0.0")
|
| 39 |
-
|
| 40 |
-
def _info(self):
|
| 41 |
-
return datasets.DatasetInfo(
|
| 42 |
-
description=_DESCRIPTION,
|
| 43 |
-
features=datasets.Features(
|
| 44 |
-
{
|
| 45 |
-
"source": datasets.Value("string"),
|
| 46 |
-
"story": datasets.Value("string"),
|
| 47 |
-
"questions": datasets.features.Sequence(datasets.Value("string")),
|
| 48 |
-
"answers": datasets.features.Sequence(
|
| 49 |
-
{
|
| 50 |
-
"input_text": datasets.Value("string"),
|
| 51 |
-
"answer_start": datasets.Value("int32"),
|
| 52 |
-
"answer_end": datasets.Value("int32"),
|
| 53 |
-
}
|
| 54 |
-
),
|
| 55 |
-
}
|
| 56 |
-
),
|
| 57 |
-
homepage=_HOMEPAGE,
|
| 58 |
-
citation=_CITATION,
|
| 59 |
-
)
|
| 60 |
-
|
| 61 |
-
def _split_generators(self, dl_manager):
|
| 62 |
-
"""Returns SplitGenerators."""
|
| 63 |
-
urls_to_download = {"train": _TRAIN_DATA_URL, "dev": _DEV_DATA_URL}
|
| 64 |
-
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
| 65 |
-
|
| 66 |
-
return [
|
| 67 |
-
datasets.SplitGenerator(
|
| 68 |
-
name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"], "split": "train"}
|
| 69 |
-
),
|
| 70 |
-
datasets.SplitGenerator(
|
| 71 |
-
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"], "split": "validation"}
|
| 72 |
-
),
|
| 73 |
-
]
|
| 74 |
-
|
| 75 |
-
def _generate_examples(self, filepath, split):
|
| 76 |
-
"""Yields examples."""
|
| 77 |
-
with open(filepath, encoding="utf-8") as f:
|
| 78 |
-
data = json.load(f)
|
| 79 |
-
for row in data["data"]:
|
| 80 |
-
questions = [question["input_text"] for question in row["questions"]]
|
| 81 |
-
story = row["story"]
|
| 82 |
-
source = row["source"]
|
| 83 |
-
answers_start = [answer["span_start"] for answer in row["answers"]]
|
| 84 |
-
answers_end = [answer["span_end"] for answer in row["answers"]]
|
| 85 |
-
answers = [answer["input_text"] for answer in row["answers"]]
|
| 86 |
-
yield row["id"], {
|
| 87 |
-
"source": source,
|
| 88 |
-
"story": story,
|
| 89 |
-
"questions": questions,
|
| 90 |
-
"answers": {"input_text": answers, "answer_start": answers_start, "answer_end": answers_end},
|
| 91 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|