|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """WMT'16 Biomedical Translation Task - PubMed parallel datasets""" | 
					
						
						|  |  | 
					
						
						|  | import gzip | 
					
						
						|  | import datasets | 
					
						
						|  | import pandas as pd | 
					
						
						|  |  | 
					
						
						|  | logger = datasets.logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | _CITATION = """ | 
					
						
						|  | @inproceedings{bojar-etal-2016-findings, | 
					
						
						|  | title = Findings of the 2016 Conference on Machine Translation, | 
					
						
						|  | author = { | 
					
						
						|  | Bojar, Ondrej  and | 
					
						
						|  | Chatterjee, Rajen  and | 
					
						
						|  | Federmann, Christian  and | 
					
						
						|  | Graham, Yvette  and | 
					
						
						|  | Haddow, Barry  and | 
					
						
						|  | Huck, Matthias  and | 
					
						
						|  | Jimeno Yepes, Antonio  and | 
					
						
						|  | Koehn, Philipp  and | 
					
						
						|  | Logacheva, Varvara  and | 
					
						
						|  | Monz, Christof  and | 
					
						
						|  | Negri, Matteo  and | 
					
						
						|  | Neveol, Aurelie  and | 
					
						
						|  | Neves, Mariana  and | 
					
						
						|  | Popel, Martin  and | 
					
						
						|  | Post, Matt  and | 
					
						
						|  | Rubino, Raphael  and | 
					
						
						|  | Scarton, Carolina  and | 
					
						
						|  | Specia, Lucia  and | 
					
						
						|  | Turchi, Marco  and | 
					
						
						|  | Verspoor, Karin  and | 
					
						
						|  | Zampieri, Marcos | 
					
						
						|  | }, | 
					
						
						|  | booktitle = Proceedings of the First Conference on Machine Translation: Volume 2, Shared Task Papers, | 
					
						
						|  | month = aug, | 
					
						
						|  | year = 2016, | 
					
						
						|  | address = Berlin, Germany, | 
					
						
						|  | publisher = Association for Computational Linguistics, | 
					
						
						|  | url = https://aclanthology.org/W16-2301, | 
					
						
						|  | doi = 10.18653/v1/W16-2301, | 
					
						
						|  | pages = 131--198, | 
					
						
						|  | } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _LANGUAGE_PAIRS = ['en-pt', 'en-es', 'en-fr'] | 
					
						
						|  | _LANGUAGE_PAIRS_TUPLES = [('en','pt'), ('en','es'), ('en','fr')] | 
					
						
						|  |  | 
					
						
						|  | _LICENSE = """ | 
					
						
						|  | This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by/4.0/">Attribution 4.0 International (CC BY 4.0) License</a>. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _DESCRIPTION = """ | 
					
						
						|  | WMT'16 Biomedical Translation Task - PubMed parallel datasets | 
					
						
						|  | http://www.statmt.org/wmt16/biomedical-translation-task.html | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _URL = "https://huggingface.co/datasets/qanastek/WMT-16-PubMed/resolve/main/WMT16.csv.gz" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class WMT_16_CONFIG(datasets.BuilderConfig): | 
					
						
						|  | def __init__(self, *args, lang1=None, lang2=None, **kwargs): | 
					
						
						|  | super().__init__( | 
					
						
						|  | *args, | 
					
						
						|  | name=f"{lang1}-{lang2}", | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | self.name = f"{lang1}-{lang2}" | 
					
						
						|  | self.lang1 = lang1 | 
					
						
						|  | self.lang2 = lang2 | 
					
						
						|  |  | 
					
						
						|  | class WMT_16_PubMed(datasets.GeneratorBasedBuilder): | 
					
						
						|  | """WMT-16-PubMed dataset.""" | 
					
						
						|  |  | 
					
						
						|  | DEFAULT_CONFIG_NAME = "en-fr" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | BUILDER_CONFIGS = [ | 
					
						
						|  | WMT_16_CONFIG( | 
					
						
						|  | lang1=lang1, | 
					
						
						|  | lang2=lang2, | 
					
						
						|  | description=f"Translating {lang1} to {lang2} or vice versa", | 
					
						
						|  | version=datasets.Version("16.0.0"), | 
					
						
						|  | ) | 
					
						
						|  | for lang1, lang2 in _LANGUAGE_PAIRS_TUPLES | 
					
						
						|  | ] | 
					
						
						|  | BUILDER_CONFIG_CLASS = WMT_16_CONFIG | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _info(self): | 
					
						
						|  | src, target = self.config.name.split("-") | 
					
						
						|  | pair = (src, target) | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  | description=_DESCRIPTION, | 
					
						
						|  | features=datasets.Features( | 
					
						
						|  | {"translation": datasets.features.Translation(languages=pair)} | 
					
						
						|  | ), | 
					
						
						|  | supervised_keys=(src, target), | 
					
						
						|  | homepage="https://www.statmt.org/wmt16/biomedical-translation-task.html", | 
					
						
						|  | citation=_CITATION, | 
					
						
						|  |  | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | data_dir = dl_manager.download(_URL) | 
					
						
						|  |  | 
					
						
						|  | return [ | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.TRAIN, | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "filepath": data_dir, | 
					
						
						|  | "split": "train", | 
					
						
						|  | } | 
					
						
						|  | ), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples(self, filepath, split): | 
					
						
						|  |  | 
					
						
						|  | logger.info("⏳ Generating examples from = %s", filepath) | 
					
						
						|  |  | 
					
						
						|  | key_ = 0 | 
					
						
						|  |  | 
					
						
						|  | with open(filepath, 'rb') as fd: | 
					
						
						|  | gzip_fd = gzip.GzipFile(fileobj=fd) | 
					
						
						|  | df = pd.read_csv(gzip_fd) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for index, row in df.loc[df['lang'] == self.config.name].iterrows(): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | src, target = str(row['lang']).split("-") | 
					
						
						|  |  | 
					
						
						|  | yield key_, { | 
					
						
						|  | "translation": { | 
					
						
						|  | src: str(row['source_text']).strip(), | 
					
						
						|  | target: str(row['target_text']).strip(), | 
					
						
						|  | }, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | key_ += 1 | 
					
						
						|  |  |