| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						"""ANTILLES Corpus""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import os | 
					
					
						
						| 
							 | 
						import datasets | 
					
					
						
						| 
							 | 
						from tqdm import tqdm | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = datasets.logging.get_logger(__name__) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_CITATION = """ | 
					
					
						
						| 
							 | 
						@misc{ | 
					
					
						
						| 
							 | 
						    universaldependencies, | 
					
					
						
						| 
							 | 
						    title={UniversalDependencies/UD_French-GSD}, | 
					
					
						
						| 
							 | 
						    url={https://github.com/UniversalDependencies/UD_French-GSD}, journal={GitHub}, | 
					
					
						
						| 
							 | 
						    author={UniversalDependencies} | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						@inproceedings{mcdonald-etal-2013-universal, | 
					
					
						
						| 
							 | 
						    title = {{U}niversal {D}ependency Annotation for Multilingual Parsing}, | 
					
					
						
						| 
							 | 
						    author = { | 
					
					
						
						| 
							 | 
						        McDonald, Ryan  and | 
					
					
						
						| 
							 | 
						        Nivre, Joakim  and | 
					
					
						
						| 
							 | 
						        Quirmbach-Brundage, Yvonne  and | 
					
					
						
						| 
							 | 
						        Goldberg, Yoav  and | 
					
					
						
						| 
							 | 
						        Das, Dipanjan  and | 
					
					
						
						| 
							 | 
						        Ganchev, Kuzman  and | 
					
					
						
						| 
							 | 
						        Hall, Keith  and | 
					
					
						
						| 
							 | 
						        Petrov, Slav  and | 
					
					
						
						| 
							 | 
						        Zhang, Hao  and | 
					
					
						
						| 
							 | 
						        Tackstrom, Oscar  and | 
					
					
						
						| 
							 | 
						        Bedini, Claudia  and | 
					
					
						
						| 
							 | 
						        Bertomeu Castello, Nuria  and | 
					
					
						
						| 
							 | 
						        Lee, Jungmee | 
					
					
						
						| 
							 | 
						    }, | 
					
					
						
						| 
							 | 
						    booktitle = {Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)}, | 
					
					
						
						| 
							 | 
						    month = aug, | 
					
					
						
						| 
							 | 
						    year = {2013}, | 
					
					
						
						| 
							 | 
						    address = {Sofia, Bulgaria}, | 
					
					
						
						| 
							 | 
						    publisher = {Association for Computational Linguistics}, | 
					
					
						
						| 
							 | 
						    url = {https://aclanthology.org/P13-2017}, | 
					
					
						
						| 
							 | 
						    pages = {92--97", | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						@techreport{ | 
					
					
						
						| 
							 | 
						    LIA_TAGG, | 
					
					
						
						| 
							 | 
						    author = {Frédéric Béchet}, | 
					
					
						
						| 
							 | 
						    title = {LIA_TAGG: a statistical POS tagger + syntactic bracketer}, | 
					
					
						
						| 
							 | 
						    institution = {Aix-Marseille University & CNRS}, | 
					
					
						
						| 
							 | 
						    year = {2001} | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_LICENSE = """ | 
					
					
						
						| 
							 | 
						For the following languages | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						  German, Spanish, French, Indonesian, Italian, Japanese, Korean and Brazilian | 
					
					
						
						| 
							 | 
						  Portuguese | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						we will distinguish between two portions of the data. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						1. The underlying text for sentences that were annotated. This data Google | 
					
					
						
						| 
							 | 
						   asserts no ownership over and no copyright over. Some or all of these | 
					
					
						
						| 
							 | 
						   sentences may be copyrighted in some jurisdictions.  Where copyrighted, | 
					
					
						
						| 
							 | 
						   Google collected these sentences under exceptions to copyright or implied | 
					
					
						
						| 
							 | 
						   license rights.  GOOGLE MAKES THEM AVAILABLE TO YOU 'AS IS', WITHOUT ANY | 
					
					
						
						| 
							 | 
						   WARRANTY OF ANY KIND, WHETHER EXPRESS OR IMPLIED. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						2. The annotations -- part-of-speech tags and dependency annotations. These are | 
					
					
						
						| 
							 | 
						   made available under a CC BY-SA 4.0. GOOGLE MAKES | 
					
					
						
						| 
							 | 
						   THEM AVAILABLE TO YOU 'AS IS', WITHOUT ANY WARRANTY OF ANY KIND, WHETHER | 
					
					
						
						| 
							 | 
						   EXPRESS OR IMPLIED. See attached LICENSE file for the text of CC BY-NC-SA. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						Portions of the German data were sampled from the CoNLL 2006 Tiger Treebank | 
					
					
						
						| 
							 | 
						data. Hans Uszkoreit graciously gave permission to use the underlying | 
					
					
						
						| 
							 | 
						sentences in this data as part of this release. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						Any use of the data should reference the above plus: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						  Universal Dependency Annotation for Multilingual Parsing | 
					
					
						
						| 
							 | 
						  Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, | 
					
					
						
						| 
							 | 
						  Dipanjan Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, | 
					
					
						
						| 
							 | 
						  Oscar Tackstrom, Claudia Bedini, Nuria Bertomeu Castello and Jungmee Lee | 
					
					
						
						| 
							 | 
						  Proceedings of ACL 2013 | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_DESCRIPTION = "No description" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_URLS = { | 
					
					
						
						| 
							 | 
						    "ANTILLES": "https://huggingface.co/datasets/qanastek/ANTILLES/resolve/main/ANTILLES.zip" | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class ANTILLES(datasets.GeneratorBasedBuilder): | 
					
					
						
						| 
							 | 
						    """ANTILLES dataset.""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    VERSION = datasets.Version("1.1.0") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    BUILDER_CONFIGS = [ | 
					
					
						
						| 
							 | 
						        datasets.BuilderConfig(name="ANTILLES", version=VERSION, description="The ANTILLES corpora"), | 
					
					
						
						| 
							 | 
						    ] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    DEFAULT_CONFIG_NAME = "ANTILLES" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _info(self): | 
					
					
						
						| 
							 | 
						        return datasets.DatasetInfo( | 
					
					
						
						| 
							 | 
						            description=_DESCRIPTION, | 
					
					
						
						| 
							 | 
						            features=datasets.Features( | 
					
					
						
						| 
							 | 
						                { | 
					
					
						
						| 
							 | 
						                    "id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    "tokens": datasets.Sequence(datasets.Value("string")), | 
					
					
						
						| 
							 | 
						                    "pos_tags": datasets.Sequence( | 
					
					
						
						| 
							 | 
						                        datasets.features.ClassLabel( | 
					
					
						
						| 
							 | 
						                            names = ['PART', 'PDEMMP', 'PREFS', 'PINDMP', 'DINTMS', 'NUM', 'PINTFS', 'NFP', 'PUNCT', 'PRELMS', 'NOUN', 'PPER3MS', 'AUX', 'COSUB', 'ADJ', 'VPPRE', 'COCO', 'ADJMP', 'X', 'NMS', 'PINDMS', 'DETFS', 'PPER2S', 'PREFP', 'PPER3MP', 'PRELMP', 'PINDFS', 'PRON', 'PREP', 'PPOBJMP', 'ADJFS', 'DET', 'ADJFP', 'PDEMFP', 'PREL', 'PPER3FS', 'VPPFS', 'PPER3FP', 'CHIF', 'NMP', 'SYM', 'NFS', 'VERB', 'PREF', 'VPPFP', 'PDEMMS', 'XFAMIL', 'PINDFP', 'VPPMP', 'YPFOR', 'ADV', 'PRELFS', 'DINTFS', 'DETMS', 'PPOBJFP', 'PPOBJMS', 'VPPMS', 'INTJ', 'PROPN', 'PDEMFS', 'PPER1S', 'PRELFP', 'MOTINC', 'ADJMS', 'PPOBJFS'] | 
					
					
						
						| 
							 | 
						                        ) | 
					
					
						
						| 
							 | 
						                    ), | 
					
					
						
						| 
							 | 
						                } | 
					
					
						
						| 
							 | 
						            ), | 
					
					
						
						| 
							 | 
						            supervised_keys=None, | 
					
					
						
						| 
							 | 
						            homepage="https://github.com/qanastek/ANTILLES", | 
					
					
						
						| 
							 | 
						            citation=_CITATION, | 
					
					
						
						| 
							 | 
						            license=_LICENSE, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _split_generators(self, dl_manager): | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        urls = _URLS[self.config.name] | 
					
					
						
						| 
							 | 
						        data_dir = dl_manager.download_and_extract(urls) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        TRAIN_PATH = 'train.conllu' | 
					
					
						
						| 
							 | 
						        DEV_PATH   = 'dev.conllu' | 
					
					
						
						| 
							 | 
						        TEST_PATH  = 'test.conllu' | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return [ | 
					
					
						
						| 
							 | 
						            datasets.SplitGenerator( | 
					
					
						
						| 
							 | 
						                name=datasets.Split.TRAIN, | 
					
					
						
						| 
							 | 
						                gen_kwargs={ | 
					
					
						
						| 
							 | 
						                    "filepath": os.path.join(data_dir, TRAIN_PATH), | 
					
					
						
						| 
							 | 
						                    "split": "train", | 
					
					
						
						| 
							 | 
						                } | 
					
					
						
						| 
							 | 
						            ), | 
					
					
						
						| 
							 | 
						            datasets.SplitGenerator( | 
					
					
						
						| 
							 | 
						                name=datasets.Split.VALIDATION, | 
					
					
						
						| 
							 | 
						                gen_kwargs={ | 
					
					
						
						| 
							 | 
						                    "filepath": os.path.join(data_dir, DEV_PATH), | 
					
					
						
						| 
							 | 
						                    "split": "dev", | 
					
					
						
						| 
							 | 
						                } | 
					
					
						
						| 
							 | 
						            ), | 
					
					
						
						| 
							 | 
						            datasets.SplitGenerator( | 
					
					
						
						| 
							 | 
						                name=datasets.Split.TEST, | 
					
					
						
						| 
							 | 
						                gen_kwargs={ | 
					
					
						
						| 
							 | 
						                    "filepath": os.path.join(data_dir, TEST_PATH), | 
					
					
						
						| 
							 | 
						                    "split": "test", | 
					
					
						
						| 
							 | 
						                } | 
					
					
						
						| 
							 | 
						            ), | 
					
					
						
						| 
							 | 
						        ] | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _generate_examples(self, filepath, split): | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        logger.info("⏳ Generating examples from = %s", filepath) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        with open(filepath, encoding="utf-8") as f: | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            guid = 0 | 
					
					
						
						| 
							 | 
						            tokens = [] | 
					
					
						
						| 
							 | 
						            pos_tags = [] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            for line in tqdm(f): | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if "#" in line or line == "" or line == "\n": | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                    if tokens: | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                        yield guid, { | 
					
					
						
						| 
							 | 
						                            "id": str(guid), | 
					
					
						
						| 
							 | 
						                            "tokens": tokens, | 
					
					
						
						| 
							 | 
						                            "pos_tags": pos_tags, | 
					
					
						
						| 
							 | 
						                        } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                        guid += 1 | 
					
					
						
						| 
							 | 
						                        tokens = [] | 
					
					
						
						| 
							 | 
						                        pos_tags = [] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                    splits = line.split('\t') | 
					
					
						
						| 
							 | 
						                    tokens.append(splits[1]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                    pos_tags.append(splits[3].rstrip() if "_" not in splits[3] else "X") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            yield guid, { | 
					
					
						
						| 
							 | 
						                "id": str(guid), | 
					
					
						
						| 
							 | 
						                "tokens": tokens, | 
					
					
						
						| 
							 | 
						                "pos_tags": pos_tags, | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						
 |