Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
json
Sub-tasks:
extractive-qa
Languages:
Catalan
Size:
< 1K
ArXiv:
License:
| """ViquiQuAD Dataset.""" | |
| # Loading script for the ViquiQuAD dataset. | |
| import json | |
| import datasets | |
| logger = datasets.logging.get_logger(__name__) | |
| _CITATION = """\ | |
| Rodriguez-Penagos, Carlos Gerardo, & Armentano-Oller, Carme. (2021). | |
| ViquiQuAD: an extractive QA dataset from Catalan Wikipedia (Version ViquiQuad_v.1.0.1) | |
| [Data set]. Zenodo. http://doi.org/10.5281/zenodo.4761412 | |
| """ | |
| _DESCRIPTION = """\ | |
| ViquiQuAD: an extractive QA dataset from Catalan Wikipedia. | |
| This dataset contains 3111 contexts extracted from a set of 597 high quality original (no translations) | |
| articles in the Catalan Wikipedia "Viquipèdia" (ca.wikipedia.org), and 1 to 5 questions with their | |
| answer for each fragment. Viquipedia articles are used under CC-by-sa licence. | |
| This dataset can be used to build extractive-QA and Language Models. | |
| Funded by the Generalitat de Catalunya, Departament de Polítiques Digitals i Administració Pública (AINA), | |
| MT4ALL and Plan de Impulso de las Tecnologías del Lenguaje (Plan TL). | |
| """ | |
| _HOMEPAGE = "https://zenodo.org/record/4562345#.YK41aqGxWUk" | |
| _URL = "https://huggingface.co/datasets/projecte-aina/viquiquad/resolve/main/" | |
| _TRAINING_FILE = "train.json" | |
| _DEV_FILE = "dev.json" | |
| _TEST_FILE = "test.json" | |
| class ViquiQuAD(datasets.GeneratorBasedBuilder): | |
| """ViquiQuAD Dataset.""" | |
| VERSION = datasets.Version("1.0.1") | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "title": datasets.Value("string"), | |
| "context": datasets.Value("string"), | |
| "question": datasets.Value("string"), | |
| "answers": [ | |
| { | |
| "text": datasets.Value("string"), | |
| "answer_start": datasets.Value("int32"), | |
| } | |
| ], | |
| } | |
| ), | |
| # No default supervised_keys (as we have to pass both question | |
| # and context as input). | |
| supervised_keys=None, | |
| homepage=_HOMEPAGE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| urls_to_download = { | |
| "train": f"{_URL}{_TRAINING_FILE}", | |
| "dev": f"{_URL}{_DEV_FILE}", | |
| "test": f"{_URL}{_TEST_FILE}", | |
| } | |
| downloaded_files = dl_manager.download(urls_to_download) | |
| return [ | |
| datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
| datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
| datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
| ] | |
| def _generate_examples(self, filepath): | |
| """This function returns the examples in the raw (text) form.""" | |
| logger.info("generating examples from = %s", filepath) | |
| with open(filepath, encoding="utf-8") as f: | |
| viquiquad = json.load(f) | |
| for article in viquiquad["data"]: | |
| title = article.get("title", "").strip() | |
| for paragraph in article["paragraphs"]: | |
| context = paragraph["context"].strip() | |
| for qa in paragraph["qas"]: | |
| question = qa["question"].strip() | |
| id_ = qa["id"] | |
| # answer_starts = [answer["answer_start"] for answer in qa["answers"]] | |
| # answers = [answer["text"].strip() for answer in qa["answers"]] | |
| text = qa["answers"][0]["text"] | |
| answer_start = qa["answers"][0]["answer_start"] | |
| # Features currently used are "context", "question", and "answers". | |
| # Others are extracted here for the ease of future expansions. | |
| yield id_, { | |
| "title": title, | |
| "context": context, | |
| "question": question, | |
| "id": id_, | |
| "answers": [{"text": text, "answer_start": answer_start}], | |
| } | |