Datasets:
Remove space in split names
Browse files- diffusiondb.py +11 -11
diffusiondb.py
CHANGED
|
@@ -110,11 +110,11 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
| 110 |
for sampling in ["first", "random"]:
|
| 111 |
for is_large in [False, True]:
|
| 112 |
num_k_str = f"{num_k}k" if num_k < 1000 else f"{num_k // 1000}m"
|
| 113 |
-
subset_str = "
|
| 114 |
|
| 115 |
if sampling == "random":
|
| 116 |
# Name the config
|
| 117 |
-
cur_name = "random_" + num_k_str
|
| 118 |
|
| 119 |
# Add a short description for each config
|
| 120 |
cur_description = (
|
|
@@ -128,7 +128,7 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
| 128 |
).tolist()
|
| 129 |
else:
|
| 130 |
# Name the config
|
| 131 |
-
cur_name = "first_" + num_k_str
|
| 132 |
|
| 133 |
# Add a short description for each config
|
| 134 |
cur_description = f"The first {num_k_str} images in this dataset with their prompts and parameters"
|
|
@@ -151,11 +151,11 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
| 151 |
for num_k in [5000, 10000]:
|
| 152 |
for sampling in ["first", "random"]:
|
| 153 |
num_k_str = f"{num_k // 1000}m"
|
| 154 |
-
subset_str = "
|
| 155 |
|
| 156 |
if sampling == "random":
|
| 157 |
# Name the config
|
| 158 |
-
cur_name = "random_" + num_k_str
|
| 159 |
|
| 160 |
# Add a short description for each config
|
| 161 |
cur_description = (
|
|
@@ -169,7 +169,7 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
| 169 |
).tolist()
|
| 170 |
else:
|
| 171 |
# Name the config
|
| 172 |
-
cur_name = "first_" + num_k_str
|
| 173 |
|
| 174 |
# Add a short description for each config
|
| 175 |
cur_description = f"The first {num_k_str} images in this dataset with their prompts and parameters"
|
|
@@ -191,7 +191,7 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
| 191 |
# Need to manually add all (2m) and all (large)
|
| 192 |
BUILDER_CONFIGS.append(
|
| 193 |
DiffusionDBConfig(
|
| 194 |
-
name="
|
| 195 |
part_ids=_PART_IDS,
|
| 196 |
is_large=False,
|
| 197 |
description="All images with their prompts and parameters",
|
|
@@ -200,7 +200,7 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
| 200 |
|
| 201 |
BUILDER_CONFIGS.append(
|
| 202 |
DiffusionDBConfig(
|
| 203 |
-
name="
|
| 204 |
part_ids=_PART_IDS_LARGE,
|
| 205 |
is_large=True,
|
| 206 |
description="All images with their prompts and parameters",
|
|
@@ -210,7 +210,7 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
| 210 |
# We also prove a text-only option, which loads the meatadata parquet file
|
| 211 |
BUILDER_CONFIGS.append(
|
| 212 |
DiffusionDBConfig(
|
| 213 |
-
name="
|
| 214 |
part_ids=[],
|
| 215 |
is_large=False,
|
| 216 |
description="Only include all prompts and parameters (no image)",
|
|
@@ -219,7 +219,7 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
| 219 |
|
| 220 |
BUILDER_CONFIGS.append(
|
| 221 |
DiffusionDBConfig(
|
| 222 |
-
name="
|
| 223 |
part_ids=[],
|
| 224 |
is_large=True,
|
| 225 |
description="Only include all prompts and parameters (no image)",
|
|
@@ -227,7 +227,7 @@ class DiffusionDB(datasets.GeneratorBasedBuilder):
|
|
| 227 |
)
|
| 228 |
|
| 229 |
# Default to only load 1k random images
|
| 230 |
-
DEFAULT_CONFIG_NAME = "
|
| 231 |
|
| 232 |
def _info(self):
|
| 233 |
"""Specify the information of DiffusionDB."""
|
|
|
|
| 110 |
for sampling in ["first", "random"]:
|
| 111 |
for is_large in [False, True]:
|
| 112 |
num_k_str = f"{num_k}k" if num_k < 1000 else f"{num_k // 1000}m"
|
| 113 |
+
subset_str = "large_" if is_large else "2m_"
|
| 114 |
|
| 115 |
if sampling == "random":
|
| 116 |
# Name the config
|
| 117 |
+
cur_name = subset_str + "random_" + num_k_str
|
| 118 |
|
| 119 |
# Add a short description for each config
|
| 120 |
cur_description = (
|
|
|
|
| 128 |
).tolist()
|
| 129 |
else:
|
| 130 |
# Name the config
|
| 131 |
+
cur_name = subset_str + "first_" + num_k_str
|
| 132 |
|
| 133 |
# Add a short description for each config
|
| 134 |
cur_description = f"The first {num_k_str} images in this dataset with their prompts and parameters"
|
|
|
|
| 151 |
for num_k in [5000, 10000]:
|
| 152 |
for sampling in ["first", "random"]:
|
| 153 |
num_k_str = f"{num_k // 1000}m"
|
| 154 |
+
subset_str = "large_"
|
| 155 |
|
| 156 |
if sampling == "random":
|
| 157 |
# Name the config
|
| 158 |
+
cur_name = subset_str + "random_" + num_k_str
|
| 159 |
|
| 160 |
# Add a short description for each config
|
| 161 |
cur_description = (
|
|
|
|
| 169 |
).tolist()
|
| 170 |
else:
|
| 171 |
# Name the config
|
| 172 |
+
cur_name = subset_str + "first_" + num_k_str
|
| 173 |
|
| 174 |
# Add a short description for each config
|
| 175 |
cur_description = f"The first {num_k_str} images in this dataset with their prompts and parameters"
|
|
|
|
| 191 |
# Need to manually add all (2m) and all (large)
|
| 192 |
BUILDER_CONFIGS.append(
|
| 193 |
DiffusionDBConfig(
|
| 194 |
+
name="2m_all",
|
| 195 |
part_ids=_PART_IDS,
|
| 196 |
is_large=False,
|
| 197 |
description="All images with their prompts and parameters",
|
|
|
|
| 200 |
|
| 201 |
BUILDER_CONFIGS.append(
|
| 202 |
DiffusionDBConfig(
|
| 203 |
+
name="large_all",
|
| 204 |
part_ids=_PART_IDS_LARGE,
|
| 205 |
is_large=True,
|
| 206 |
description="All images with their prompts and parameters",
|
|
|
|
| 210 |
# We also prove a text-only option, which loads the meatadata parquet file
|
| 211 |
BUILDER_CONFIGS.append(
|
| 212 |
DiffusionDBConfig(
|
| 213 |
+
name="2m_text_only",
|
| 214 |
part_ids=[],
|
| 215 |
is_large=False,
|
| 216 |
description="Only include all prompts and parameters (no image)",
|
|
|
|
| 219 |
|
| 220 |
BUILDER_CONFIGS.append(
|
| 221 |
DiffusionDBConfig(
|
| 222 |
+
name="large_text_only",
|
| 223 |
part_ids=[],
|
| 224 |
is_large=True,
|
| 225 |
description="Only include all prompts and parameters (no image)",
|
|
|
|
| 227 |
)
|
| 228 |
|
| 229 |
# Default to only load 1k random images
|
| 230 |
+
DEFAULT_CONFIG_NAME = "2m_random_1k"
|
| 231 |
|
| 232 |
def _info(self):
|
| 233 |
"""Specify the information of DiffusionDB."""
|