File size: 5,430 Bytes
ea8d08d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
# ====== YAML metadata for the Hub ======
pretty_name: DREAM-CFB
license: mit
language:
  - en
tags:
  - multiple-choice
  - reading-comprehension
  - dialogue
  - conversational-ai
  - question-answering
  - openai-format
task_categories:
  - question-answering
size_categories:
  - 1K<n<10K
source_datasets:
  - dream
annotations_creators:
  - expert-generated
---

# DREAM‑CFB · _Dialogue-based Reading Comprehension Examination through Machine Reading (Conversation Fact Benchmark Format)_

**DREAM‑CFB** is a 6,444 example dataset derived from the original **DREAM** dataset, transformed and adapted for the Conversation Fact Benchmark framework. Each item consists of multi-turn dialogues with associated multiple-choice questions that test reading comprehension and conversational understanding.

The dataset focuses on **dialogue-based reading comprehension**: questions require understanding conversational context, speaker intentions, and implicit information that emerges through multi-turn interactions.

The dataset follows a structured format with dialogue turns and questions, making it suitable for evaluating conversational AI systems and reading comprehension models.

---

## Dataset at a glance

| Field                  | Type / shape          | Description                                          |
| ---------------------- | --------------------- | ---------------------------------------------------- |
| `id`                   | `str`                 | Unique identifier for the dialogue instance          |
| `dialogue_turns`       | `list[dict]`          | Multi-turn conversation with speaker and text fields |
| `questions`            | `list[dict]`          | List of questions associated with the dialogue       |
| `question_text`        | `str`                 | The comprehension question about the dialogue        |
| `answer_text`          | `str`                 | Ground-truth answer string                           |
| `choices`              | `list[str]` (len = 3) | Three multiple-choice answer options                 |
| `correct_choice_index` | `int` (0‑2)           | Index of the correct answer (0-based)                |

---

## Intended uses

| Use case                     | How to use it                                                   |
| ---------------------------- | --------------------------------------------------------------- |
| Reading comprehension eval   | Test model's ability to understand dialogue context and meaning |
| Conversational understanding | Evaluate comprehension of multi-turn speaker interactions       |
| Multiple-choice QA           | Assess reasoning capabilities in structured question formats    |
| Dialogue systems             | Benchmark conversational AI understanding of context and intent |

---

## Example

```json
{
  "id": "5-510",
  "dialogue_turns": [
    {
      "speaker": "M",
      "text": "I am considering dropping my dancing class. I am not making any progress."
    },
    {
      "speaker": "W",
      "text": "If I were you, I stick with it. It's definitely worth time and effort."
    }
  ],
  "questions": [
    {
      "question_text": "What does the man suggest the woman do?",
      "answer_text": "Continue her dancing class.",
      "choices": [
        "Consult her dancing teacher.",
        "Take a more interesting class.",
        "Continue her dancing class."
      ],
      "correct_choice_index": 2
    }
  ]
}
```

## Dataset Statistics

- **Total examples**: 6,444 dialogue-question pairs
- **Average choices per question**: 3 (standard multiple-choice format)
- **Source**: Original DREAM dataset
- **Language**: English
- **Domain**: General conversational scenarios

## Data Splits

The dataset includes the following splits from the original DREAM dataset:

- Train: ~4,000 examples
- Dev: ~1,300 examples
- Test: ~1,300 examples

## Changelog

v1.0.0 · Initial release – transformed original DREAM dataset to Conversation Fact Benchmark format with structured dialogue turns and multiple-choice questions

## Dataset Creation

This dataset was created by transforming the original DREAM dataset into a format suitable for the [Conversation Fact Benchmark](https://github.com/savourylie/Conversation-Fact-Benchmark) framework. The transformation process:

1. Converted raw dialogue text into structured speaker turns
2. Preserved original multiple-choice questions and answers
3. Added explicit choice indexing for evaluation
4. Maintained dialogue context and question associations

## Citation

If you use this dataset, please cite both the original DREAM paper and the Conversation Fact Benchmark:

```bibtex
@inproceedings{sun2019dream,
  title={DREAM: A Challenge Dataset and Models for Dialogue-Based Reading Comprehension},
  author={Sun, Kai and Yu, Dian and Chen, Jianshu and Yu, Dong and Choi, Yejin and Cardie, Claire},
  booktitle={Transactions of the Association for Computational Linguistics},
  year={2019}
}
```

## Contributing

We welcome contributions for:

- Additional data formats (CSV, Parquet)
- Evaluation scripts and baselines
- Error analysis and dataset improvements

Please maintain the MIT license and cite appropriately.

## License

This dataset is released under the MIT License, following the original DREAM dataset licensing terms.

Enjoy benchmarking your conversational reading comprehension models!
# Last updated: Mon Jun 30 16:27:51 HKT 2025