|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """The Microsoft Cats vs. Dogs dataset""" | 
					
						
						|  |  | 
					
						
						|  | from pathlib import Path | 
					
						
						|  | from typing import List | 
					
						
						|  |  | 
					
						
						|  | import datasets | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = datasets.logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | _URL = "https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.zip" | 
					
						
						|  |  | 
					
						
						|  | _HOMEPAGE = "https://www.microsoft.com/en-us/download/details.aspx?id=54765" | 
					
						
						|  |  | 
					
						
						|  | _DESCRIPTION = "A large set of images of cats and dogs. There are 1738 corrupted images that are dropped." | 
					
						
						|  |  | 
					
						
						|  | _CITATION = """\ | 
					
						
						|  | @Inproceedings (Conference){asirra-a-captcha-that-exploits-interest-aligned-manual-image-categorization, | 
					
						
						|  | author = {Elson, Jeremy and Douceur, John (JD) and Howell, Jon and Saul, Jared}, | 
					
						
						|  | title = {Asirra: A CAPTCHA that Exploits Interest-Aligned Manual Image Categorization}, | 
					
						
						|  | booktitle = {Proceedings of 14th ACM Conference on Computer and Communications Security (CCS)}, | 
					
						
						|  | year = {2007}, | 
					
						
						|  | month = {October}, | 
					
						
						|  | publisher = {Association for Computing Machinery, Inc.}, | 
					
						
						|  | url = {https://www.microsoft.com/en-us/research/publication/asirra-a-captcha-that-exploits-interest-aligned-manual-image-categorization/}, | 
					
						
						|  | edition = {Proceedings of 14th ACM Conference on Computer and Communications Security (CCS)}, | 
					
						
						|  | } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class CatsVsDogs(datasets.GeneratorBasedBuilder): | 
					
						
						|  | def _info(self): | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  | description=_DESCRIPTION, | 
					
						
						|  | features=datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "image_file_path": datasets.Value("string"), | 
					
						
						|  | "labels": datasets.features.ClassLabel(names=["cat", "dog"]), | 
					
						
						|  | } | 
					
						
						|  | ), | 
					
						
						|  | supervised_keys=("image_file_path", "labels"), | 
					
						
						|  | homepage=_HOMEPAGE, | 
					
						
						|  | citation=_CITATION, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | 
					
						
						|  | images_path = Path(dl_manager.download_and_extract(_URL)) / "PetImages" | 
					
						
						|  | return [ | 
					
						
						|  | datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"images_path": images_path}), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples(self, images_path): | 
					
						
						|  | logger.info("generating examples from = %s", images_path) | 
					
						
						|  | labels = self.info.features["labels"] | 
					
						
						|  | for i, filepath in enumerate(images_path.glob("**/*.jpg")): | 
					
						
						|  | with filepath.open("rb") as f: | 
					
						
						|  | if b"JFIF" not in f.peek(10): | 
					
						
						|  | filepath.unlink() | 
					
						
						|  | continue | 
					
						
						|  | yield str(i), { | 
					
						
						|  | "image_file_path": str(filepath), | 
					
						
						|  | "labels": labels.encode_example(filepath.parent.name.lower()), | 
					
						
						|  | } | 
					
						
						|  |  |