Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed's picture
Add dataset card
b4280e9 verified
metadata
annotations_creators:
  - expert-annotated
language:
  - eng
license: unknown
multilinguality: monolingual
source_datasets:
  - cardiffnlp/tweet_topic_single
task_categories:
  - text-classification
task_ids:
  - topic-classification
dataset_info:
  features:
    - name: text
      dtype: string
    - name: label
      dtype: int64
  splits:
    - name: test_2020
      num_bytes: 66224
      num_examples: 376
    - name: test_2021
      num_bytes: 306974
      num_examples: 1693
    - name: train_2020
      num_bytes: 511564
      num_examples: 2858
    - name: train_2021
      num_bytes: 273056
      num_examples: 1516
    - name: train_all
      num_bytes: 784620
      num_examples: 4374
    - name: validation_2020
      num_bytes: 62470
      num_examples: 352
    - name: validation_2021
      num_bytes: 32937
      num_examples: 189
    - name: train_random
      num_bytes: 514173
      num_examples: 2830
    - name: validation_random
      num_bytes: 62046
      num_examples: 354
    - name: test_coling2022_random
      num_bytes: 610185
      num_examples: 3399
    - name: train_coling2022_random
      num_bytes: 645545
      num_examples: 3598
    - name: test_coling2022
      num_bytes: 613161
      num_examples: 3399
    - name: train_coling2022
      num_bytes: 642569
      num_examples: 3598
    - name: train
      num_bytes: 273056
      num_examples: 1516
  download_size: 3667198
  dataset_size: 5398580
configs:
  - config_name: default
    data_files:
      - split: test_2020
        path: data/test_2020-*
      - split: test_2021
        path: data/test_2021-*
      - split: train_2020
        path: data/train_2020-*
      - split: train_2021
        path: data/train_2021-*
      - split: train_all
        path: data/train_all-*
      - split: validation_2020
        path: data/validation_2020-*
      - split: validation_2021
        path: data/validation_2021-*
      - split: train_random
        path: data/train_random-*
      - split: validation_random
        path: data/validation_random-*
      - split: test_coling2022_random
        path: data/test_coling2022_random-*
      - split: train_coling2022_random
        path: data/train_coling2022_random-*
      - split: test_coling2022
        path: data/test_coling2022-*
      - split: train_coling2022
        path: data/train_coling2022-*
      - split: train
        path: data/train-*
tags:
  - mteb
  - text

TweetTopicSingleClassification

An MTEB dataset
Massive Text Embedding Benchmark

Topic classification dataset on Twitter with 6 labels. Each instance of TweetTopic comes with a timestamp which distributes from September 2019 to August 2021. Tweets were preprocessed before the annotation to normalize some artifacts, converting URLs into a special token {{URL}} and non-verified usernames into {{USERNAME}}. For verified usernames, we replace its display name (or account name) with symbols {@}.

Task category t2c
Domains Social, News, Written
Reference https://arxiv.org/abs/2209.09824

Source datasets:

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_task("TweetTopicSingleClassification")
evaluator = mteb.MTEB([task])

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repository.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{dimosthenis-etal-2022-twitter,
  address = {Gyeongju, Republic of Korea},
  author = {Antypas, Dimosthenis  and
Ushio, Asahi  and
Camacho-Collados, Jose  and
Neves, Leonardo  and
Silva, Vitor  and
Barbieri, Francesco},
  booktitle = {Proceedings of the 29th International Conference on Computational Linguistics},
  month = oct,
  publisher = {International Committee on Computational Linguistics},
  title = {{T}witter {T}opic {C}lassification},
  year = {2022},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("TweetTopicSingleClassification")

desc_stats = task.metadata.descriptive_stats
{}

This dataset card was automatically generated using MTEB