Datasets:
Upload covertype.py
Browse files- covertype.py +60 -4
covertype.py
CHANGED
|
@@ -3,6 +3,7 @@ from typing import List
|
|
| 3 |
import datasets
|
| 4 |
|
| 5 |
import pandas
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
VERSION = datasets.Version("1.0.0")
|
|
@@ -15,8 +16,63 @@ _CITATION = """"""
|
|
| 15 |
|
| 16 |
# Dataset info
|
| 17 |
urls_per_split = {
|
| 18 |
-
"train": "https://
|
| 19 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
features_types_per_config = {
|
| 21 |
"covertype": {
|
| 22 |
"elevation": datasets.Value("float32"),
|
|
@@ -110,7 +166,8 @@ class Covertype(datasets.GeneratorBasedBuilder):
|
|
| 110 |
]
|
| 111 |
|
| 112 |
def _generate_examples(self, filepath: str):
|
| 113 |
-
|
|
|
|
| 114 |
data = self.preprocess(data, config=self.config.name)
|
| 115 |
|
| 116 |
for row_id, row in data.iterrows():
|
|
@@ -119,7 +176,6 @@ class Covertype(datasets.GeneratorBasedBuilder):
|
|
| 119 |
yield row_id, data_row
|
| 120 |
|
| 121 |
def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
|
| 122 |
-
print(data.columns)
|
| 123 |
-
print(data.cover_type)
|
| 124 |
data.loc[:, "cover_type"] = data["cover_type"].apply(lambda x: x - 1)
|
|
|
|
| 125 |
return data
|
|
|
|
| 3 |
import datasets
|
| 4 |
|
| 5 |
import pandas
|
| 6 |
+
import gzip
|
| 7 |
|
| 8 |
|
| 9 |
VERSION = datasets.Version("1.0.0")
|
|
|
|
| 16 |
|
| 17 |
# Dataset info
|
| 18 |
urls_per_split = {
|
| 19 |
+
"train": "https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.data.gz"
|
| 20 |
}
|
| 21 |
+
_BASE_FEATURE_NAMES = [
|
| 22 |
+
"elevation",
|
| 23 |
+
"aspect",
|
| 24 |
+
"slope",
|
| 25 |
+
"horizontal_distance_to_hydrology",
|
| 26 |
+
"vertical_distance_to_hydrology",
|
| 27 |
+
"horizontal_distance_to_roadways",
|
| 28 |
+
"hillshade_9am",
|
| 29 |
+
"hillshade_noon",
|
| 30 |
+
"hillshade_3pm",
|
| 31 |
+
"horizontal_distance_to_fire_points",
|
| 32 |
+
"is_a_wilderness_area",
|
| 33 |
+
"soil_type_id_0",
|
| 34 |
+
"soil_type_id_1",
|
| 35 |
+
"soil_type_id_2",
|
| 36 |
+
"soil_type_id_3",
|
| 37 |
+
"soil_type_id_4",
|
| 38 |
+
"soil_type_id_5",
|
| 39 |
+
"soil_type_id_6",
|
| 40 |
+
"soil_type_id_7",
|
| 41 |
+
"soil_type_id_8",
|
| 42 |
+
"soil_type_id_9",
|
| 43 |
+
"soil_type_id_10",
|
| 44 |
+
"soil_type_id_11",
|
| 45 |
+
"soil_type_id_12",
|
| 46 |
+
"soil_type_id_13",
|
| 47 |
+
"soil_type_id_14",
|
| 48 |
+
"soil_type_id_15",
|
| 49 |
+
"soil_type_id_16",
|
| 50 |
+
"soil_type_id_17",
|
| 51 |
+
"soil_type_id_18",
|
| 52 |
+
"soil_type_id_19",
|
| 53 |
+
"soil_type_id_20",
|
| 54 |
+
"soil_type_id_21",
|
| 55 |
+
"soil_type_id_22",
|
| 56 |
+
"soil_type_id_23",
|
| 57 |
+
"soil_type_id_24",
|
| 58 |
+
"soil_type_id_25",
|
| 59 |
+
"soil_type_id_26",
|
| 60 |
+
"soil_type_id_27",
|
| 61 |
+
"soil_type_id_28",
|
| 62 |
+
"soil_type_id_29",
|
| 63 |
+
"soil_type_id_30",
|
| 64 |
+
"soil_type_id_31",
|
| 65 |
+
"soil_type_id_32",
|
| 66 |
+
"soil_type_id_33",
|
| 67 |
+
"soil_type_id_34",
|
| 68 |
+
"soil_type_id_35",
|
| 69 |
+
"soil_type_id_36",
|
| 70 |
+
"soil_type_id_37",
|
| 71 |
+
"soil_type_id_38",
|
| 72 |
+
"soil_type_id_39",
|
| 73 |
+
"soil_type",
|
| 74 |
+
"cover_type"
|
| 75 |
+
]
|
| 76 |
features_types_per_config = {
|
| 77 |
"covertype": {
|
| 78 |
"elevation": datasets.Value("float32"),
|
|
|
|
| 166 |
]
|
| 167 |
|
| 168 |
def _generate_examples(self, filepath: str):
|
| 169 |
+
with gzip.open(filepath) as log:
|
| 170 |
+
data = pandas.read_csv(log, header=_BASE_FEATURE_NAMES)
|
| 171 |
data = self.preprocess(data, config=self.config.name)
|
| 172 |
|
| 173 |
for row_id, row in data.iterrows():
|
|
|
|
| 176 |
yield row_id, data_row
|
| 177 |
|
| 178 |
def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
|
|
|
|
|
|
|
| 179 |
data.loc[:, "cover_type"] = data["cover_type"].apply(lambda x: x - 1)
|
| 180 |
+
|
| 181 |
return data
|