Update README.md
Browse files
README.md
CHANGED
|
@@ -17,3 +17,35 @@ configs:
|
|
| 17 |
- split: train
|
| 18 |
path: data/train-*
|
| 19 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
- split: train
|
| 18 |
path: data/train-*
|
| 19 |
---
|
| 20 |
+
# Copali train split used in MoCa Continual Pre-training
|
| 21 |
+
|
| 22 |
+
[π Homepage]() | [π€ MoCa-Qwen25VL-7B]() | [π€ MoCa-Qwen25VL-3B]() | [π» Code](https://github.com/haon-chen/MoCa) | [π Arxiv]() | [π PDF]()
|
| 23 |
+
|
| 24 |
+
## Introduction
|
| 25 |
+
|
| 26 |
+
This is a interleaved multimodal pre-training dataset used in the modality-aware continual pre-training of MoCa models. It is adapted from [Copali](https://huggingface.co/datasets/Tevatron/colpali) and its [corpus](https://huggingface.co/datasets/Tevatron/colpali-corpus) by concatenating queries and positive documents.
|
| 27 |
+
|
| 28 |
+
The dataset consists of interleaved multimodal examples. text is a string containing text while images are image binaries that can be loaded with the following code snippet:
|
| 29 |
+
|
| 30 |
+
```python
|
| 31 |
+
import PIL.Image
|
| 32 |
+
from io import BytesIO
|
| 33 |
+
|
| 34 |
+
image_bytes = example['images'][0]
|
| 35 |
+
image = PIL.Image.open(BytesIO(image_bytes))
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
## Citation
|
| 40 |
+
MoCa
|
| 41 |
+
|
| 42 |
+
Colpali
|
| 43 |
+
|
| 44 |
+
```
|
| 45 |
+
@inproceedings{faysse2024colpali,
|
| 46 |
+
title={Colpali: Efficient document retrieval with vision language models},
|
| 47 |
+
author={Faysse, Manuel and Sibille, Hugues and Wu, Tony and Omrani, Bilel and Viaud, Gautier and Hudelot, C{\'e}line and Colombo, Pierre},
|
| 48 |
+
booktitle={The Thirteenth International Conference on Learning Representations},
|
| 49 |
+
year={2024}
|
| 50 |
+
}
|
| 51 |
+
```
|