Adds script.
Browse files- classify-dataset.py +500 -0
classify-dataset.py
ADDED
|
@@ -0,0 +1,500 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# /// script
|
| 3 |
+
# requires-python = ">=3.12"
|
| 4 |
+
# dependencies = [
|
| 5 |
+
# "sieves[engines]>=0.17.4",
|
| 6 |
+
# "typer>=0.12,<1",
|
| 7 |
+
# "datasets",
|
| 8 |
+
# "huggingface-hub[hf_transfer]",
|
| 9 |
+
# ]
|
| 10 |
+
# ///
|
| 11 |
+
|
| 12 |
+
"""Create a zero-shot classification dataset from any Hugging Face dataset using Sieves + Outlines.
|
| 13 |
+
|
| 14 |
+
It supports both single-label (default) and multi-label classification via a flag.
|
| 15 |
+
|
| 16 |
+
Examples
|
| 17 |
+
--------
|
| 18 |
+
Single-label classification:
|
| 19 |
+
uv run examples/create_classification_dataset_with_sieves.py \
|
| 20 |
+
--input-dataset stanfordnlp/imdb \
|
| 21 |
+
--column text \
|
| 22 |
+
--labels "positive,negative" \
|
| 23 |
+
--model HuggingFaceTB/SmolLM-360M-Instruct \
|
| 24 |
+
--output-dataset your-username/imdb-classified
|
| 25 |
+
|
| 26 |
+
With label descriptions:
|
| 27 |
+
uv run examples/create_classification_dataset_with_sieves.py \
|
| 28 |
+
--input-dataset user/support-tickets \
|
| 29 |
+
--column content \
|
| 30 |
+
--labels "bug,feature,question" \
|
| 31 |
+
--label-descriptions "bug:something is broken,feature:request for new functionality,question:asking for help" \
|
| 32 |
+
--model HuggingFaceTB/SmolLM-360M-Instruct \
|
| 33 |
+
--output-dataset your-username/tickets-classified
|
| 34 |
+
|
| 35 |
+
Multi-label classification (adds a multi-hot labels column):
|
| 36 |
+
uv run examples/create_classification_dataset_with_sieves.py \
|
| 37 |
+
--input-dataset ag_news \
|
| 38 |
+
--column text \
|
| 39 |
+
--labels "world,sports,business,science" \
|
| 40 |
+
--multi-label \
|
| 41 |
+
--model HuggingFaceTB/SmolLM-360M-Instruct \
|
| 42 |
+
--output-dataset your-username/agnews-multilabel
|
| 43 |
+
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
import os
|
| 47 |
+
|
| 48 |
+
import huggingface_hub
|
| 49 |
+
import outlines
|
| 50 |
+
import torch
|
| 51 |
+
import transformers
|
| 52 |
+
import typer
|
| 53 |
+
from datasets import Dataset, load_dataset
|
| 54 |
+
from huggingface_hub import HfApi, get_token
|
| 55 |
+
from loguru import logger
|
| 56 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 57 |
+
|
| 58 |
+
import sieves
|
| 59 |
+
|
| 60 |
+
app = typer.Typer(add_completion=False, help=__doc__)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
# Text constraints (simple sanity checks)
|
| 64 |
+
MIN_TEXT_LENGTH = 3
|
| 65 |
+
MAX_TEXT_LENGTH = 4000
|
| 66 |
+
MULTILABEL_THRESHOLD = 0.5
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def _parse_label_descriptions(desc_string: str | None) -> dict[str, str]:
|
| 70 |
+
"""Parse a CLI description string into a mapping.
|
| 71 |
+
|
| 72 |
+
Parses strings of the form ``"label1:desc1,label2:desc2"`` into a
|
| 73 |
+
dictionary mapping labels to their descriptions. Commas inside
|
| 74 |
+
descriptions are preserved by continuing the current description until
|
| 75 |
+
the next ``":"`` separator is encountered.
|
| 76 |
+
|
| 77 |
+
Args:
|
| 78 |
+
desc_string: The raw CLI string to parse. If ``None`` or empty,
|
| 79 |
+
returns an empty mapping.
|
| 80 |
+
|
| 81 |
+
Returns:
|
| 82 |
+
A dictionary mapping each label to its description.
|
| 83 |
+
|
| 84 |
+
"""
|
| 85 |
+
if not desc_string:
|
| 86 |
+
return {}
|
| 87 |
+
|
| 88 |
+
descriptions: dict[str, str] = {}
|
| 89 |
+
|
| 90 |
+
for label_desc in desc_string.split(","):
|
| 91 |
+
label_desc_parts = label_desc.split(":")
|
| 92 |
+
assert len(label_desc_parts) == 2, \
|
| 93 |
+
f"Invalid label description: must be 'label1:desc1,label2:desc2', got: {label_desc}"
|
| 94 |
+
descriptions[label_desc_parts[0].strip("'").strip()] = label_desc_parts[1].strip("'").strip()
|
| 95 |
+
|
| 96 |
+
return descriptions
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def _preprocess_text(text: str) -> str:
|
| 100 |
+
"""Normalize and truncate input text for classification.
|
| 101 |
+
|
| 102 |
+
This function trims surrounding whitespace and truncates overly long
|
| 103 |
+
inputs to ``MAX_TEXT_LENGTH`` characters, appending an ellipsis to
|
| 104 |
+
signal truncation. Non-string or falsy inputs yield an empty string.
|
| 105 |
+
|
| 106 |
+
Args:
|
| 107 |
+
text: The raw input text to normalize.
|
| 108 |
+
|
| 109 |
+
Returns:
|
| 110 |
+
A cleaned string suitable for downstream classification. May be an
|
| 111 |
+
empty string if the input was not a valid string.
|
| 112 |
+
|
| 113 |
+
"""
|
| 114 |
+
if not text or not isinstance(text, str):
|
| 115 |
+
return ""
|
| 116 |
+
text = text.strip()
|
| 117 |
+
if len(text) > MAX_TEXT_LENGTH:
|
| 118 |
+
text = f"{text[:MAX_TEXT_LENGTH]}..."
|
| 119 |
+
return text
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def _is_valid_text(text: str) -> bool:
|
| 123 |
+
"""Validate the minimal length constraints for a text sample.
|
| 124 |
+
|
| 125 |
+
Args:
|
| 126 |
+
text: Candidate text after preprocessing.
|
| 127 |
+
|
| 128 |
+
Returns:
|
| 129 |
+
True if the text meets minimal length requirements (``MIN_TEXT_LENGTH``),
|
| 130 |
+
False otherwise.
|
| 131 |
+
|
| 132 |
+
"""
|
| 133 |
+
return bool(text and len(text) >= MIN_TEXT_LENGTH)
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def _load_and_prepare_data(
|
| 137 |
+
input_dataset: str,
|
| 138 |
+
split: str,
|
| 139 |
+
shuffle: bool,
|
| 140 |
+
shuffle_seed: int | None,
|
| 141 |
+
max_samples: int | None,
|
| 142 |
+
column: str,
|
| 143 |
+
labels: str,
|
| 144 |
+
label_descriptions: str | None,
|
| 145 |
+
hf_token: str | None,
|
| 146 |
+
) -> tuple[
|
| 147 |
+
Dataset,
|
| 148 |
+
list[str],
|
| 149 |
+
list[str],
|
| 150 |
+
list[int],
|
| 151 |
+
list[str],
|
| 152 |
+
dict[str, str],
|
| 153 |
+
str | None,
|
| 154 |
+
]:
|
| 155 |
+
"""Load the dataset and prepare inputs for classification.
|
| 156 |
+
|
| 157 |
+
This function encapsulates the data-loading and preprocessing path of the
|
| 158 |
+
script: parsing labels/descriptions, detecting tokens, loading/shuffling
|
| 159 |
+
the dataset, validating the target column, preprocessing texts, and
|
| 160 |
+
computing valid indices.
|
| 161 |
+
|
| 162 |
+
Args:
|
| 163 |
+
input_dataset: Dataset repo ID on the Hugging Face Hub.
|
| 164 |
+
split: Dataset split to load (e.g., "train").
|
| 165 |
+
shuffle: Whether to shuffle the dataset.
|
| 166 |
+
shuffle_seed: Seed used when shuffling is enabled.
|
| 167 |
+
max_samples: Optional maximum number of samples to retain.
|
| 168 |
+
column: Name of the text column to classify.
|
| 169 |
+
labels: Comma-separated list of labels.
|
| 170 |
+
label_descriptions: Optional mapping string of the form
|
| 171 |
+
"label:desc,label2:desc2".
|
| 172 |
+
hf_token: Optional Hugging Face token.
|
| 173 |
+
|
| 174 |
+
Returns:
|
| 175 |
+
A tuple containing: (dataset, raw_texts, processed_texts, valid_indices,
|
| 176 |
+
labels_list, desc_map, token)
|
| 177 |
+
|
| 178 |
+
Raises:
|
| 179 |
+
typer.Exit: If labels are missing, dataset loading fails, the column is
|
| 180 |
+
absent, or no valid texts remain after preprocessing.
|
| 181 |
+
|
| 182 |
+
"""
|
| 183 |
+
# Parse labels and optional descriptions. Strip surrounding quotes if present.
|
| 184 |
+
labels = labels.strip().strip("'\"")
|
| 185 |
+
labels_list: list[str] = [label.strip().strip("'\"") for label in labels.split(",") if label.strip().strip("'\"")]
|
| 186 |
+
if not labels_list:
|
| 187 |
+
logger.error("No labels provided. Use --labels 'label1,label2,...'")
|
| 188 |
+
raise typer.Exit(code=2)
|
| 189 |
+
desc_map = _parse_label_descriptions(label_descriptions)
|
| 190 |
+
|
| 191 |
+
# Token detection and validation (mirror legacy script behavior)
|
| 192 |
+
token = hf_token or (os.environ.get("HF_TOKEN") or get_token())
|
| 193 |
+
if not token:
|
| 194 |
+
logger.error("No authentication token found. Please either:")
|
| 195 |
+
logger.error("1. Run 'huggingface-cli login'")
|
| 196 |
+
logger.error("2. Set HF_TOKEN environment variable")
|
| 197 |
+
logger.error("3. Pass --hf-token argument")
|
| 198 |
+
raise typer.Exit(code=1)
|
| 199 |
+
|
| 200 |
+
try:
|
| 201 |
+
api = HfApi(token=token)
|
| 202 |
+
user_info = api.whoami()
|
| 203 |
+
name = user_info.get("name") or user_info.get("email") or "<unknown>"
|
| 204 |
+
logger.info(f"Authenticated as: {name}")
|
| 205 |
+
except Exception as e:
|
| 206 |
+
logger.error(f"Authentication failed: {e}")
|
| 207 |
+
logger.error("Please check your token is valid")
|
| 208 |
+
raise typer.Exit(code=1)
|
| 209 |
+
|
| 210 |
+
# Load dataset
|
| 211 |
+
try:
|
| 212 |
+
ds: Dataset = load_dataset(input_dataset, split=split)
|
| 213 |
+
except Exception as e:
|
| 214 |
+
logger.error(f"Failed to load dataset '{input_dataset}': {e}")
|
| 215 |
+
raise typer.Exit(code=1)
|
| 216 |
+
|
| 217 |
+
# Shuffle/select.
|
| 218 |
+
if shuffle:
|
| 219 |
+
ds = ds.shuffle(seed=shuffle_seed)
|
| 220 |
+
if max_samples is not None:
|
| 221 |
+
ds = ds.select(range(min(max_samples, len(ds))))
|
| 222 |
+
|
| 223 |
+
# Validate columns.
|
| 224 |
+
if column not in ds.column_names:
|
| 225 |
+
logger.error(f"Column '{column}' not in dataset columns: {ds.column_names}")
|
| 226 |
+
raise typer.Exit(code=1)
|
| 227 |
+
|
| 228 |
+
# Extract and preprocess texts
|
| 229 |
+
raw_texts: list[str] = list(ds[column])
|
| 230 |
+
processed_texts: list[str] = []
|
| 231 |
+
valid_indices: list[int] = []
|
| 232 |
+
for i, t in enumerate(raw_texts):
|
| 233 |
+
pt = _preprocess_text(t)
|
| 234 |
+
if _is_valid_text(pt):
|
| 235 |
+
processed_texts.append(pt)
|
| 236 |
+
valid_indices.append(i)
|
| 237 |
+
|
| 238 |
+
if not processed_texts:
|
| 239 |
+
logger.error("No valid texts found for classification (after preprocessing).")
|
| 240 |
+
raise typer.Exit(code=1)
|
| 241 |
+
|
| 242 |
+
logger.info(f"Prepared {len(processed_texts)} valid texts out of {len(raw_texts)}")
|
| 243 |
+
|
| 244 |
+
return ds, raw_texts, processed_texts, valid_indices, labels_list, desc_map, token
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def _log_stats(
|
| 248 |
+
docs: list[sieves.Doc],
|
| 249 |
+
task: sieves.tasks.Classification,
|
| 250 |
+
labels_list: list[str],
|
| 251 |
+
multi_label: bool,
|
| 252 |
+
raw_texts: list[str],
|
| 253 |
+
processed_texts: list[str],
|
| 254 |
+
valid_indices: list[int],
|
| 255 |
+
) -> None:
|
| 256 |
+
"""Compute and log distributions.
|
| 257 |
+
|
| 258 |
+
Logs per-label distributions and success/skip metrics.
|
| 259 |
+
|
| 260 |
+
Args:
|
| 261 |
+
docs: Classified documents corresponding to processed_texts.
|
| 262 |
+
task: The configured ``Classification`` task instance.
|
| 263 |
+
labels_list: List of label names in canonical order.
|
| 264 |
+
multi_label: Whether classification is multi-label.
|
| 265 |
+
raw_texts: Original text column values.
|
| 266 |
+
processed_texts: Preprocessed, valid texts used for inference.
|
| 267 |
+
valid_indices: Indices mapping processed_texts back to raw_texts rows.
|
| 268 |
+
|
| 269 |
+
Returns:
|
| 270 |
+
None. Pushes datasets to the Hub and logs summary statistics.
|
| 271 |
+
|
| 272 |
+
"""
|
| 273 |
+
if multi_label:
|
| 274 |
+
# Log distribution across labels at threshold and skipped count
|
| 275 |
+
label_counts = {label: 0 for label in labels_list}
|
| 276 |
+
for doc in docs:
|
| 277 |
+
result = doc.results[task.id]
|
| 278 |
+
logger.info(result)
|
| 279 |
+
if isinstance(result, list):
|
| 280 |
+
for label, score in result:
|
| 281 |
+
if label in label_counts and score >= MULTILABEL_THRESHOLD:
|
| 282 |
+
label_counts[label] += 1
|
| 283 |
+
|
| 284 |
+
total_processed = len(docs)
|
| 285 |
+
skipped = len(raw_texts) - len(processed_texts)
|
| 286 |
+
logger.info(f"Classification distribution (multi-label, threshold={MULTILABEL_THRESHOLD}):")
|
| 287 |
+
|
| 288 |
+
for label in labels_list:
|
| 289 |
+
count = label_counts.get(label, 0)
|
| 290 |
+
pct = (count / total_processed * 100.0) if total_processed else 0.0
|
| 291 |
+
logger.info(f" {label}: {count} ({pct})")
|
| 292 |
+
if skipped > 0:
|
| 293 |
+
skipped_pct = (skipped / len(raw_texts) * 100.0) if raw_texts else 0.0
|
| 294 |
+
logger.info(f" Skipped/invalid: {skipped} ({skipped_pct})")
|
| 295 |
+
|
| 296 |
+
else:
|
| 297 |
+
# Map results back to original indices; invalid texts receive None
|
| 298 |
+
classifications: list[str | None] = [None] * len(raw_texts)
|
| 299 |
+
for idx, doc in zip(valid_indices, docs):
|
| 300 |
+
result = doc.results[task.id]
|
| 301 |
+
classifications[idx] = result if isinstance(result, str) else result[0]
|
| 302 |
+
|
| 303 |
+
# Log distribution and success rate.
|
| 304 |
+
total_texts = len(raw_texts)
|
| 305 |
+
label_counts = {label: 0 for label in labels_list}
|
| 306 |
+
for label in labels_list:
|
| 307 |
+
label_counts[label] = sum(1 for c in classifications if c == label)
|
| 308 |
+
none_count = sum(1 for c in classifications if c is None)
|
| 309 |
+
|
| 310 |
+
logger.info("Classification distribution (single-label):")
|
| 311 |
+
for label in labels_list:
|
| 312 |
+
count = label_counts[label]
|
| 313 |
+
pct = (count / total_texts * 100.0) if total_texts else 0.0
|
| 314 |
+
logger.info(f" {label}: {count} ({pct})")
|
| 315 |
+
|
| 316 |
+
if none_count > 0:
|
| 317 |
+
none_pct = (none_count / total_texts * 100.0) if total_texts else 0.0
|
| 318 |
+
logger.info(f" Invalid/Skipped: {none_count} ({none_pct})")
|
| 319 |
+
|
| 320 |
+
success_rate = (len(valid_indices) / total_texts * 100.0) if total_texts else 0.0
|
| 321 |
+
logger.info(f"Classification success rate: {success_rate}")
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
@app.command() # type: ignore[misc]
|
| 325 |
+
def classify(
|
| 326 |
+
input_dataset: str = typer.Option(..., help="Input dataset ID on Hugging Face Hub"),
|
| 327 |
+
column: str = typer.Option(..., help="Name of the text column to classify"),
|
| 328 |
+
labels: str = typer.Option(..., help="Comma-separated list of labels, e.g. 'positive,negative'"),
|
| 329 |
+
output_dataset: str = typer.Option(..., help="Output dataset ID on Hugging Face Hub"),
|
| 330 |
+
model: str = typer.Option(..., help="HF model ID to use"),
|
| 331 |
+
label_descriptions: str | None = typer.Option(
|
| 332 |
+
None, help="Optional descriptions per label: 'label:desc,label2:desc2'"
|
| 333 |
+
),
|
| 334 |
+
max_samples: int | None = typer.Option(None, help="Max number of samples to process (for testing)"),
|
| 335 |
+
hf_token: str | None = typer.Option(None, help="HF token; if omitted, uses env or cached token"),
|
| 336 |
+
split: str = typer.Option("train", help="Dataset split (default: train)"),
|
| 337 |
+
batch_size: int = typer.Option(64, help="Batch size"),
|
| 338 |
+
max_tokens: int = typer.Option(200, help="Max tokens to generate"),
|
| 339 |
+
shuffle: bool = typer.Option(False, help="Shuffle dataset before sampling"),
|
| 340 |
+
shuffle_seed: int | None = typer.Option(None, help="Shuffle seed"),
|
| 341 |
+
multi_label: bool = typer.Option(False, help="Enable multi-label classification (adds multi-hot 'labels')"),
|
| 342 |
+
) -> None:
|
| 343 |
+
"""Classify a Hugging Face dataset using Sieves + Outlines and push results.
|
| 344 |
+
|
| 345 |
+
Runs zero-shot classification over a specified text column using the Sieves
|
| 346 |
+
``Classification`` task and the Outlines engine. Supports both single-label
|
| 347 |
+
(default) and multi-label modes. In single-label mode, a "classification"
|
| 348 |
+
column is added to the original dataset. In multi-label mode, a new dataset
|
| 349 |
+
with ``text`` and multi-hot ``labels`` columns is created via
|
| 350 |
+
``Classification.to_hf_dataset``.
|
| 351 |
+
|
| 352 |
+
Args:
|
| 353 |
+
input_dataset: Dataset repo ID on the Hugging Face Hub.
|
| 354 |
+
column: Name of the text column to classify.
|
| 355 |
+
labels: Comma-separated list of allowed labels.
|
| 356 |
+
output_dataset: Target dataset repo ID to push results to.
|
| 357 |
+
model: Transformers model ID. Must be provided and non-empty.
|
| 358 |
+
label_descriptions: Optional per-label descriptions in the form
|
| 359 |
+
``label:desc,label2:desc2``.
|
| 360 |
+
max_samples: Optional maximum number of samples to process.
|
| 361 |
+
hf_token: Optional token; if omitted, uses environment or cached login.
|
| 362 |
+
split: Dataset split to load (default: ``"train"``).
|
| 363 |
+
batch_size: Batch size for inference.
|
| 364 |
+
max_tokens: Maximum tokens for generation per prompt.
|
| 365 |
+
shuffle: Whether to shuffle the dataset before selecting samples.
|
| 366 |
+
shuffle_seed: Seed used for shuffling.
|
| 367 |
+
multi_label: If True, enable multi-label classification and output a
|
| 368 |
+
multi-hot labels column; otherwise outputs single-label strings.
|
| 369 |
+
|
| 370 |
+
Returns:
|
| 371 |
+
None. Results are pushed to the Hugging Face Hub under ``output_dataset``.
|
| 372 |
+
|
| 373 |
+
Raises:
|
| 374 |
+
typer.Exit: If dataset loading fails, a required column is missing, or
|
| 375 |
+
no valid texts are available for classification.
|
| 376 |
+
|
| 377 |
+
"""
|
| 378 |
+
token = os.environ.get("HF_TOKEN") or huggingface_hub.get_token()
|
| 379 |
+
if token:
|
| 380 |
+
huggingface_hub.login(token=token)
|
| 381 |
+
|
| 382 |
+
logger.info("Loading and preparing data.")
|
| 383 |
+
(
|
| 384 |
+
ds,
|
| 385 |
+
raw_texts,
|
| 386 |
+
processed_texts,
|
| 387 |
+
valid_indices,
|
| 388 |
+
labels_list,
|
| 389 |
+
desc_map,
|
| 390 |
+
token,
|
| 391 |
+
) = _load_and_prepare_data(
|
| 392 |
+
input_dataset=input_dataset,
|
| 393 |
+
split=split,
|
| 394 |
+
shuffle=shuffle,
|
| 395 |
+
shuffle_seed=shuffle_seed,
|
| 396 |
+
max_samples=max_samples,
|
| 397 |
+
column=column,
|
| 398 |
+
labels=labels,
|
| 399 |
+
label_descriptions=label_descriptions,
|
| 400 |
+
hf_token=hf_token,
|
| 401 |
+
)
|
| 402 |
+
|
| 403 |
+
# Build model.
|
| 404 |
+
info = HfApi().model_info(model)
|
| 405 |
+
device = torch.cuda.get_device_name(0) if torch.cuda.is_available() else None
|
| 406 |
+
zeroshot_tag = "zero-shot-classification"
|
| 407 |
+
# Explicitly designed for zero-shot classification: build directly as pipeline.
|
| 408 |
+
if info.pipeline_tag == zeroshot_tag or zeroshot_tag in set(info.tags or []):
|
| 409 |
+
logger.info("Initializing zero-shot classifciation pipeline.")
|
| 410 |
+
model = transformers.pipeline(zeroshot_tag, model=model, device=device)
|
| 411 |
+
# Otherwise: build Outlines model around it to enforce structured generation.
|
| 412 |
+
else:
|
| 413 |
+
logger.info("Initializing Outlines model.")
|
| 414 |
+
model = outlines.models.from_transformers(
|
| 415 |
+
AutoModelForCausalLM.from_pretrained(model, **({"device": device} if device else {})),
|
| 416 |
+
AutoTokenizer.from_pretrained(model),
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
# Build task and pipeline.
|
| 420 |
+
logger.info("Initializing pipeline.")
|
| 421 |
+
task = sieves.tasks.Classification(
|
| 422 |
+
labels=labels_list,
|
| 423 |
+
model=model,
|
| 424 |
+
generation_settings=sieves.GenerationSettings(
|
| 425 |
+
inference_kwargs={"max_new_tokens": max_tokens},
|
| 426 |
+
strict_mode=False,
|
| 427 |
+
),
|
| 428 |
+
batch_size=batch_size,
|
| 429 |
+
label_descriptions=desc_map or None,
|
| 430 |
+
multi_label=multi_label,
|
| 431 |
+
)
|
| 432 |
+
pipe = sieves.Pipeline([task])
|
| 433 |
+
|
| 434 |
+
docs = [sieves.Doc(text=t) for t in processed_texts]
|
| 435 |
+
logger.critical(
|
| 436 |
+
f"Running {'multi-label ' if multi_label else ''}classification pipeline with labels {labels_list} on "
|
| 437 |
+
f"{len(docs)} docs."
|
| 438 |
+
)
|
| 439 |
+
docs = list(pipe([sieves.Doc(text=t) for t in processed_texts]))
|
| 440 |
+
|
| 441 |
+
logger.critical("Logging stats.")
|
| 442 |
+
_log_stats(
|
| 443 |
+
docs=docs,
|
| 444 |
+
task=task,
|
| 445 |
+
labels_list=labels_list,
|
| 446 |
+
multi_label=multi_label,
|
| 447 |
+
raw_texts=raw_texts,
|
| 448 |
+
processed_texts=processed_texts,
|
| 449 |
+
valid_indices=valid_indices,
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
logger.info("Collecting and pushing results.")
|
| 453 |
+
ds = task.to_hf_dataset(docs, threshold=MULTILABEL_THRESHOLD)
|
| 454 |
+
ds.push_to_hub(
|
| 455 |
+
output_dataset,
|
| 456 |
+
token=token,
|
| 457 |
+
commit_message=f"Add classifications using Sieves + Outlines (multi-label; threshold={MULTILABEL_THRESHOLD})"
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
@app.command("examples") # type: ignore[misc]
|
| 462 |
+
def show_examples() -> None:
|
| 463 |
+
"""Print example commands for common use cases.
|
| 464 |
+
|
| 465 |
+
This mirrors the examples that were previously printed when running the
|
| 466 |
+
legacy script without arguments.
|
| 467 |
+
"""
|
| 468 |
+
cmds = [
|
| 469 |
+
"Example commands:",
|
| 470 |
+
"\n# Simple classification:",
|
| 471 |
+
"uv run examples/create_classification_dataset_with_sieves.py \\",
|
| 472 |
+
" --input-dataset stanfordnlp/imdb \\",
|
| 473 |
+
" --column text \\",
|
| 474 |
+
" --labels 'positive,negative' \\",
|
| 475 |
+
" --model MoritzLaurer/deberta-v3-large-zeroshot-v2.0 \\",
|
| 476 |
+
" --output-dataset your-username/imdb-classified",
|
| 477 |
+
"\n# With label descriptions:",
|
| 478 |
+
"uv run examples/create_classification_dataset_with_sieves.py \\",
|
| 479 |
+
" --input-dataset user/support-tickets \\",
|
| 480 |
+
" --column content \\",
|
| 481 |
+
" --labels 'bug,feature,question' \\",
|
| 482 |
+
" --label-descriptions 'bug:something is broken or not working,feature:request for new functionality,"
|
| 483 |
+
"question:asking for help or clarification' \\",
|
| 484 |
+
" --model MoritzLaurer/deberta-v3-large-zeroshot-v2.0 \\",
|
| 485 |
+
" --output-dataset your-username/tickets-classified",
|
| 486 |
+
"\n# Multi-label classification:",
|
| 487 |
+
"uv run examples/create_classification_dataset_with_sieves.py \\",
|
| 488 |
+
" --input-dataset ag_news \\",
|
| 489 |
+
" --column text \\",
|
| 490 |
+
" --labels 'world,sports,business,science' \\",
|
| 491 |
+
" --multi-label \\",
|
| 492 |
+
" --model MoritzLaurer/deberta-v3-large-zeroshot-v2.0 \\",
|
| 493 |
+
" --output-dataset your-username/agnews-multilabel",
|
| 494 |
+
]
|
| 495 |
+
for line in cmds:
|
| 496 |
+
typer.echo(line)
|
| 497 |
+
|
| 498 |
+
|
| 499 |
+
if __name__ == "__main__":
|
| 500 |
+
app()
|