Adds readme as variation of https://huggingface.co/datasets/uv-scripts/classification/blob/main/README.md. (#3)
Browse files- Adds readme as variation of https://huggingface.co/datasets/uv-scripts/classification/blob/main/README.md. (2a638ae08bbdbe9e618c7eb3c2f8c8204cbd1d77)
Co-authored-by: Raphael Mitsch <[email protected]>
README.md
CHANGED
|
@@ -1,4 +1,365 @@
|
|
| 1 |
---
|
| 2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
| 4 |
-
# Hugging Face Dataset Classification With Sieves
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
+
task_categories:
|
| 4 |
+
- zero-shot-classification
|
| 5 |
+
- text-classification
|
| 6 |
+
tags:
|
| 7 |
+
- uv-script
|
| 8 |
+
- classification
|
| 9 |
+
- structured-outputs
|
| 10 |
+
- zero-shot
|
| 11 |
---
|
| 12 |
+
# Hugging Face Dataset Classification With Sieves
|
| 13 |
+
|
| 14 |
+
GPU-accelerated text classification for Hugging Face datasets with guaranteed valid outputs through structured
|
| 15 |
+
generation with [Sieves](https://github.com/MantisAI/sieves/), [Outlines](https://github.com/dottxt-ai/outlines) and
|
| 16 |
+
Hugging Face zero-shot pipelines.
|
| 17 |
+
|
| 18 |
+
This is a modified version of https://huggingface.co/datasets/uv-scripts/classification.
|
| 19 |
+
|
| 20 |
+
## 🚀 Quick Start
|
| 21 |
+
|
| 22 |
+
```bash
|
| 23 |
+
# Classify IMDB reviews
|
| 24 |
+
uv run examples/classify-dataset.py \
|
| 25 |
+
--input-dataset stanfordnlp/imdb \
|
| 26 |
+
--column text \
|
| 27 |
+
--labels "positive,negative" \
|
| 28 |
+
--model HuggingFaceTB/SmolLM-360M-Instruct \
|
| 29 |
+
--output-dataset user/imdb-classified
|
| 30 |
+
```
|
| 31 |
+
|
| 32 |
+
That's it! No installation, no setup - just `uv run`.
|
| 33 |
+
|
| 34 |
+
## 📋 Requirements
|
| 35 |
+
|
| 36 |
+
- **GPU Recommended**: Uses GPU-accelerated inference (CPU fallback available but slow)
|
| 37 |
+
- Python 3.12+
|
| 38 |
+
- UV (will handle all dependencies automatically)
|
| 39 |
+
|
| 40 |
+
**Python Package Dependencies** (automatically installed via UV):
|
| 41 |
+
- `sieves` with engines support (>= 0.17.4)
|
| 42 |
+
- `typer` (>= 0.12)
|
| 43 |
+
- `datasets`
|
| 44 |
+
- `huggingface-hub`
|
| 45 |
+
|
| 46 |
+
## 🎯 Features
|
| 47 |
+
|
| 48 |
+
- **Guaranteed valid outputs** using structured generation with Outlines guided decoding
|
| 49 |
+
- **Zero-shot classification** without training data required
|
| 50 |
+
- **GPU-optimized** for maximum throughput and efficiency
|
| 51 |
+
- **Multi-label support** for documents with multiple applicable labels
|
| 52 |
+
- **Flexible model selection** - works with any instruction-tuned transformer model
|
| 53 |
+
- **Robust text handling** with preprocessing and validation
|
| 54 |
+
- **Automatic progress tracking** and detailed statistics
|
| 55 |
+
- **Direct Hub integration** - read and write datasets seamlessly
|
| 56 |
+
- **Label descriptions** support for providing context to improve accuracy
|
| 57 |
+
- **Optimized batching** with Sieves' automatic batch processing
|
| 58 |
+
- **Multiple guided backends** - supports `outlines` to handle any general language model on Hugging Face, and fast Hugging Face zero-shot classification pipelines
|
| 59 |
+
|
| 60 |
+
## 💻 Usage
|
| 61 |
+
|
| 62 |
+
### Basic Classification
|
| 63 |
+
|
| 64 |
+
```bash
|
| 65 |
+
uv run examples/classify-dataset.py \
|
| 66 |
+
--input-dataset <dataset-id> \
|
| 67 |
+
--column <text-column> \
|
| 68 |
+
--labels <comma-separated-labels> \
|
| 69 |
+
--model <model-id> \
|
| 70 |
+
--output-dataset <output-id>
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
### Arguments
|
| 74 |
+
|
| 75 |
+
**Required:**
|
| 76 |
+
|
| 77 |
+
- `--input-dataset`: Hugging Face dataset ID (e.g., `stanfordnlp/imdb`, `user/my-dataset`)
|
| 78 |
+
- `--column`: Name of the text column to classify
|
| 79 |
+
- `--labels`: Comma-separated classification labels (e.g., `"spam,ham"`)
|
| 80 |
+
- `--model`: Model to use (e.g., `HuggingFaceTB/SmolLM-360M-Instruct`)
|
| 81 |
+
- `--output-dataset`: Where to save the classified dataset
|
| 82 |
+
|
| 83 |
+
**Optional:**
|
| 84 |
+
|
| 85 |
+
- `--label-descriptions`: Provide descriptions for each label to improve classification accuracy
|
| 86 |
+
- `--multi-label`: Enable multi-label classification mode (creates multi-hot encoded labels)
|
| 87 |
+
- `--split`: Dataset split to process (default: `train`)
|
| 88 |
+
- `--max-samples`: Limit samples for testing
|
| 89 |
+
- `--shuffle`: Shuffle dataset before selecting samples (useful for random sampling)
|
| 90 |
+
- `--shuffle-seed`: Random seed for shuffling
|
| 91 |
+
- `--batch-size`: Batch size for inference (default: 64)
|
| 92 |
+
- `--max-tokens`: Maximum tokens to generate per sample (default: 200)
|
| 93 |
+
- `--hf-token`: Hugging Face token (or use `HF_TOKEN` env var)
|
| 94 |
+
|
| 95 |
+
### Label Descriptions
|
| 96 |
+
|
| 97 |
+
Provide context for your labels to improve classification accuracy:
|
| 98 |
+
|
| 99 |
+
```bash
|
| 100 |
+
uv run examples/classify-dataset.py \
|
| 101 |
+
--input-dataset user/support-tickets \
|
| 102 |
+
--column content \
|
| 103 |
+
--labels "bug,feature,question,other" \
|
| 104 |
+
--label-descriptions "bug:something is broken,feature:request for new functionality,question:asking for help,other:anything else" \
|
| 105 |
+
--model HuggingFaceTB/SmolLM-360M-Instruct \
|
| 106 |
+
--output-dataset user/tickets-classified
|
| 107 |
+
```
|
| 108 |
+
|
| 109 |
+
The model uses these descriptions to better understand what each label represents, leading to more accurate classifications.
|
| 110 |
+
|
| 111 |
+
### Multi-Label Classification
|
| 112 |
+
|
| 113 |
+
Enable multi-label mode for documents that can have multiple applicable labels:
|
| 114 |
+
|
| 115 |
+
```bash
|
| 116 |
+
uv run examples/classify-dataset.py \
|
| 117 |
+
--input-dataset ag_news \
|
| 118 |
+
--column text \
|
| 119 |
+
--labels "world,sports,business,science" \
|
| 120 |
+
--multi-label \
|
| 121 |
+
--model HuggingFaceTB/SmolLM-360M-Instruct \
|
| 122 |
+
--output-dataset user/ag-news-multilabel
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
## 📊 Examples
|
| 126 |
+
|
| 127 |
+
### Sentiment Analysis
|
| 128 |
+
|
| 129 |
+
```bash
|
| 130 |
+
uv run examples/classify-dataset.py \
|
| 131 |
+
--input-dataset stanfordnlp/imdb \
|
| 132 |
+
--column text \
|
| 133 |
+
--labels "positive,ambivalent,negative" \
|
| 134 |
+
--model HuggingFaceTB/SmolLM-360M-Instruct \
|
| 135 |
+
--output-dataset user/imdb-sentiment
|
| 136 |
+
```
|
| 137 |
+
|
| 138 |
+
### Support Ticket Classification
|
| 139 |
+
|
| 140 |
+
```bash
|
| 141 |
+
uv run examples/classify-dataset.py \
|
| 142 |
+
--input-dataset user/support-tickets \
|
| 143 |
+
--column content \
|
| 144 |
+
--labels "bug,feature_request,question,other" \
|
| 145 |
+
--label-descriptions "bug:code or product not working as expected,feature_request:asking for new functionality,question:seeking help or clarification,other:general comments or feedback" \
|
| 146 |
+
--model HuggingFaceTB/SmolLM-360M-Instruct \
|
| 147 |
+
--output-dataset user/tickets-classified
|
| 148 |
+
```
|
| 149 |
+
|
| 150 |
+
### News Categorization
|
| 151 |
+
|
| 152 |
+
```bash
|
| 153 |
+
uv run examples/classify-dataset.py \
|
| 154 |
+
--input-dataset ag_news \
|
| 155 |
+
--column text \
|
| 156 |
+
--labels "world,sports,business,tech" \
|
| 157 |
+
--model HuggingFaceTB/SmolLM-1.7B-Instruct \
|
| 158 |
+
--output-dataset user/ag-news-categorized
|
| 159 |
+
```
|
| 160 |
+
|
| 161 |
+
### Multi-Label News Classification
|
| 162 |
+
|
| 163 |
+
```bash
|
| 164 |
+
uv run examples/classify-dataset.py \
|
| 165 |
+
--input-dataset ag_news \
|
| 166 |
+
--column text \
|
| 167 |
+
--labels "world,sports,business,tech" \
|
| 168 |
+
--multi-label \
|
| 169 |
+
--label-descriptions "world:global and international events,sports:sports and athletics,business:business and finance,tech:technology and innovation" \
|
| 170 |
+
--model HuggingFaceTB/SmolLM-1.7B-Instruct \
|
| 171 |
+
--output-dataset user/ag-news-multilabel
|
| 172 |
+
```
|
| 173 |
+
|
| 174 |
+
This combines label descriptions with multi-label mode for comprehensive categorization of news articles.
|
| 175 |
+
|
| 176 |
+
### ArXiv ML Research Classification
|
| 177 |
+
|
| 178 |
+
Classify academic papers into machine learning research areas:
|
| 179 |
+
|
| 180 |
+
```bash
|
| 181 |
+
# Fast classification with random sampling
|
| 182 |
+
uv run examples/classify-dataset.py \
|
| 183 |
+
--input-dataset librarian-bots/arxiv-metadata-snapshot \
|
| 184 |
+
--column abstract \
|
| 185 |
+
--labels "llm,computer_vision,reinforcement_learning,optimization,theory,other" \
|
| 186 |
+
--label-descriptions "llm:language models and NLP,computer_vision:image and video processing,reinforcement_learning:RL and decision making,optimization:training and efficiency,theory:theoretical ML foundations,other:other ML topics" \
|
| 187 |
+
--model HuggingFaceTB/SmolLM-360M-Instruct \
|
| 188 |
+
--output-dataset user/arxiv-ml-classified \
|
| 189 |
+
--split "train" \
|
| 190 |
+
--max-samples 100 \
|
| 191 |
+
--shuffle
|
| 192 |
+
|
| 193 |
+
# Multi-label for nuanced classification
|
| 194 |
+
uv run examples/classify-dataset.py \
|
| 195 |
+
--input-dataset librarian-bots/arxiv-metadata-snapshot \
|
| 196 |
+
--column abstract \
|
| 197 |
+
--labels "multimodal,agents,reasoning,safety,efficiency" \
|
| 198 |
+
--label-descriptions "multimodal:vision-language and cross-modal models,agents:autonomous agents and tool use,reasoning:reasoning and planning systems,safety:alignment and safety research,efficiency:model optimization and deployment" \
|
| 199 |
+
--multi-label \
|
| 200 |
+
--model HuggingFaceTB/SmolLM-360M-Instruct \
|
| 201 |
+
--output-dataset user/arxiv-frontier-research \
|
| 202 |
+
--split "train[:1000]" \
|
| 203 |
+
--max-samples 50
|
| 204 |
+
```
|
| 205 |
+
|
| 206 |
+
Multi-label mode is particularly valuable for academic abstracts where papers often span multiple topics and require careful analysis to determine all relevant research areas.
|
| 207 |
+
|
| 208 |
+
## 🚀 Running Locally vs Cloud
|
| 209 |
+
|
| 210 |
+
This script is optimized to run locally on GPU-equipped machines:
|
| 211 |
+
|
| 212 |
+
```bash
|
| 213 |
+
# Local execution with your GPU
|
| 214 |
+
uv run examples/classify-dataset.py \
|
| 215 |
+
--input-dataset stanfordnlp/imdb \
|
| 216 |
+
--column text \
|
| 217 |
+
--labels "positive,negative" \
|
| 218 |
+
--model HuggingFaceTB/SmolLM-360M-Instruct \
|
| 219 |
+
--output-dataset user/imdb-classified
|
| 220 |
+
```
|
| 221 |
+
|
| 222 |
+
For cloud deployment, you can use Hugging Face Spaces or other GPU services by adapting the command to your environment.
|
| 223 |
+
|
| 224 |
+
## 🔧 Advanced Usage
|
| 225 |
+
|
| 226 |
+
### Random Sampling
|
| 227 |
+
|
| 228 |
+
When working with ordered datasets, use `--shuffle` with `--max-samples` to get a representative sample:
|
| 229 |
+
|
| 230 |
+
```bash
|
| 231 |
+
# Get 50 random reviews instead of the first 50
|
| 232 |
+
uv run examples/classify-dataset.py \
|
| 233 |
+
--input-dataset stanfordnlp/imdb \
|
| 234 |
+
--column text \
|
| 235 |
+
--labels "positive,negative" \
|
| 236 |
+
--model HuggingFaceTB/SmolLM-360M-Instruct \
|
| 237 |
+
--output-dataset user/imdb-sample \
|
| 238 |
+
--max-samples 50 \
|
| 239 |
+
--shuffle \
|
| 240 |
+
--shuffle-seed 123 # For reproducibility
|
| 241 |
+
```
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
### Using Different Models
|
| 245 |
+
|
| 246 |
+
By default, this script works with any instruction-tuned model. Here are some recommended options:
|
| 247 |
+
|
| 248 |
+
```bash
|
| 249 |
+
# Lightweight model for fast classification
|
| 250 |
+
uv run examples/classify-dataset.py \
|
| 251 |
+
--input-dataset user/my-dataset \
|
| 252 |
+
--column text \
|
| 253 |
+
--labels "A,B,C" \
|
| 254 |
+
--model HuggingFaceTB/SmolLM-360M-Instruct \
|
| 255 |
+
--output-dataset user/classified
|
| 256 |
+
|
| 257 |
+
# Larger model for complex classification
|
| 258 |
+
uv run examples/classify-dataset.py \
|
| 259 |
+
--input-dataset user/legal-docs \
|
| 260 |
+
--column text \
|
| 261 |
+
--labels "contract,patent,brief,memo,other" \
|
| 262 |
+
--model HuggingFaceTB/SmolLM3-3B-Instruct \
|
| 263 |
+
--output-dataset user/legal-classified
|
| 264 |
+
|
| 265 |
+
# Specialized zero-shot classifier
|
| 266 |
+
uv run examples/classify-dataset.py \
|
| 267 |
+
--input-dataset user/my-dataset \
|
| 268 |
+
--column text \
|
| 269 |
+
--labels "A,B,C" \
|
| 270 |
+
--model MoritzLaurer/deberta-v3-large-zeroshot-v2.0 \
|
| 271 |
+
--output-dataset user/classified
|
| 272 |
+
```
|
| 273 |
+
|
| 274 |
+
### Large Datasets
|
| 275 |
+
|
| 276 |
+
Configure `--batch-size` for more effective batch processing with large datasets:
|
| 277 |
+
|
| 278 |
+
```bash
|
| 279 |
+
uv run examples/classify-dataset.py \
|
| 280 |
+
--input-dataset user/huge-dataset \
|
| 281 |
+
--column text \
|
| 282 |
+
--labels "A,B,C" \
|
| 283 |
+
--model HuggingFaceTB/SmolLM-360M-Instruct \
|
| 284 |
+
--output-dataset user/huge-classified \
|
| 285 |
+
--batch-size 128
|
| 286 |
+
```
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
## 🤝 How It Works
|
| 290 |
+
|
| 291 |
+
1. **Sieves**: Provides a zero-shot task pipeline system for structured NLP workflows
|
| 292 |
+
2. **Outlines**: Provides guided decoding to guarantee valid label outputs
|
| 293 |
+
3. **UV**: Handles all dependencies automatically
|
| 294 |
+
|
| 295 |
+
The script loads your dataset, preprocesses texts, classifies each one with guaranteed valid outputs using Sieves'
|
| 296 |
+
`Classification` task, then saves the results as a new column in the output dataset.
|
| 297 |
+
|
| 298 |
+
## 🐛 Troubleshooting
|
| 299 |
+
|
| 300 |
+
### GPU Not Available
|
| 301 |
+
|
| 302 |
+
This script works best with a GPU but can run on CPU (much slower). To use GPU:
|
| 303 |
+
|
| 304 |
+
- Run on a machine with NVIDIA GPU
|
| 305 |
+
- Use cloud GPU instances (AWS, GCP, Azure, etc.)
|
| 306 |
+
- Use Hugging Face Spaces with GPU
|
| 307 |
+
|
| 308 |
+
### Out of Memory
|
| 309 |
+
|
| 310 |
+
- Use a smaller model (e.g., SmolLM-360M instead of 3B)
|
| 311 |
+
- Reduce `--batch-size` (try 32, 16, or 8)
|
| 312 |
+
- Reduce `--max-tokens` for shorter generations
|
| 313 |
+
|
| 314 |
+
### Invalid/Skipped Texts
|
| 315 |
+
|
| 316 |
+
- Texts shorter than 3 characters are skipped
|
| 317 |
+
- Empty or None values are marked as invalid
|
| 318 |
+
- Very long texts are truncated to 4000 characters
|
| 319 |
+
|
| 320 |
+
### Classification Quality
|
| 321 |
+
|
| 322 |
+
- With Outlines guided decoding, outputs are guaranteed to be valid labels
|
| 323 |
+
- For better results, use clear and distinct label names
|
| 324 |
+
- Try `--label-descriptions` to provide context
|
| 325 |
+
- Use a larger model for nuanced tasks
|
| 326 |
+
- In multi-label mode, adjust the confidence threshold (defaults to 0.5)
|
| 327 |
+
|
| 328 |
+
### Authentication Issues
|
| 329 |
+
|
| 330 |
+
If you see authentication errors:
|
| 331 |
+
|
| 332 |
+
- Run `huggingface-cli login` to cache your token
|
| 333 |
+
- Or set `export HF_TOKEN=your_token_here`
|
| 334 |
+
- Verify your token has read/write permissions on the Hub
|
| 335 |
+
|
| 336 |
+
## 🔬 Advanced Workflows
|
| 337 |
+
|
| 338 |
+
### Full Pipeline Workflow
|
| 339 |
+
|
| 340 |
+
Start with small tests, then run on the full dataset:
|
| 341 |
+
|
| 342 |
+
```bash
|
| 343 |
+
# Step 1: Test with small sample
|
| 344 |
+
uv run examples/classify-dataset.py \
|
| 345 |
+
--input-dataset your-dataset \
|
| 346 |
+
--column text \
|
| 347 |
+
--labels "label1,label2,label3" \
|
| 348 |
+
--model HuggingFaceTB/SmolLM-360M-Instruct \
|
| 349 |
+
--output-dataset user/test-classification \
|
| 350 |
+
--max-samples 100
|
| 351 |
+
|
| 352 |
+
# Step 2: If results look good, run on full dataset
|
| 353 |
+
uv run examples/classify-dataset.py \
|
| 354 |
+
--input-dataset your-dataset \
|
| 355 |
+
--column text \
|
| 356 |
+
--labels "label1,label2,label3" \
|
| 357 |
+
--label-descriptions "label1:description,label2:description,label3:description" \
|
| 358 |
+
--model HuggingFaceTB/SmolLM-360M-Instruct \
|
| 359 |
+
--output-dataset user/final-classification \
|
| 360 |
+
--batch-size 64
|
| 361 |
+
```
|
| 362 |
+
|
| 363 |
+
## 📝 License
|
| 364 |
+
|
| 365 |
+
This example is provided as part of the [Sieves](https://github.com/MantisAI/sieves/) project.
|