classification-with-sieves / classify-dataset.py
mattupson's picture
Adds script. (#2)
a274260 verified
raw
history blame
18.9 kB
#!/usr/bin/env python3
# /// script
# requires-python = ">=3.12"
# dependencies = [
# "sieves[engines]>=0.17.4",
# "typer>=0.12,<1",
# "datasets",
# "huggingface-hub[hf_transfer]",
# ]
# ///
"""Create a zero-shot classification dataset from any Hugging Face dataset using Sieves + Outlines.
It supports both single-label (default) and multi-label classification via a flag.
Examples
--------
Single-label classification:
uv run examples/create_classification_dataset_with_sieves.py \
--input-dataset stanfordnlp/imdb \
--column text \
--labels "positive,negative" \
--model HuggingFaceTB/SmolLM-360M-Instruct \
--output-dataset your-username/imdb-classified
With label descriptions:
uv run examples/create_classification_dataset_with_sieves.py \
--input-dataset user/support-tickets \
--column content \
--labels "bug,feature,question" \
--label-descriptions "bug:something is broken,feature:request for new functionality,question:asking for help" \
--model HuggingFaceTB/SmolLM-360M-Instruct \
--output-dataset your-username/tickets-classified
Multi-label classification (adds a multi-hot labels column):
uv run examples/create_classification_dataset_with_sieves.py \
--input-dataset ag_news \
--column text \
--labels "world,sports,business,science" \
--multi-label \
--model HuggingFaceTB/SmolLM-360M-Instruct \
--output-dataset your-username/agnews-multilabel
"""
import os
import huggingface_hub
import outlines
import torch
import transformers
import typer
from datasets import Dataset, load_dataset
from huggingface_hub import HfApi, get_token
from loguru import logger
from transformers import AutoModelForCausalLM, AutoTokenizer
import sieves
app = typer.Typer(add_completion=False, help=__doc__)
# Text constraints (simple sanity checks)
MIN_TEXT_LENGTH = 3
MAX_TEXT_LENGTH = 4000
MULTILABEL_THRESHOLD = 0.5
def _parse_label_descriptions(desc_string: str | None) -> dict[str, str]:
"""Parse a CLI description string into a mapping.
Parses strings of the form ``"label1:desc1,label2:desc2"`` into a
dictionary mapping labels to their descriptions. Commas inside
descriptions are preserved by continuing the current description until
the next ``":"`` separator is encountered.
Args:
desc_string: The raw CLI string to parse. If ``None`` or empty,
returns an empty mapping.
Returns:
A dictionary mapping each label to its description.
"""
if not desc_string:
return {}
descriptions: dict[str, str] = {}
for label_desc in desc_string.split(","):
label_desc_parts = label_desc.split(":")
assert len(label_desc_parts) == 2, \
f"Invalid label description: must be 'label1:desc1,label2:desc2', got: {label_desc}"
descriptions[label_desc_parts[0].strip("'").strip()] = label_desc_parts[1].strip("'").strip()
return descriptions
def _preprocess_text(text: str) -> str:
"""Normalize and truncate input text for classification.
This function trims surrounding whitespace and truncates overly long
inputs to ``MAX_TEXT_LENGTH`` characters, appending an ellipsis to
signal truncation. Non-string or falsy inputs yield an empty string.
Args:
text: The raw input text to normalize.
Returns:
A cleaned string suitable for downstream classification. May be an
empty string if the input was not a valid string.
"""
if not text or not isinstance(text, str):
return ""
text = text.strip()
if len(text) > MAX_TEXT_LENGTH:
text = f"{text[:MAX_TEXT_LENGTH]}..."
return text
def _is_valid_text(text: str) -> bool:
"""Validate the minimal length constraints for a text sample.
Args:
text: Candidate text after preprocessing.
Returns:
True if the text meets minimal length requirements (``MIN_TEXT_LENGTH``),
False otherwise.
"""
return bool(text and len(text) >= MIN_TEXT_LENGTH)
def _load_and_prepare_data(
input_dataset: str,
split: str,
shuffle: bool,
shuffle_seed: int | None,
max_samples: int | None,
column: str,
labels: str,
label_descriptions: str | None,
hf_token: str | None,
) -> tuple[
Dataset,
list[str],
list[str],
list[int],
list[str],
dict[str, str],
str | None,
]:
"""Load the dataset and prepare inputs for classification.
This function encapsulates the data-loading and preprocessing path of the
script: parsing labels/descriptions, detecting tokens, loading/shuffling
the dataset, validating the target column, preprocessing texts, and
computing valid indices.
Args:
input_dataset: Dataset repo ID on the Hugging Face Hub.
split: Dataset split to load (e.g., "train").
shuffle: Whether to shuffle the dataset.
shuffle_seed: Seed used when shuffling is enabled.
max_samples: Optional maximum number of samples to retain.
column: Name of the text column to classify.
labels: Comma-separated list of labels.
label_descriptions: Optional mapping string of the form
"label:desc,label2:desc2".
hf_token: Optional Hugging Face token.
Returns:
A tuple containing: (dataset, raw_texts, processed_texts, valid_indices,
labels_list, desc_map, token)
Raises:
typer.Exit: If labels are missing, dataset loading fails, the column is
absent, or no valid texts remain after preprocessing.
"""
# Parse labels and optional descriptions. Strip surrounding quotes if present.
labels = labels.strip().strip("'\"")
labels_list: list[str] = [label.strip().strip("'\"") for label in labels.split(",") if label.strip().strip("'\"")]
if not labels_list:
logger.error("No labels provided. Use --labels 'label1,label2,...'")
raise typer.Exit(code=2)
desc_map = _parse_label_descriptions(label_descriptions)
# Token detection and validation (mirror legacy script behavior)
token = hf_token or (os.environ.get("HF_TOKEN") or get_token())
if not token:
logger.error("No authentication token found. Please either:")
logger.error("1. Run 'huggingface-cli login'")
logger.error("2. Set HF_TOKEN environment variable")
logger.error("3. Pass --hf-token argument")
raise typer.Exit(code=1)
try:
api = HfApi(token=token)
user_info = api.whoami()
name = user_info.get("name") or user_info.get("email") or "<unknown>"
logger.info(f"Authenticated as: {name}")
except Exception as e:
logger.error(f"Authentication failed: {e}")
logger.error("Please check your token is valid")
raise typer.Exit(code=1)
# Load dataset
try:
ds: Dataset = load_dataset(input_dataset, split=split)
except Exception as e:
logger.error(f"Failed to load dataset '{input_dataset}': {e}")
raise typer.Exit(code=1)
# Shuffle/select.
if shuffle:
ds = ds.shuffle(seed=shuffle_seed)
if max_samples is not None:
ds = ds.select(range(min(max_samples, len(ds))))
# Validate columns.
if column not in ds.column_names:
logger.error(f"Column '{column}' not in dataset columns: {ds.column_names}")
raise typer.Exit(code=1)
# Extract and preprocess texts
raw_texts: list[str] = list(ds[column])
processed_texts: list[str] = []
valid_indices: list[int] = []
for i, t in enumerate(raw_texts):
pt = _preprocess_text(t)
if _is_valid_text(pt):
processed_texts.append(pt)
valid_indices.append(i)
if not processed_texts:
logger.error("No valid texts found for classification (after preprocessing).")
raise typer.Exit(code=1)
logger.info(f"Prepared {len(processed_texts)} valid texts out of {len(raw_texts)}")
return ds, raw_texts, processed_texts, valid_indices, labels_list, desc_map, token
def _log_stats(
docs: list[sieves.Doc],
task: sieves.tasks.Classification,
labels_list: list[str],
multi_label: bool,
raw_texts: list[str],
processed_texts: list[str],
valid_indices: list[int],
) -> None:
"""Compute and log distributions.
Logs per-label distributions and success/skip metrics.
Args:
docs: Classified documents corresponding to processed_texts.
task: The configured ``Classification`` task instance.
labels_list: List of label names in canonical order.
multi_label: Whether classification is multi-label.
raw_texts: Original text column values.
processed_texts: Preprocessed, valid texts used for inference.
valid_indices: Indices mapping processed_texts back to raw_texts rows.
Returns:
None. Pushes datasets to the Hub and logs summary statistics.
"""
if multi_label:
# Log distribution across labels at threshold and skipped count
label_counts = {label: 0 for label in labels_list}
for doc in docs:
result = doc.results[task.id]
logger.info(result)
if isinstance(result, list):
for label, score in result:
if label in label_counts and score >= MULTILABEL_THRESHOLD:
label_counts[label] += 1
total_processed = len(docs)
skipped = len(raw_texts) - len(processed_texts)
logger.info(f"Classification distribution (multi-label, threshold={MULTILABEL_THRESHOLD}):")
for label in labels_list:
count = label_counts.get(label, 0)
pct = (count / total_processed * 100.0) if total_processed else 0.0
logger.info(f" {label}: {count} ({pct})")
if skipped > 0:
skipped_pct = (skipped / len(raw_texts) * 100.0) if raw_texts else 0.0
logger.info(f" Skipped/invalid: {skipped} ({skipped_pct})")
else:
# Map results back to original indices; invalid texts receive None
classifications: list[str | None] = [None] * len(raw_texts)
for idx, doc in zip(valid_indices, docs):
result = doc.results[task.id]
classifications[idx] = result if isinstance(result, str) else result[0]
# Log distribution and success rate.
total_texts = len(raw_texts)
label_counts = {label: 0 for label in labels_list}
for label in labels_list:
label_counts[label] = sum(1 for c in classifications if c == label)
none_count = sum(1 for c in classifications if c is None)
logger.info("Classification distribution (single-label):")
for label in labels_list:
count = label_counts[label]
pct = (count / total_texts * 100.0) if total_texts else 0.0
logger.info(f" {label}: {count} ({pct})")
if none_count > 0:
none_pct = (none_count / total_texts * 100.0) if total_texts else 0.0
logger.info(f" Invalid/Skipped: {none_count} ({none_pct})")
success_rate = (len(valid_indices) / total_texts * 100.0) if total_texts else 0.0
logger.info(f"Classification success rate: {success_rate}")
@app.command() # type: ignore[misc]
def classify(
input_dataset: str = typer.Option(..., help="Input dataset ID on Hugging Face Hub"),
column: str = typer.Option(..., help="Name of the text column to classify"),
labels: str = typer.Option(..., help="Comma-separated list of labels, e.g. 'positive,negative'"),
output_dataset: str = typer.Option(..., help="Output dataset ID on Hugging Face Hub"),
model: str = typer.Option(..., help="HF model ID to use"),
label_descriptions: str | None = typer.Option(
None, help="Optional descriptions per label: 'label:desc,label2:desc2'"
),
max_samples: int | None = typer.Option(None, help="Max number of samples to process (for testing)"),
hf_token: str | None = typer.Option(None, help="HF token; if omitted, uses env or cached token"),
split: str = typer.Option("train", help="Dataset split (default: train)"),
batch_size: int = typer.Option(64, help="Batch size"),
max_tokens: int = typer.Option(200, help="Max tokens to generate"),
shuffle: bool = typer.Option(False, help="Shuffle dataset before sampling"),
shuffle_seed: int | None = typer.Option(None, help="Shuffle seed"),
multi_label: bool = typer.Option(False, help="Enable multi-label classification (adds multi-hot 'labels')"),
) -> None:
"""Classify a Hugging Face dataset using Sieves + Outlines and push results.
Runs zero-shot classification over a specified text column using the Sieves
``Classification`` task and the Outlines engine. Supports both single-label
(default) and multi-label modes. In single-label mode, a "classification"
column is added to the original dataset. In multi-label mode, a new dataset
with ``text`` and multi-hot ``labels`` columns is created via
``Classification.to_hf_dataset``.
Args:
input_dataset: Dataset repo ID on the Hugging Face Hub.
column: Name of the text column to classify.
labels: Comma-separated list of allowed labels.
output_dataset: Target dataset repo ID to push results to.
model: Transformers model ID. Must be provided and non-empty.
label_descriptions: Optional per-label descriptions in the form
``label:desc,label2:desc2``.
max_samples: Optional maximum number of samples to process.
hf_token: Optional token; if omitted, uses environment or cached login.
split: Dataset split to load (default: ``"train"``).
batch_size: Batch size for inference.
max_tokens: Maximum tokens for generation per prompt.
shuffle: Whether to shuffle the dataset before selecting samples.
shuffle_seed: Seed used for shuffling.
multi_label: If True, enable multi-label classification and output a
multi-hot labels column; otherwise outputs single-label strings.
Returns:
None. Results are pushed to the Hugging Face Hub under ``output_dataset``.
Raises:
typer.Exit: If dataset loading fails, a required column is missing, or
no valid texts are available for classification.
"""
token = os.environ.get("HF_TOKEN") or huggingface_hub.get_token()
if token:
huggingface_hub.login(token=token)
logger.info("Loading and preparing data.")
(
ds,
raw_texts,
processed_texts,
valid_indices,
labels_list,
desc_map,
token,
) = _load_and_prepare_data(
input_dataset=input_dataset,
split=split,
shuffle=shuffle,
shuffle_seed=shuffle_seed,
max_samples=max_samples,
column=column,
labels=labels,
label_descriptions=label_descriptions,
hf_token=hf_token,
)
# Build model.
info = HfApi().model_info(model)
device = torch.cuda.get_device_name(0) if torch.cuda.is_available() else None
zeroshot_tag = "zero-shot-classification"
# Explicitly designed for zero-shot classification: build directly as pipeline.
if info.pipeline_tag == zeroshot_tag or zeroshot_tag in set(info.tags or []):
logger.info("Initializing zero-shot classifciation pipeline.")
model = transformers.pipeline(zeroshot_tag, model=model, device=device)
# Otherwise: build Outlines model around it to enforce structured generation.
else:
logger.info("Initializing Outlines model.")
model = outlines.models.from_transformers(
AutoModelForCausalLM.from_pretrained(model, **({"device": device} if device else {})),
AutoTokenizer.from_pretrained(model),
)
# Build task and pipeline.
logger.info("Initializing pipeline.")
task = sieves.tasks.Classification(
labels=labels_list,
model=model,
generation_settings=sieves.GenerationSettings(
inference_kwargs={"max_new_tokens": max_tokens},
strict_mode=False,
),
batch_size=batch_size,
label_descriptions=desc_map or None,
multi_label=multi_label,
)
pipe = sieves.Pipeline([task])
docs = [sieves.Doc(text=t) for t in processed_texts]
logger.critical(
f"Running {'multi-label ' if multi_label else ''}classification pipeline with labels {labels_list} on "
f"{len(docs)} docs."
)
docs = list(pipe([sieves.Doc(text=t) for t in processed_texts]))
logger.critical("Logging stats.")
_log_stats(
docs=docs,
task=task,
labels_list=labels_list,
multi_label=multi_label,
raw_texts=raw_texts,
processed_texts=processed_texts,
valid_indices=valid_indices,
)
logger.info("Collecting and pushing results.")
ds = task.to_hf_dataset(docs, threshold=MULTILABEL_THRESHOLD)
ds.push_to_hub(
output_dataset,
token=token,
commit_message=f"Add classifications using Sieves + Outlines (multi-label; threshold={MULTILABEL_THRESHOLD})"
)
@app.command("examples") # type: ignore[misc]
def show_examples() -> None:
"""Print example commands for common use cases.
This mirrors the examples that were previously printed when running the
legacy script without arguments.
"""
cmds = [
"Example commands:",
"\n# Simple classification:",
"uv run examples/create_classification_dataset_with_sieves.py \\",
" --input-dataset stanfordnlp/imdb \\",
" --column text \\",
" --labels 'positive,negative' \\",
" --model MoritzLaurer/deberta-v3-large-zeroshot-v2.0 \\",
" --output-dataset your-username/imdb-classified",
"\n# With label descriptions:",
"uv run examples/create_classification_dataset_with_sieves.py \\",
" --input-dataset user/support-tickets \\",
" --column content \\",
" --labels 'bug,feature,question' \\",
" --label-descriptions 'bug:something is broken or not working,feature:request for new functionality,"
"question:asking for help or clarification' \\",
" --model MoritzLaurer/deberta-v3-large-zeroshot-v2.0 \\",
" --output-dataset your-username/tickets-classified",
"\n# Multi-label classification:",
"uv run examples/create_classification_dataset_with_sieves.py \\",
" --input-dataset ag_news \\",
" --column text \\",
" --labels 'world,sports,business,science' \\",
" --multi-label \\",
" --model MoritzLaurer/deberta-v3-large-zeroshot-v2.0 \\",
" --output-dataset your-username/agnews-multilabel",
]
for line in cmds:
typer.echo(line)
if __name__ == "__main__":
app()