|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Create a zero-shot classification dataset from any Hugging Face dataset using Sieves + Outlines. |
|
|
|
|
|
It supports both single-label (default) and multi-label classification via a flag. |
|
|
|
|
|
Examples |
|
|
-------- |
|
|
Single-label classification: |
|
|
uv run examples/create_classification_dataset_with_sieves.py \ |
|
|
--input-dataset stanfordnlp/imdb \ |
|
|
--column text \ |
|
|
--labels "positive,negative" \ |
|
|
--model HuggingFaceTB/SmolLM-360M-Instruct \ |
|
|
--output-dataset your-username/imdb-classified |
|
|
|
|
|
With label descriptions: |
|
|
uv run examples/create_classification_dataset_with_sieves.py \ |
|
|
--input-dataset user/support-tickets \ |
|
|
--column content \ |
|
|
--labels "bug,feature,question" \ |
|
|
--label-descriptions "bug:something is broken,feature:request for new functionality,question:asking for help" \ |
|
|
--model HuggingFaceTB/SmolLM-360M-Instruct \ |
|
|
--output-dataset your-username/tickets-classified |
|
|
|
|
|
Multi-label classification (adds a multi-hot labels column): |
|
|
uv run examples/create_classification_dataset_with_sieves.py \ |
|
|
--input-dataset ag_news \ |
|
|
--column text \ |
|
|
--labels "world,sports,business,science" \ |
|
|
--multi-label \ |
|
|
--model HuggingFaceTB/SmolLM-360M-Instruct \ |
|
|
--output-dataset your-username/agnews-multilabel |
|
|
|
|
|
""" |
|
|
|
|
|
import os |
|
|
|
|
|
import huggingface_hub |
|
|
import outlines |
|
|
import torch |
|
|
import transformers |
|
|
import typer |
|
|
from datasets import Dataset, load_dataset |
|
|
from huggingface_hub import HfApi, get_token |
|
|
from loguru import logger |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
import sieves |
|
|
|
|
|
app = typer.Typer(add_completion=False, help=__doc__) |
|
|
|
|
|
|
|
|
|
|
|
MIN_TEXT_LENGTH = 3 |
|
|
MAX_TEXT_LENGTH = 4000 |
|
|
MULTILABEL_THRESHOLD = 0.5 |
|
|
|
|
|
|
|
|
def _parse_label_descriptions(desc_string: str | None) -> dict[str, str]: |
|
|
"""Parse a CLI description string into a mapping. |
|
|
|
|
|
Parses strings of the form ``"label1:desc1,label2:desc2"`` into a |
|
|
dictionary mapping labels to their descriptions. Commas inside |
|
|
descriptions are preserved by continuing the current description until |
|
|
the next ``":"`` separator is encountered. |
|
|
|
|
|
Args: |
|
|
desc_string: The raw CLI string to parse. If ``None`` or empty, |
|
|
returns an empty mapping. |
|
|
|
|
|
Returns: |
|
|
A dictionary mapping each label to its description. |
|
|
|
|
|
""" |
|
|
if not desc_string: |
|
|
return {} |
|
|
|
|
|
descriptions: dict[str, str] = {} |
|
|
|
|
|
for label_desc in desc_string.split(","): |
|
|
label_desc_parts = label_desc.split(":") |
|
|
assert len(label_desc_parts) == 2, \ |
|
|
f"Invalid label description: must be 'label1:desc1,label2:desc2', got: {label_desc}" |
|
|
descriptions[label_desc_parts[0].strip("'").strip()] = label_desc_parts[1].strip("'").strip() |
|
|
|
|
|
return descriptions |
|
|
|
|
|
|
|
|
def _preprocess_text(text: str) -> str: |
|
|
"""Normalize and truncate input text for classification. |
|
|
|
|
|
This function trims surrounding whitespace and truncates overly long |
|
|
inputs to ``MAX_TEXT_LENGTH`` characters, appending an ellipsis to |
|
|
signal truncation. Non-string or falsy inputs yield an empty string. |
|
|
|
|
|
Args: |
|
|
text: The raw input text to normalize. |
|
|
|
|
|
Returns: |
|
|
A cleaned string suitable for downstream classification. May be an |
|
|
empty string if the input was not a valid string. |
|
|
|
|
|
""" |
|
|
if not text or not isinstance(text, str): |
|
|
return "" |
|
|
text = text.strip() |
|
|
if len(text) > MAX_TEXT_LENGTH: |
|
|
text = f"{text[:MAX_TEXT_LENGTH]}..." |
|
|
return text |
|
|
|
|
|
|
|
|
def _is_valid_text(text: str) -> bool: |
|
|
"""Validate the minimal length constraints for a text sample. |
|
|
|
|
|
Args: |
|
|
text: Candidate text after preprocessing. |
|
|
|
|
|
Returns: |
|
|
True if the text meets minimal length requirements (``MIN_TEXT_LENGTH``), |
|
|
False otherwise. |
|
|
|
|
|
""" |
|
|
return bool(text and len(text) >= MIN_TEXT_LENGTH) |
|
|
|
|
|
|
|
|
def _load_and_prepare_data( |
|
|
input_dataset: str, |
|
|
split: str, |
|
|
shuffle: bool, |
|
|
shuffle_seed: int | None, |
|
|
max_samples: int | None, |
|
|
column: str, |
|
|
labels: str, |
|
|
label_descriptions: str | None, |
|
|
hf_token: str | None, |
|
|
) -> tuple[ |
|
|
Dataset, |
|
|
list[str], |
|
|
list[str], |
|
|
list[int], |
|
|
list[str], |
|
|
dict[str, str], |
|
|
str | None, |
|
|
]: |
|
|
"""Load the dataset and prepare inputs for classification. |
|
|
|
|
|
This function encapsulates the data-loading and preprocessing path of the |
|
|
script: parsing labels/descriptions, detecting tokens, loading/shuffling |
|
|
the dataset, validating the target column, preprocessing texts, and |
|
|
computing valid indices. |
|
|
|
|
|
Args: |
|
|
input_dataset: Dataset repo ID on the Hugging Face Hub. |
|
|
split: Dataset split to load (e.g., "train"). |
|
|
shuffle: Whether to shuffle the dataset. |
|
|
shuffle_seed: Seed used when shuffling is enabled. |
|
|
max_samples: Optional maximum number of samples to retain. |
|
|
column: Name of the text column to classify. |
|
|
labels: Comma-separated list of labels. |
|
|
label_descriptions: Optional mapping string of the form |
|
|
"label:desc,label2:desc2". |
|
|
hf_token: Optional Hugging Face token. |
|
|
|
|
|
Returns: |
|
|
A tuple containing: (dataset, raw_texts, processed_texts, valid_indices, |
|
|
labels_list, desc_map, token) |
|
|
|
|
|
Raises: |
|
|
typer.Exit: If labels are missing, dataset loading fails, the column is |
|
|
absent, or no valid texts remain after preprocessing. |
|
|
|
|
|
""" |
|
|
|
|
|
labels = labels.strip().strip("'\"") |
|
|
labels_list: list[str] = [label.strip().strip("'\"") for label in labels.split(",") if label.strip().strip("'\"")] |
|
|
if not labels_list: |
|
|
logger.error("No labels provided. Use --labels 'label1,label2,...'") |
|
|
raise typer.Exit(code=2) |
|
|
desc_map = _parse_label_descriptions(label_descriptions) |
|
|
|
|
|
|
|
|
token = hf_token or (os.environ.get("HF_TOKEN") or get_token()) |
|
|
if not token: |
|
|
logger.error("No authentication token found. Please either:") |
|
|
logger.error("1. Run 'huggingface-cli login'") |
|
|
logger.error("2. Set HF_TOKEN environment variable") |
|
|
logger.error("3. Pass --hf-token argument") |
|
|
raise typer.Exit(code=1) |
|
|
|
|
|
try: |
|
|
api = HfApi(token=token) |
|
|
user_info = api.whoami() |
|
|
name = user_info.get("name") or user_info.get("email") or "<unknown>" |
|
|
logger.info(f"Authenticated as: {name}") |
|
|
except Exception as e: |
|
|
logger.error(f"Authentication failed: {e}") |
|
|
logger.error("Please check your token is valid") |
|
|
raise typer.Exit(code=1) |
|
|
|
|
|
|
|
|
try: |
|
|
ds: Dataset = load_dataset(input_dataset, split=split) |
|
|
except Exception as e: |
|
|
logger.error(f"Failed to load dataset '{input_dataset}': {e}") |
|
|
raise typer.Exit(code=1) |
|
|
|
|
|
|
|
|
if shuffle: |
|
|
ds = ds.shuffle(seed=shuffle_seed) |
|
|
if max_samples is not None: |
|
|
ds = ds.select(range(min(max_samples, len(ds)))) |
|
|
|
|
|
|
|
|
if column not in ds.column_names: |
|
|
logger.error(f"Column '{column}' not in dataset columns: {ds.column_names}") |
|
|
raise typer.Exit(code=1) |
|
|
|
|
|
|
|
|
raw_texts: list[str] = list(ds[column]) |
|
|
processed_texts: list[str] = [] |
|
|
valid_indices: list[int] = [] |
|
|
for i, t in enumerate(raw_texts): |
|
|
pt = _preprocess_text(t) |
|
|
if _is_valid_text(pt): |
|
|
processed_texts.append(pt) |
|
|
valid_indices.append(i) |
|
|
|
|
|
if not processed_texts: |
|
|
logger.error("No valid texts found for classification (after preprocessing).") |
|
|
raise typer.Exit(code=1) |
|
|
|
|
|
logger.info(f"Prepared {len(processed_texts)} valid texts out of {len(raw_texts)}") |
|
|
|
|
|
return ds, raw_texts, processed_texts, valid_indices, labels_list, desc_map, token |
|
|
|
|
|
|
|
|
def _log_stats( |
|
|
docs: list[sieves.Doc], |
|
|
task: sieves.tasks.Classification, |
|
|
labels_list: list[str], |
|
|
multi_label: bool, |
|
|
raw_texts: list[str], |
|
|
processed_texts: list[str], |
|
|
valid_indices: list[int], |
|
|
) -> None: |
|
|
"""Compute and log distributions. |
|
|
|
|
|
Logs per-label distributions and success/skip metrics. |
|
|
|
|
|
Args: |
|
|
docs: Classified documents corresponding to processed_texts. |
|
|
task: The configured ``Classification`` task instance. |
|
|
labels_list: List of label names in canonical order. |
|
|
multi_label: Whether classification is multi-label. |
|
|
raw_texts: Original text column values. |
|
|
processed_texts: Preprocessed, valid texts used for inference. |
|
|
valid_indices: Indices mapping processed_texts back to raw_texts rows. |
|
|
|
|
|
Returns: |
|
|
None. Pushes datasets to the Hub and logs summary statistics. |
|
|
|
|
|
""" |
|
|
if multi_label: |
|
|
|
|
|
label_counts = {label: 0 for label in labels_list} |
|
|
for doc in docs: |
|
|
result = doc.results[task.id] |
|
|
logger.info(result) |
|
|
if isinstance(result, list): |
|
|
for label, score in result: |
|
|
if label in label_counts and score >= MULTILABEL_THRESHOLD: |
|
|
label_counts[label] += 1 |
|
|
|
|
|
total_processed = len(docs) |
|
|
skipped = len(raw_texts) - len(processed_texts) |
|
|
logger.info(f"Classification distribution (multi-label, threshold={MULTILABEL_THRESHOLD}):") |
|
|
|
|
|
for label in labels_list: |
|
|
count = label_counts.get(label, 0) |
|
|
pct = (count / total_processed * 100.0) if total_processed else 0.0 |
|
|
logger.info(f" {label}: {count} ({pct})") |
|
|
if skipped > 0: |
|
|
skipped_pct = (skipped / len(raw_texts) * 100.0) if raw_texts else 0.0 |
|
|
logger.info(f" Skipped/invalid: {skipped} ({skipped_pct})") |
|
|
|
|
|
else: |
|
|
|
|
|
classifications: list[str | None] = [None] * len(raw_texts) |
|
|
for idx, doc in zip(valid_indices, docs): |
|
|
result = doc.results[task.id] |
|
|
classifications[idx] = result if isinstance(result, str) else result[0] |
|
|
|
|
|
|
|
|
total_texts = len(raw_texts) |
|
|
label_counts = {label: 0 for label in labels_list} |
|
|
for label in labels_list: |
|
|
label_counts[label] = sum(1 for c in classifications if c == label) |
|
|
none_count = sum(1 for c in classifications if c is None) |
|
|
|
|
|
logger.info("Classification distribution (single-label):") |
|
|
for label in labels_list: |
|
|
count = label_counts[label] |
|
|
pct = (count / total_texts * 100.0) if total_texts else 0.0 |
|
|
logger.info(f" {label}: {count} ({pct})") |
|
|
|
|
|
if none_count > 0: |
|
|
none_pct = (none_count / total_texts * 100.0) if total_texts else 0.0 |
|
|
logger.info(f" Invalid/Skipped: {none_count} ({none_pct})") |
|
|
|
|
|
success_rate = (len(valid_indices) / total_texts * 100.0) if total_texts else 0.0 |
|
|
logger.info(f"Classification success rate: {success_rate}") |
|
|
|
|
|
|
|
|
@app.command() |
|
|
def classify( |
|
|
input_dataset: str = typer.Option(..., help="Input dataset ID on Hugging Face Hub"), |
|
|
column: str = typer.Option(..., help="Name of the text column to classify"), |
|
|
labels: str = typer.Option(..., help="Comma-separated list of labels, e.g. 'positive,negative'"), |
|
|
output_dataset: str = typer.Option(..., help="Output dataset ID on Hugging Face Hub"), |
|
|
model: str = typer.Option(..., help="HF model ID to use"), |
|
|
label_descriptions: str | None = typer.Option( |
|
|
None, help="Optional descriptions per label: 'label:desc,label2:desc2'" |
|
|
), |
|
|
max_samples: int | None = typer.Option(None, help="Max number of samples to process (for testing)"), |
|
|
hf_token: str | None = typer.Option(None, help="HF token; if omitted, uses env or cached token"), |
|
|
split: str = typer.Option("train", help="Dataset split (default: train)"), |
|
|
batch_size: int = typer.Option(64, help="Batch size"), |
|
|
max_tokens: int = typer.Option(200, help="Max tokens to generate"), |
|
|
shuffle: bool = typer.Option(False, help="Shuffle dataset before sampling"), |
|
|
shuffle_seed: int | None = typer.Option(None, help="Shuffle seed"), |
|
|
multi_label: bool = typer.Option(False, help="Enable multi-label classification (adds multi-hot 'labels')"), |
|
|
) -> None: |
|
|
"""Classify a Hugging Face dataset using Sieves + Outlines and push results. |
|
|
|
|
|
Runs zero-shot classification over a specified text column using the Sieves |
|
|
``Classification`` task and the Outlines engine. Supports both single-label |
|
|
(default) and multi-label modes. In single-label mode, a "classification" |
|
|
column is added to the original dataset. In multi-label mode, a new dataset |
|
|
with ``text`` and multi-hot ``labels`` columns is created via |
|
|
``Classification.to_hf_dataset``. |
|
|
|
|
|
Args: |
|
|
input_dataset: Dataset repo ID on the Hugging Face Hub. |
|
|
column: Name of the text column to classify. |
|
|
labels: Comma-separated list of allowed labels. |
|
|
output_dataset: Target dataset repo ID to push results to. |
|
|
model: Transformers model ID. Must be provided and non-empty. |
|
|
label_descriptions: Optional per-label descriptions in the form |
|
|
``label:desc,label2:desc2``. |
|
|
max_samples: Optional maximum number of samples to process. |
|
|
hf_token: Optional token; if omitted, uses environment or cached login. |
|
|
split: Dataset split to load (default: ``"train"``). |
|
|
batch_size: Batch size for inference. |
|
|
max_tokens: Maximum tokens for generation per prompt. |
|
|
shuffle: Whether to shuffle the dataset before selecting samples. |
|
|
shuffle_seed: Seed used for shuffling. |
|
|
multi_label: If True, enable multi-label classification and output a |
|
|
multi-hot labels column; otherwise outputs single-label strings. |
|
|
|
|
|
Returns: |
|
|
None. Results are pushed to the Hugging Face Hub under ``output_dataset``. |
|
|
|
|
|
Raises: |
|
|
typer.Exit: If dataset loading fails, a required column is missing, or |
|
|
no valid texts are available for classification. |
|
|
|
|
|
""" |
|
|
token = os.environ.get("HF_TOKEN") or huggingface_hub.get_token() |
|
|
if token: |
|
|
huggingface_hub.login(token=token) |
|
|
|
|
|
logger.info("Loading and preparing data.") |
|
|
( |
|
|
ds, |
|
|
raw_texts, |
|
|
processed_texts, |
|
|
valid_indices, |
|
|
labels_list, |
|
|
desc_map, |
|
|
token, |
|
|
) = _load_and_prepare_data( |
|
|
input_dataset=input_dataset, |
|
|
split=split, |
|
|
shuffle=shuffle, |
|
|
shuffle_seed=shuffle_seed, |
|
|
max_samples=max_samples, |
|
|
column=column, |
|
|
labels=labels, |
|
|
label_descriptions=label_descriptions, |
|
|
hf_token=hf_token, |
|
|
) |
|
|
|
|
|
|
|
|
info = HfApi().model_info(model) |
|
|
device = torch.cuda.get_device_name(0) if torch.cuda.is_available() else None |
|
|
zeroshot_tag = "zero-shot-classification" |
|
|
|
|
|
if info.pipeline_tag == zeroshot_tag or zeroshot_tag in set(info.tags or []): |
|
|
logger.info("Initializing zero-shot classifciation pipeline.") |
|
|
model = transformers.pipeline(zeroshot_tag, model=model, device=device) |
|
|
|
|
|
else: |
|
|
logger.info("Initializing Outlines model.") |
|
|
model = outlines.models.from_transformers( |
|
|
AutoModelForCausalLM.from_pretrained(model, **({"device": device} if device else {})), |
|
|
AutoTokenizer.from_pretrained(model), |
|
|
) |
|
|
|
|
|
|
|
|
logger.info("Initializing pipeline.") |
|
|
task = sieves.tasks.Classification( |
|
|
labels=labels_list, |
|
|
model=model, |
|
|
generation_settings=sieves.GenerationSettings( |
|
|
inference_kwargs={"max_new_tokens": max_tokens}, |
|
|
strict_mode=False, |
|
|
), |
|
|
batch_size=batch_size, |
|
|
label_descriptions=desc_map or None, |
|
|
multi_label=multi_label, |
|
|
) |
|
|
pipe = sieves.Pipeline([task]) |
|
|
|
|
|
docs = [sieves.Doc(text=t) for t in processed_texts] |
|
|
logger.critical( |
|
|
f"Running {'multi-label ' if multi_label else ''}classification pipeline with labels {labels_list} on " |
|
|
f"{len(docs)} docs." |
|
|
) |
|
|
docs = list(pipe([sieves.Doc(text=t) for t in processed_texts])) |
|
|
|
|
|
logger.critical("Logging stats.") |
|
|
_log_stats( |
|
|
docs=docs, |
|
|
task=task, |
|
|
labels_list=labels_list, |
|
|
multi_label=multi_label, |
|
|
raw_texts=raw_texts, |
|
|
processed_texts=processed_texts, |
|
|
valid_indices=valid_indices, |
|
|
) |
|
|
|
|
|
logger.info("Collecting and pushing results.") |
|
|
ds = task.to_hf_dataset(docs, threshold=MULTILABEL_THRESHOLD) |
|
|
ds.push_to_hub( |
|
|
output_dataset, |
|
|
token=token, |
|
|
commit_message=f"Add classifications using Sieves + Outlines (multi-label; threshold={MULTILABEL_THRESHOLD})" |
|
|
) |
|
|
|
|
|
|
|
|
@app.command("examples") |
|
|
def show_examples() -> None: |
|
|
"""Print example commands for common use cases. |
|
|
|
|
|
This mirrors the examples that were previously printed when running the |
|
|
legacy script without arguments. |
|
|
""" |
|
|
cmds = [ |
|
|
"Example commands:", |
|
|
"\n# Simple classification:", |
|
|
"uv run examples/create_classification_dataset_with_sieves.py \\", |
|
|
" --input-dataset stanfordnlp/imdb \\", |
|
|
" --column text \\", |
|
|
" --labels 'positive,negative' \\", |
|
|
" --model MoritzLaurer/deberta-v3-large-zeroshot-v2.0 \\", |
|
|
" --output-dataset your-username/imdb-classified", |
|
|
"\n# With label descriptions:", |
|
|
"uv run examples/create_classification_dataset_with_sieves.py \\", |
|
|
" --input-dataset user/support-tickets \\", |
|
|
" --column content \\", |
|
|
" --labels 'bug,feature,question' \\", |
|
|
" --label-descriptions 'bug:something is broken or not working,feature:request for new functionality," |
|
|
"question:asking for help or clarification' \\", |
|
|
" --model MoritzLaurer/deberta-v3-large-zeroshot-v2.0 \\", |
|
|
" --output-dataset your-username/tickets-classified", |
|
|
"\n# Multi-label classification:", |
|
|
"uv run examples/create_classification_dataset_with_sieves.py \\", |
|
|
" --input-dataset ag_news \\", |
|
|
" --column text \\", |
|
|
" --labels 'world,sports,business,science' \\", |
|
|
" --multi-label \\", |
|
|
" --model MoritzLaurer/deberta-v3-large-zeroshot-v2.0 \\", |
|
|
" --output-dataset your-username/agnews-multilabel", |
|
|
] |
|
|
for line in cmds: |
|
|
typer.echo(line) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
app() |
|
|
|