Update soybean_dataset.py
Browse files- soybean_dataset.py +15 -20
soybean_dataset.py
CHANGED
|
@@ -21,10 +21,10 @@ import os
|
|
| 21 |
from typing import List
|
| 22 |
import datasets
|
| 23 |
import logging
|
| 24 |
-
|
| 25 |
import numpy as np
|
| 26 |
from PIL import Image
|
| 27 |
-
|
| 28 |
import io
|
| 29 |
import pandas as pd
|
| 30 |
import matplotlib.pyplot as plt
|
|
@@ -87,15 +87,15 @@ class SoybeanDataset(datasets.GeneratorBasedBuilder):
|
|
| 87 |
{
|
| 88 |
"unique_id": datasets.Value("string"),
|
| 89 |
"sets": datasets.Value("string"),
|
| 90 |
-
"original_image": datasets.
|
| 91 |
-
"segmentation_image": datasets.
|
| 92 |
|
| 93 |
}
|
| 94 |
),
|
| 95 |
# No default supervised_keys (as we have to pass both question
|
| 96 |
# and context as input).
|
| 97 |
supervised_keys=("original_image","segmentation_image"),
|
| 98 |
-
|
| 99 |
citation=_CITATION,
|
| 100 |
)
|
| 101 |
|
|
@@ -118,15 +118,12 @@ class SoybeanDataset(datasets.GeneratorBasedBuilder):
|
|
| 118 |
]
|
| 119 |
|
| 120 |
def process_image(self,image_url):
|
| 121 |
-
|
| 122 |
-
|
| 123 |
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
numpydata = asarray(img)
|
| 128 |
-
|
| 129 |
-
return numpydata
|
| 130 |
|
| 131 |
|
| 132 |
|
|
@@ -145,8 +142,8 @@ class SoybeanDataset(datasets.GeneratorBasedBuilder):
|
|
| 145 |
segmentation_image_path = row['segmentation_image']
|
| 146 |
sets = row['sets']
|
| 147 |
|
| 148 |
-
|
| 149 |
-
|
| 150 |
|
| 151 |
|
| 152 |
# Here you need to replace 'initial_radius', 'final_radius', 'initial_angle', 'final_angle', 'target'
|
|
@@ -154,8 +151,8 @@ class SoybeanDataset(datasets.GeneratorBasedBuilder):
|
|
| 154 |
yield row['unique_id'], {
|
| 155 |
"unique_id": unique_id,
|
| 156 |
"sets": sets,
|
| 157 |
-
"original_image":
|
| 158 |
-
"segmentation_image":
|
| 159 |
# ... add other features if necessary
|
| 160 |
}
|
| 161 |
|
|
@@ -189,6 +186,4 @@ class SoybeanDataset(datasets.GeneratorBasedBuilder):
|
|
| 189 |
|
| 190 |
|
| 191 |
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
|
|
|
| 21 |
from typing import List
|
| 22 |
import datasets
|
| 23 |
import logging
|
| 24 |
+
import csv
|
| 25 |
import numpy as np
|
| 26 |
from PIL import Image
|
| 27 |
+
import os
|
| 28 |
import io
|
| 29 |
import pandas as pd
|
| 30 |
import matplotlib.pyplot as plt
|
|
|
|
| 87 |
{
|
| 88 |
"unique_id": datasets.Value("string"),
|
| 89 |
"sets": datasets.Value("string"),
|
| 90 |
+
"original_image": datasets.Image(),
|
| 91 |
+
"segmentation_image": datasets.Image(),
|
| 92 |
|
| 93 |
}
|
| 94 |
),
|
| 95 |
# No default supervised_keys (as we have to pass both question
|
| 96 |
# and context as input).
|
| 97 |
supervised_keys=("original_image","segmentation_image"),
|
| 98 |
+
homepage="https://github.com/lisawen0707/soybean/tree/main",
|
| 99 |
citation=_CITATION,
|
| 100 |
)
|
| 101 |
|
|
|
|
| 118 |
]
|
| 119 |
|
| 120 |
def process_image(self,image_url):
|
| 121 |
+
response = requests.get(image_url)
|
| 122 |
+
response.raise_for_status() # This will raise an exception if there is a download error
|
| 123 |
|
| 124 |
+
# Open the image from the downloaded bytes and return the PIL Image
|
| 125 |
+
img = Image.open(BytesIO(response.content))
|
| 126 |
+
return img
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
|
| 129 |
|
|
|
|
| 142 |
segmentation_image_path = row['segmentation_image']
|
| 143 |
sets = row['sets']
|
| 144 |
|
| 145 |
+
original_image = self.process_image(original_image_path)
|
| 146 |
+
segmentation_image = self.process_image(segmentation_image_path)
|
| 147 |
|
| 148 |
|
| 149 |
# Here you need to replace 'initial_radius', 'final_radius', 'initial_angle', 'final_angle', 'target'
|
|
|
|
| 151 |
yield row['unique_id'], {
|
| 152 |
"unique_id": unique_id,
|
| 153 |
"sets": sets,
|
| 154 |
+
"original_image": original_image,
|
| 155 |
+
"segmentation_image": segmentation_image,
|
| 156 |
# ... add other features if necessary
|
| 157 |
}
|
| 158 |
|
|
|
|
| 186 |
|
| 187 |
|
| 188 |
|
| 189 |
+
|
|
|
|
|
|