Update soybean_dataset.py
Browse files- soybean_dataset.py +62 -5
soybean_dataset.py
CHANGED
|
@@ -67,9 +67,9 @@ _LICENSE = "Under a Creative Commons license"
|
|
| 67 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 68 |
_URL = "/content/drive/MyDrive/sta_663/soybean/dataset.csv"
|
| 69 |
_URLs = {
|
| 70 |
-
"train" : "https://
|
| 71 |
-
"test": "https://
|
| 72 |
-
"valid": "https://
|
| 73 |
}
|
| 74 |
|
| 75 |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
|
@@ -136,7 +136,8 @@ class SoybeanDataset(datasets.GeneratorBasedBuilder):
|
|
| 136 |
|
| 137 |
with open(filepath, encoding="utf-8") as f:
|
| 138 |
data = csv.DictReader(f)
|
| 139 |
-
|
|
|
|
| 140 |
for row in data:
|
| 141 |
# Assuming the 'original_image' column has the full path to the image file
|
| 142 |
unique_id = row['unique_id']
|
|
@@ -158,6 +159,28 @@ class SoybeanDataset(datasets.GeneratorBasedBuilder):
|
|
| 158 |
# ... add other features if necessary
|
| 159 |
}
|
| 160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
|
| 163 |
|
|
@@ -169,4 +192,38 @@ class SoybeanDataset(datasets.GeneratorBasedBuilder):
|
|
| 169 |
|
| 170 |
|
| 171 |
|
| 172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 68 |
_URL = "/content/drive/MyDrive/sta_663/soybean/dataset.csv"
|
| 69 |
_URLs = {
|
| 70 |
+
"train" : "https://raw.githubusercontent.com/lisawen0707/soybean/main/train_dataset.csv",
|
| 71 |
+
"test": "https://raw.githubusercontent.com/lisawen0707/soybean/main/test_dataset.csv",
|
| 72 |
+
"valid": "https://raw.githubusercontent.com/lisawen0707/soybean/main/valid_dataset.csv"
|
| 73 |
}
|
| 74 |
|
| 75 |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
|
|
|
| 136 |
|
| 137 |
with open(filepath, encoding="utf-8") as f:
|
| 138 |
data = csv.DictReader(f)
|
| 139 |
+
|
| 140 |
+
|
| 141 |
for row in data:
|
| 142 |
# Assuming the 'original_image' column has the full path to the image file
|
| 143 |
unique_id = row['unique_id']
|
|
|
|
| 159 |
# ... add other features if necessary
|
| 160 |
}
|
| 161 |
|
| 162 |
+
# for row in data:
|
| 163 |
+
# # Assuming the 'original_image' column has the full path to the image file
|
| 164 |
+
# unique_id = row['unique_id']
|
| 165 |
+
# original_image_path = row['original_image']
|
| 166 |
+
# segmentation_image_path = row['segmentation_image']
|
| 167 |
+
# sets = row['sets']
|
| 168 |
+
|
| 169 |
+
# original_image_array = self.process_image(original_image_path)
|
| 170 |
+
# segmentation_image_array = self.process_image(segmentation_image_path)
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
# # Here you need to replace 'initial_radius', 'final_radius', 'initial_angle', 'final_angle', 'target'
|
| 174 |
+
# # with actual columns from your CSV or additional processing you need to do
|
| 175 |
+
# yield row['unique_id'], {
|
| 176 |
+
# "unique_id": unique_id,
|
| 177 |
+
# "sets": sets,
|
| 178 |
+
# "original_image": original_image_array,
|
| 179 |
+
# "segmentation_image": segmentation_image_array,
|
| 180 |
+
# # ... add other features if necessary
|
| 181 |
+
# }
|
| 182 |
+
|
| 183 |
+
|
| 184 |
|
| 185 |
|
| 186 |
|
|
|
|
| 192 |
|
| 193 |
|
| 194 |
|
| 195 |
+
#### origin
|
| 196 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
| 197 |
+
urls_to_download = self._URLS
|
| 198 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
| 199 |
+
|
| 200 |
+
return [
|
| 201 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
| 202 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
|
| 203 |
+
]
|
| 204 |
+
|
| 205 |
+
def _generate_examples(self, filepath):
|
| 206 |
+
"""This function returns the examples in the raw (text) form."""
|
| 207 |
+
logging.info("generating examples from = %s", filepath)
|
| 208 |
+
with open(filepath) as f:
|
| 209 |
+
squad = json.load(f)
|
| 210 |
+
for article in squad["data"]:
|
| 211 |
+
title = article.get("title", "").strip()
|
| 212 |
+
for paragraph in article["paragraphs"]:
|
| 213 |
+
context = paragraph["context"].strip()
|
| 214 |
+
for qa in paragraph["qas"]:
|
| 215 |
+
question = qa["question"].strip()
|
| 216 |
+
id_ = qa["id"]
|
| 217 |
+
|
| 218 |
+
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
|
| 219 |
+
answers = [answer["text"].strip() for answer in qa["answers"]]
|
| 220 |
+
|
| 221 |
+
# Features currently used are "context", "question", and "answers".
|
| 222 |
+
# Others are extracted here for the ease of future expansions.
|
| 223 |
+
yield id_, {
|
| 224 |
+
"title": title,
|
| 225 |
+
"context": context,
|
| 226 |
+
"question": question,
|
| 227 |
+
"id": id_,
|
| 228 |
+
"answers": {"answer_start": answer_starts, "text": answers,},
|
| 229 |
+
}
|