Upload Project1_dataset.ipynb
Browse files- Project1_dataset.ipynb +216 -0
Project1_dataset.ipynb
ADDED
|
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"nbformat": 4,
|
| 3 |
+
"nbformat_minor": 0,
|
| 4 |
+
"metadata": {
|
| 5 |
+
"colab": {
|
| 6 |
+
"provenance": []
|
| 7 |
+
},
|
| 8 |
+
"kernelspec": {
|
| 9 |
+
"name": "python3",
|
| 10 |
+
"display_name": "Python 3"
|
| 11 |
+
},
|
| 12 |
+
"language_info": {
|
| 13 |
+
"name": "python"
|
| 14 |
+
}
|
| 15 |
+
},
|
| 16 |
+
"cells": [
|
| 17 |
+
{
|
| 18 |
+
"cell_type": "code",
|
| 19 |
+
"execution_count": null,
|
| 20 |
+
"metadata": {
|
| 21 |
+
"id": "9QLlZv6DlPC1"
|
| 22 |
+
},
|
| 23 |
+
"outputs": [],
|
| 24 |
+
"source": [
|
| 25 |
+
"from google.colab import drive\n",
|
| 26 |
+
"drive.mount('/content/drive')\n",
|
| 27 |
+
"%cd /content/drive/MyDrive/sta_663/soybean/"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "code",
|
| 32 |
+
"source": [
|
| 33 |
+
"import pandas as pd\n",
|
| 34 |
+
"\n",
|
| 35 |
+
"# Function to read ids from a file and return them as a list with leading zeros\n",
|
| 36 |
+
"def read_ids(file_path):\n",
|
| 37 |
+
" with open(file_path, 'r') as file:\n",
|
| 38 |
+
" # Read the IDs, ensuring they are 6 digits long with leading zeros\n",
|
| 39 |
+
" return [line.zfill(6) for line in file.read().splitlines()]\n",
|
| 40 |
+
"\n",
|
| 41 |
+
"# Function to read ids from a file and assign a set type\n",
|
| 42 |
+
"def assign_set_type(file_path, set_type):\n",
|
| 43 |
+
" # Read the file content\n",
|
| 44 |
+
" with open(file_path, 'r') as file:\n",
|
| 45 |
+
" ids = file.read().splitlines()\n",
|
| 46 |
+
" # Update the 'sets' column based on the ids in the file\n",
|
| 47 |
+
" df.loc[df['unique_id'].isin(ids), 'sets'] = set_type\n",
|
| 48 |
+
"\n"
|
| 49 |
+
],
|
| 50 |
+
"metadata": {
|
| 51 |
+
"id": "prkF3wVLld_k"
|
| 52 |
+
},
|
| 53 |
+
"execution_count": null,
|
| 54 |
+
"outputs": []
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"cell_type": "code",
|
| 58 |
+
"source": [
|
| 59 |
+
"# Read unique_ids from all.txt\n",
|
| 60 |
+
"all_file_path = '/content/drive/MyDrive/sta_663/soybean/ImageSets/Segmentation/all.txt'\n",
|
| 61 |
+
"unique_ids = read_ids(all_file_path)\n",
|
| 62 |
+
"\n",
|
| 63 |
+
"# Initialize the DataFrame with unique_ids and default 'train' set\n",
|
| 64 |
+
"df = pd.DataFrame(unique_ids, columns=['unique_id'])\n",
|
| 65 |
+
"df['sets'] = 'train'\n",
|
| 66 |
+
"\n",
|
| 67 |
+
"# Assign 'test' to the sets column for IDs from test.txt\n",
|
| 68 |
+
"test_file_path = '/content/drive/MyDrive/sta_663/soybean/ImageSets/Segmentation/test.txt'\n",
|
| 69 |
+
"assign_set_type(test_file_path, 'test')\n",
|
| 70 |
+
"\n",
|
| 71 |
+
"# Assign 'valid' to the sets column for IDs from val.txt\n",
|
| 72 |
+
"val_file_path = '/content/drive/MyDrive/sta_663/soybean/ImageSets/Segmentation/val.txt'\n",
|
| 73 |
+
"assign_set_type(val_file_path, 'valid')\n",
|
| 74 |
+
"\n"
|
| 75 |
+
],
|
| 76 |
+
"metadata": {
|
| 77 |
+
"id": "nsFdyvBzlgB_"
|
| 78 |
+
},
|
| 79 |
+
"execution_count": null,
|
| 80 |
+
"outputs": []
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"cell_type": "code",
|
| 84 |
+
"source": [
|
| 85 |
+
"file_path = '/content/drive/MyDrive/sta_663/soybean/dataset.csv'\n",
|
| 86 |
+
"df.to_csv(file_path, index=False)"
|
| 87 |
+
],
|
| 88 |
+
"metadata": {
|
| 89 |
+
"id": "KjRGHJivliym"
|
| 90 |
+
},
|
| 91 |
+
"execution_count": null,
|
| 92 |
+
"outputs": []
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"cell_type": "markdown",
|
| 96 |
+
"source": [
|
| 97 |
+
"Download the dataset.csv file and put into the same directory as the downloaded zip file"
|
| 98 |
+
],
|
| 99 |
+
"metadata": {
|
| 100 |
+
"id": "qyyjofnUmXsh"
|
| 101 |
+
}
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"cell_type": "code",
|
| 105 |
+
"source": [
|
| 106 |
+
"import os\n",
|
| 107 |
+
"import pandas as pd\n",
|
| 108 |
+
"import shutil"
|
| 109 |
+
],
|
| 110 |
+
"metadata": {
|
| 111 |
+
"id": "hm7ZaB5ImAeA"
|
| 112 |
+
},
|
| 113 |
+
"execution_count": null,
|
| 114 |
+
"outputs": []
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"cell_type": "code",
|
| 118 |
+
"source": [
|
| 119 |
+
"# Replace with the path to your CSV file\n",
|
| 120 |
+
"csv_file_path = 'D:\\STA 663\\project_1\\dataset.csv'\n",
|
| 121 |
+
"# Replace with the directory where your images are currently stored\n",
|
| 122 |
+
"images_directory = 'D:\\STA 663\\project_1\\soybean\\JPEGImages'\n",
|
| 123 |
+
"# Replace with the directory where you want to create test/train/validate directories\n",
|
| 124 |
+
"output_base_directory = 'D:\\STA 663\\project_1'\n",
|
| 125 |
+
"\n",
|
| 126 |
+
"# Read the dataset\n",
|
| 127 |
+
"df = pd.read_csv(csv_file_path)\n",
|
| 128 |
+
"df['unique_id'] = df['unique_id'].astype(str).str.zfill(6)"
|
| 129 |
+
],
|
| 130 |
+
"metadata": {
|
| 131 |
+
"id": "iTKsnTUdmI3N"
|
| 132 |
+
},
|
| 133 |
+
"execution_count": null,
|
| 134 |
+
"outputs": []
|
| 135 |
+
},
|
| 136 |
+
{
|
| 137 |
+
"cell_type": "code",
|
| 138 |
+
"source": [
|
| 139 |
+
"# Create directories for the sets if they don't exist\n",
|
| 140 |
+
"for set_type in ['test', 'train', 'valid']:\n",
|
| 141 |
+
" set_directory = os.path.join(output_base_directory, set_type)\n",
|
| 142 |
+
" if not os.path.exists(set_directory):\n",
|
| 143 |
+
" os.makedirs(set_directory)\n",
|
| 144 |
+
"\n",
|
| 145 |
+
"# Function to move and rename files\n",
|
| 146 |
+
"def move_and_rename_files(row):\n",
|
| 147 |
+
" file_name = f\"{row['unique_id']}.jpg\" # Assuming the images are .jpg\n",
|
| 148 |
+
" original_path = os.path.join(images_directory, file_name)\n",
|
| 149 |
+
" if os.path.isfile(original_path):\n",
|
| 150 |
+
" set_type = row['sets']\n",
|
| 151 |
+
" new_name = f\"{row['unique_id']}_original.jpg\"\n",
|
| 152 |
+
" new_path = os.path.join(output_base_directory, set_type, new_name)\n",
|
| 153 |
+
" # Move and rename the file\n",
|
| 154 |
+
" shutil.copy(original_path, new_path) # Use shutil.copy if you want to keep the originals\n",
|
| 155 |
+
"\n",
|
| 156 |
+
"# Apply the function to each row in the dataframe\n",
|
| 157 |
+
"df.apply(move_and_rename_files, axis=1)"
|
| 158 |
+
],
|
| 159 |
+
"metadata": {
|
| 160 |
+
"id": "2dvMgZcOmLt2"
|
| 161 |
+
},
|
| 162 |
+
"execution_count": null,
|
| 163 |
+
"outputs": []
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"cell_type": "code",
|
| 167 |
+
"source": [
|
| 168 |
+
"### Do the same thing for segmentation class"
|
| 169 |
+
],
|
| 170 |
+
"metadata": {
|
| 171 |
+
"id": "aZb9yoXumrrp"
|
| 172 |
+
},
|
| 173 |
+
"execution_count": null,
|
| 174 |
+
"outputs": []
|
| 175 |
+
},
|
| 176 |
+
{
|
| 177 |
+
"cell_type": "code",
|
| 178 |
+
"source": [
|
| 179 |
+
"# Replace with the path to your CSV file\n",
|
| 180 |
+
"csv_file_path = 'D:\\STA 663\\project_1\\dataset.csv'\n",
|
| 181 |
+
"# Replace with the directory where your images are currently stored\n",
|
| 182 |
+
"images_directory = 'D:\\STA 663\\project_1\\soybean\\SegmentationClass'\n",
|
| 183 |
+
"# Replace with the directory where you want to create test/train/validate directories\n",
|
| 184 |
+
"output_base_directory = 'D:\\STA 663\\project_1'"
|
| 185 |
+
],
|
| 186 |
+
"metadata": {
|
| 187 |
+
"id": "Ud79pkDMmyA_"
|
| 188 |
+
},
|
| 189 |
+
"execution_count": null,
|
| 190 |
+
"outputs": []
|
| 191 |
+
},
|
| 192 |
+
{
|
| 193 |
+
"cell_type": "code",
|
| 194 |
+
"source": [
|
| 195 |
+
"# Function to move and rename files\n",
|
| 196 |
+
"def move_and_rename_files(row):\n",
|
| 197 |
+
" file_name = f\"{row['unique_id']}.png\" # Assuming the images are .jpg\n",
|
| 198 |
+
" original_path = os.path.join(images_directory, file_name)\n",
|
| 199 |
+
" if os.path.isfile(original_path):\n",
|
| 200 |
+
" set_type = row['sets']\n",
|
| 201 |
+
" new_name = f\"{row['unique_id']}_segmentation.jpg\"\n",
|
| 202 |
+
" new_path = os.path.join(output_base_directory, set_type, new_name)\n",
|
| 203 |
+
" # Move and rename the file\n",
|
| 204 |
+
" shutil.copy(original_path, new_path) # Use shutil.copy if you want to keep the originals\n",
|
| 205 |
+
"\n",
|
| 206 |
+
"# Apply the function to each row in the dataframe\n",
|
| 207 |
+
"df.apply(move_and_rename_files, axis=1)"
|
| 208 |
+
],
|
| 209 |
+
"metadata": {
|
| 210 |
+
"id": "UoJLs5-Dm2u5"
|
| 211 |
+
},
|
| 212 |
+
"execution_count": null,
|
| 213 |
+
"outputs": []
|
| 214 |
+
}
|
| 215 |
+
]
|
| 216 |
+
}
|