Datasets:
ArXiv:
License:
add preprocessing and dataset code
Browse files- configs/alc/semseg-pt-v3m1-0-base-scannet200-debug.py +294 -0
- configs/alc/semseg-pt-v3m1-0-base-scannet200.py +294 -0
- configs/alc/semseg-pt-v3m1-0-base-wn199-debug.py +291 -0
- configs/alc/semseg-pt-v3m1-0-base-wn199.py +291 -0
- configs/scannet/semseg-pt-v3m1-1-ppt-extreme-alc.py +782 -0
- configs/scannet200/semseg-pt-v3m1-1-ppt-extreme-alc.py +972 -0
- configs/scannetpp/semseg-pt-v3m1-2-ppt-extreme-alc.py +445 -0
- pointcept/datasets/alc.py +156 -0
- pointcept/datasets/preprocessing/alc/preprocess_arkitscenes_labelmaker_consensus.py +375 -0
configs/alc/semseg-pt-v3m1-0-base-scannet200-debug.py
ADDED
|
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pointcept.datasets.preprocessing.scannet.meta_data.scannet200_constants import (
|
| 2 |
+
CLASS_LABELS_200,
|
| 3 |
+
)
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
_base_ = ["../_base_/default_runtime.py"]
|
| 7 |
+
|
| 8 |
+
# misc custom setting
|
| 9 |
+
batch_size = 2 # bs: total bs in all gpus
|
| 10 |
+
num_worker = 24
|
| 11 |
+
mix_prob = 0.8
|
| 12 |
+
empty_cache = False
|
| 13 |
+
enable_amp = True
|
| 14 |
+
|
| 15 |
+
# model settings
|
| 16 |
+
model = dict(
|
| 17 |
+
type="DefaultSegmentorV2",
|
| 18 |
+
num_classes=200,
|
| 19 |
+
backbone_out_channels=64,
|
| 20 |
+
backbone=dict(
|
| 21 |
+
type="PT-v3m1",
|
| 22 |
+
in_channels=6,
|
| 23 |
+
order=["z", "z-trans", "hilbert", "hilbert-trans"],
|
| 24 |
+
stride=(2, 2, 2, 2),
|
| 25 |
+
enc_depths=(2, 2, 2, 6, 2),
|
| 26 |
+
enc_channels=(32, 64, 128, 256, 512),
|
| 27 |
+
enc_num_head=(2, 4, 8, 16, 32),
|
| 28 |
+
enc_patch_size=(1024, 1024, 1024, 1024, 1024),
|
| 29 |
+
dec_depths=(2, 2, 2, 2),
|
| 30 |
+
dec_channels=(64, 64, 128, 256),
|
| 31 |
+
dec_num_head=(4, 4, 8, 16),
|
| 32 |
+
dec_patch_size=(1024, 1024, 1024, 1024),
|
| 33 |
+
mlp_ratio=4,
|
| 34 |
+
qkv_bias=True,
|
| 35 |
+
qk_scale=None,
|
| 36 |
+
attn_drop=0.0,
|
| 37 |
+
proj_drop=0.0,
|
| 38 |
+
drop_path=0.3,
|
| 39 |
+
shuffle_orders=True,
|
| 40 |
+
pre_norm=True,
|
| 41 |
+
enable_rpe=False,
|
| 42 |
+
enable_flash=True,
|
| 43 |
+
upcast_attention=False,
|
| 44 |
+
upcast_softmax=False,
|
| 45 |
+
cls_mode=False,
|
| 46 |
+
pdnorm_bn=False,
|
| 47 |
+
pdnorm_ln=False,
|
| 48 |
+
pdnorm_decouple=True,
|
| 49 |
+
pdnorm_adaptive=False,
|
| 50 |
+
pdnorm_affine=True,
|
| 51 |
+
pdnorm_conditions=("ScanNet", "S3DIS", "Structured3D"),
|
| 52 |
+
),
|
| 53 |
+
criteria=[
|
| 54 |
+
dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1),
|
| 55 |
+
dict(type="LovaszLoss", mode="multiclass", loss_weight=1.0, ignore_index=-1),
|
| 56 |
+
],
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# scheduler settings
|
| 60 |
+
epoch = 800
|
| 61 |
+
optimizer = dict(type="AdamW", lr=0.006, weight_decay=0.05)
|
| 62 |
+
scheduler = dict(
|
| 63 |
+
type="OneCycleLR",
|
| 64 |
+
max_lr=[0.006, 0.0006],
|
| 65 |
+
pct_start=0.05,
|
| 66 |
+
anneal_strategy="cos",
|
| 67 |
+
div_factor=10.0,
|
| 68 |
+
final_div_factor=1000.0,
|
| 69 |
+
)
|
| 70 |
+
param_dicts = [dict(keyword="block", lr=0.0006)]
|
| 71 |
+
|
| 72 |
+
# dataset settings
|
| 73 |
+
dataset_type = "ARKitScenesLabelMakerScanNet200Dataset"
|
| 74 |
+
data_root = "data/alc"
|
| 75 |
+
|
| 76 |
+
data = dict(
|
| 77 |
+
num_classes=200,
|
| 78 |
+
ignore_index=-1,
|
| 79 |
+
names=CLASS_LABELS_200,
|
| 80 |
+
train=dict(
|
| 81 |
+
type=dataset_type,
|
| 82 |
+
split="train",
|
| 83 |
+
data_root=data_root,
|
| 84 |
+
transform=[
|
| 85 |
+
dict(type="CenterShift", apply_z=True),
|
| 86 |
+
dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
|
| 87 |
+
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75),
|
| 88 |
+
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
|
| 89 |
+
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5),
|
| 90 |
+
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5),
|
| 91 |
+
dict(type="RandomScale", scale=[0.9, 1.1]),
|
| 92 |
+
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
|
| 93 |
+
dict(type="RandomFlip", p=0.5),
|
| 94 |
+
dict(type="RandomJitter", sigma=0.005, clip=0.02),
|
| 95 |
+
dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
|
| 96 |
+
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
|
| 97 |
+
dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
|
| 98 |
+
dict(type="ChromaticJitter", p=0.95, std=0.05),
|
| 99 |
+
# dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2),
|
| 100 |
+
# dict(type="RandomColorDrop", p=0.2, color_augment=0.0),
|
| 101 |
+
dict(
|
| 102 |
+
type="GridSample",
|
| 103 |
+
grid_size=0.02,
|
| 104 |
+
hash_type="fnv",
|
| 105 |
+
mode="train",
|
| 106 |
+
return_grid_coord=True,
|
| 107 |
+
),
|
| 108 |
+
dict(type="SphereCrop", point_max=102400, mode="random"),
|
| 109 |
+
dict(type="CenterShift", apply_z=False),
|
| 110 |
+
dict(type="NormalizeColor"),
|
| 111 |
+
# dict(type="ShufflePoint"),
|
| 112 |
+
dict(type="ToTensor"),
|
| 113 |
+
dict(
|
| 114 |
+
type="Collect",
|
| 115 |
+
keys=("coord", "grid_coord", "segment"),
|
| 116 |
+
feat_keys=("color", "normal"),
|
| 117 |
+
),
|
| 118 |
+
],
|
| 119 |
+
test_mode=False,
|
| 120 |
+
),
|
| 121 |
+
val=dict(
|
| 122 |
+
type=dataset_type,
|
| 123 |
+
split="val",
|
| 124 |
+
data_root=data_root,
|
| 125 |
+
transform=[
|
| 126 |
+
dict(type="CenterShift", apply_z=True),
|
| 127 |
+
dict(
|
| 128 |
+
type="GridSample",
|
| 129 |
+
grid_size=0.02,
|
| 130 |
+
hash_type="fnv",
|
| 131 |
+
mode="train",
|
| 132 |
+
return_grid_coord=True,
|
| 133 |
+
),
|
| 134 |
+
dict(type="CenterShift", apply_z=False),
|
| 135 |
+
dict(type="NormalizeColor"),
|
| 136 |
+
dict(type="ToTensor"),
|
| 137 |
+
dict(
|
| 138 |
+
type="Collect",
|
| 139 |
+
keys=("coord", "grid_coord", "segment"),
|
| 140 |
+
feat_keys=("color", "normal"),
|
| 141 |
+
),
|
| 142 |
+
],
|
| 143 |
+
test_mode=False,
|
| 144 |
+
),
|
| 145 |
+
test=dict(
|
| 146 |
+
type=dataset_type,
|
| 147 |
+
split="val",
|
| 148 |
+
data_root=data_root,
|
| 149 |
+
transform=[
|
| 150 |
+
dict(type="CenterShift", apply_z=True),
|
| 151 |
+
dict(type="NormalizeColor"),
|
| 152 |
+
],
|
| 153 |
+
test_mode=True,
|
| 154 |
+
test_cfg=dict(
|
| 155 |
+
voxelize=dict(
|
| 156 |
+
type="GridSample",
|
| 157 |
+
grid_size=0.02,
|
| 158 |
+
hash_type="fnv",
|
| 159 |
+
mode="test",
|
| 160 |
+
keys=("coord", "color", "normal"),
|
| 161 |
+
return_grid_coord=True,
|
| 162 |
+
),
|
| 163 |
+
crop=None,
|
| 164 |
+
post_transform=[
|
| 165 |
+
dict(type="CenterShift", apply_z=False),
|
| 166 |
+
dict(type="ToTensor"),
|
| 167 |
+
dict(
|
| 168 |
+
type="Collect",
|
| 169 |
+
keys=("coord", "grid_coord", "index"),
|
| 170 |
+
feat_keys=("color", "normal"),
|
| 171 |
+
),
|
| 172 |
+
],
|
| 173 |
+
aug_transform=[
|
| 174 |
+
[
|
| 175 |
+
dict(
|
| 176 |
+
type="RandomRotateTargetAngle",
|
| 177 |
+
angle=[0],
|
| 178 |
+
axis="z",
|
| 179 |
+
center=[0, 0, 0],
|
| 180 |
+
p=1,
|
| 181 |
+
)
|
| 182 |
+
],
|
| 183 |
+
[
|
| 184 |
+
dict(
|
| 185 |
+
type="RandomRotateTargetAngle",
|
| 186 |
+
angle=[1 / 2],
|
| 187 |
+
axis="z",
|
| 188 |
+
center=[0, 0, 0],
|
| 189 |
+
p=1,
|
| 190 |
+
)
|
| 191 |
+
],
|
| 192 |
+
[
|
| 193 |
+
dict(
|
| 194 |
+
type="RandomRotateTargetAngle",
|
| 195 |
+
angle=[1],
|
| 196 |
+
axis="z",
|
| 197 |
+
center=[0, 0, 0],
|
| 198 |
+
p=1,
|
| 199 |
+
)
|
| 200 |
+
],
|
| 201 |
+
[
|
| 202 |
+
dict(
|
| 203 |
+
type="RandomRotateTargetAngle",
|
| 204 |
+
angle=[3 / 2],
|
| 205 |
+
axis="z",
|
| 206 |
+
center=[0, 0, 0],
|
| 207 |
+
p=1,
|
| 208 |
+
)
|
| 209 |
+
],
|
| 210 |
+
[
|
| 211 |
+
dict(
|
| 212 |
+
type="RandomRotateTargetAngle",
|
| 213 |
+
angle=[0],
|
| 214 |
+
axis="z",
|
| 215 |
+
center=[0, 0, 0],
|
| 216 |
+
p=1,
|
| 217 |
+
),
|
| 218 |
+
dict(type="RandomScale", scale=[0.95, 0.95]),
|
| 219 |
+
],
|
| 220 |
+
[
|
| 221 |
+
dict(
|
| 222 |
+
type="RandomRotateTargetAngle",
|
| 223 |
+
angle=[1 / 2],
|
| 224 |
+
axis="z",
|
| 225 |
+
center=[0, 0, 0],
|
| 226 |
+
p=1,
|
| 227 |
+
),
|
| 228 |
+
dict(type="RandomScale", scale=[0.95, 0.95]),
|
| 229 |
+
],
|
| 230 |
+
[
|
| 231 |
+
dict(
|
| 232 |
+
type="RandomRotateTargetAngle",
|
| 233 |
+
angle=[1],
|
| 234 |
+
axis="z",
|
| 235 |
+
center=[0, 0, 0],
|
| 236 |
+
p=1,
|
| 237 |
+
),
|
| 238 |
+
dict(type="RandomScale", scale=[0.95, 0.95]),
|
| 239 |
+
],
|
| 240 |
+
[
|
| 241 |
+
dict(
|
| 242 |
+
type="RandomRotateTargetAngle",
|
| 243 |
+
angle=[3 / 2],
|
| 244 |
+
axis="z",
|
| 245 |
+
center=[0, 0, 0],
|
| 246 |
+
p=1,
|
| 247 |
+
),
|
| 248 |
+
dict(type="RandomScale", scale=[0.95, 0.95]),
|
| 249 |
+
],
|
| 250 |
+
[
|
| 251 |
+
dict(
|
| 252 |
+
type="RandomRotateTargetAngle",
|
| 253 |
+
angle=[0],
|
| 254 |
+
axis="z",
|
| 255 |
+
center=[0, 0, 0],
|
| 256 |
+
p=1,
|
| 257 |
+
),
|
| 258 |
+
dict(type="RandomScale", scale=[1.05, 1.05]),
|
| 259 |
+
],
|
| 260 |
+
[
|
| 261 |
+
dict(
|
| 262 |
+
type="RandomRotateTargetAngle",
|
| 263 |
+
angle=[1 / 2],
|
| 264 |
+
axis="z",
|
| 265 |
+
center=[0, 0, 0],
|
| 266 |
+
p=1,
|
| 267 |
+
),
|
| 268 |
+
dict(type="RandomScale", scale=[1.05, 1.05]),
|
| 269 |
+
],
|
| 270 |
+
[
|
| 271 |
+
dict(
|
| 272 |
+
type="RandomRotateTargetAngle",
|
| 273 |
+
angle=[1],
|
| 274 |
+
axis="z",
|
| 275 |
+
center=[0, 0, 0],
|
| 276 |
+
p=1,
|
| 277 |
+
),
|
| 278 |
+
dict(type="RandomScale", scale=[1.05, 1.05]),
|
| 279 |
+
],
|
| 280 |
+
[
|
| 281 |
+
dict(
|
| 282 |
+
type="RandomRotateTargetAngle",
|
| 283 |
+
angle=[3 / 2],
|
| 284 |
+
axis="z",
|
| 285 |
+
center=[0, 0, 0],
|
| 286 |
+
p=1,
|
| 287 |
+
),
|
| 288 |
+
dict(type="RandomScale", scale=[1.05, 1.05]),
|
| 289 |
+
],
|
| 290 |
+
[dict(type="RandomFlip", p=1)],
|
| 291 |
+
],
|
| 292 |
+
),
|
| 293 |
+
),
|
| 294 |
+
)
|
configs/alc/semseg-pt-v3m1-0-base-scannet200.py
ADDED
|
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pointcept.datasets.preprocessing.scannet.meta_data.scannet200_constants import (
|
| 2 |
+
CLASS_LABELS_200,
|
| 3 |
+
)
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
_base_ = ["../_base_/default_runtime.py"]
|
| 7 |
+
|
| 8 |
+
# misc custom setting
|
| 9 |
+
batch_size = 12 # bs: total bs in all gpus
|
| 10 |
+
num_worker = 24
|
| 11 |
+
mix_prob = 0.8
|
| 12 |
+
empty_cache = False
|
| 13 |
+
enable_amp = True
|
| 14 |
+
|
| 15 |
+
# model settings
|
| 16 |
+
model = dict(
|
| 17 |
+
type="DefaultSegmentorV2",
|
| 18 |
+
num_classes=200,
|
| 19 |
+
backbone_out_channels=64,
|
| 20 |
+
backbone=dict(
|
| 21 |
+
type="PT-v3m1",
|
| 22 |
+
in_channels=6,
|
| 23 |
+
order=["z", "z-trans", "hilbert", "hilbert-trans"],
|
| 24 |
+
stride=(2, 2, 2, 2),
|
| 25 |
+
enc_depths=(2, 2, 2, 6, 2),
|
| 26 |
+
enc_channels=(32, 64, 128, 256, 512),
|
| 27 |
+
enc_num_head=(2, 4, 8, 16, 32),
|
| 28 |
+
enc_patch_size=(1024, 1024, 1024, 1024, 1024),
|
| 29 |
+
dec_depths=(2, 2, 2, 2),
|
| 30 |
+
dec_channels=(64, 64, 128, 256),
|
| 31 |
+
dec_num_head=(4, 4, 8, 16),
|
| 32 |
+
dec_patch_size=(1024, 1024, 1024, 1024),
|
| 33 |
+
mlp_ratio=4,
|
| 34 |
+
qkv_bias=True,
|
| 35 |
+
qk_scale=None,
|
| 36 |
+
attn_drop=0.0,
|
| 37 |
+
proj_drop=0.0,
|
| 38 |
+
drop_path=0.3,
|
| 39 |
+
shuffle_orders=True,
|
| 40 |
+
pre_norm=True,
|
| 41 |
+
enable_rpe=False,
|
| 42 |
+
enable_flash=True,
|
| 43 |
+
upcast_attention=False,
|
| 44 |
+
upcast_softmax=False,
|
| 45 |
+
cls_mode=False,
|
| 46 |
+
pdnorm_bn=False,
|
| 47 |
+
pdnorm_ln=False,
|
| 48 |
+
pdnorm_decouple=True,
|
| 49 |
+
pdnorm_adaptive=False,
|
| 50 |
+
pdnorm_affine=True,
|
| 51 |
+
pdnorm_conditions=("ScanNet", "S3DIS", "Structured3D", "ALC"),
|
| 52 |
+
),
|
| 53 |
+
criteria=[
|
| 54 |
+
dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1),
|
| 55 |
+
dict(type="LovaszLoss", mode="multiclass", loss_weight=1.0, ignore_index=-1),
|
| 56 |
+
],
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# scheduler settings
|
| 60 |
+
epoch = 800
|
| 61 |
+
optimizer = dict(type="AdamW", lr=0.00161, weight_decay=0.05)
|
| 62 |
+
scheduler = dict(
|
| 63 |
+
type="OneCycleLR",
|
| 64 |
+
max_lr=[0.00161, 0.000161],
|
| 65 |
+
pct_start=0.05,
|
| 66 |
+
anneal_strategy="cos",
|
| 67 |
+
div_factor=10.0,
|
| 68 |
+
final_div_factor=1000.0,
|
| 69 |
+
)
|
| 70 |
+
param_dicts = [dict(keyword="block", lr=0.0006)]
|
| 71 |
+
|
| 72 |
+
# dataset settings
|
| 73 |
+
dataset_type = "ARKitScenesLabelMakerScanNet200Dataset"
|
| 74 |
+
data_root = "data/alc"
|
| 75 |
+
|
| 76 |
+
data = dict(
|
| 77 |
+
num_classes=200,
|
| 78 |
+
ignore_index=-1,
|
| 79 |
+
names=CLASS_LABELS_200,
|
| 80 |
+
train=dict(
|
| 81 |
+
type=dataset_type,
|
| 82 |
+
split="train",
|
| 83 |
+
data_root=data_root,
|
| 84 |
+
transform=[
|
| 85 |
+
dict(type="CenterShift", apply_z=True),
|
| 86 |
+
dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
|
| 87 |
+
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75),
|
| 88 |
+
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
|
| 89 |
+
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5),
|
| 90 |
+
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5),
|
| 91 |
+
dict(type="RandomScale", scale=[0.9, 1.1]),
|
| 92 |
+
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
|
| 93 |
+
dict(type="RandomFlip", p=0.5),
|
| 94 |
+
dict(type="RandomJitter", sigma=0.005, clip=0.02),
|
| 95 |
+
dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
|
| 96 |
+
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
|
| 97 |
+
dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
|
| 98 |
+
dict(type="ChromaticJitter", p=0.95, std=0.05),
|
| 99 |
+
# dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2),
|
| 100 |
+
# dict(type="RandomColorDrop", p=0.2, color_augment=0.0),
|
| 101 |
+
dict(
|
| 102 |
+
type="GridSample",
|
| 103 |
+
grid_size=0.02,
|
| 104 |
+
hash_type="fnv",
|
| 105 |
+
mode="train",
|
| 106 |
+
return_grid_coord=True,
|
| 107 |
+
),
|
| 108 |
+
dict(type="SphereCrop", point_max=102400, mode="random"),
|
| 109 |
+
dict(type="CenterShift", apply_z=False),
|
| 110 |
+
dict(type="NormalizeColor"),
|
| 111 |
+
# dict(type="ShufflePoint"),
|
| 112 |
+
dict(type="ToTensor"),
|
| 113 |
+
dict(
|
| 114 |
+
type="Collect",
|
| 115 |
+
keys=("coord", "grid_coord", "segment"),
|
| 116 |
+
feat_keys=("color", "normal"),
|
| 117 |
+
),
|
| 118 |
+
],
|
| 119 |
+
test_mode=False,
|
| 120 |
+
),
|
| 121 |
+
val=dict(
|
| 122 |
+
type=dataset_type,
|
| 123 |
+
split="val",
|
| 124 |
+
data_root=data_root,
|
| 125 |
+
transform=[
|
| 126 |
+
dict(type="CenterShift", apply_z=True),
|
| 127 |
+
dict(
|
| 128 |
+
type="GridSample",
|
| 129 |
+
grid_size=0.02,
|
| 130 |
+
hash_type="fnv",
|
| 131 |
+
mode="train",
|
| 132 |
+
return_grid_coord=True,
|
| 133 |
+
),
|
| 134 |
+
dict(type="CenterShift", apply_z=False),
|
| 135 |
+
dict(type="NormalizeColor"),
|
| 136 |
+
dict(type="ToTensor"),
|
| 137 |
+
dict(
|
| 138 |
+
type="Collect",
|
| 139 |
+
keys=("coord", "grid_coord", "segment"),
|
| 140 |
+
feat_keys=("color", "normal"),
|
| 141 |
+
),
|
| 142 |
+
],
|
| 143 |
+
test_mode=False,
|
| 144 |
+
),
|
| 145 |
+
test=dict(
|
| 146 |
+
type=dataset_type,
|
| 147 |
+
split="val",
|
| 148 |
+
data_root=data_root,
|
| 149 |
+
transform=[
|
| 150 |
+
dict(type="CenterShift", apply_z=True),
|
| 151 |
+
dict(type="NormalizeColor"),
|
| 152 |
+
],
|
| 153 |
+
test_mode=True,
|
| 154 |
+
test_cfg=dict(
|
| 155 |
+
voxelize=dict(
|
| 156 |
+
type="GridSample",
|
| 157 |
+
grid_size=0.02,
|
| 158 |
+
hash_type="fnv",
|
| 159 |
+
mode="test",
|
| 160 |
+
keys=("coord", "color", "normal"),
|
| 161 |
+
return_grid_coord=True,
|
| 162 |
+
),
|
| 163 |
+
crop=None,
|
| 164 |
+
post_transform=[
|
| 165 |
+
dict(type="CenterShift", apply_z=False),
|
| 166 |
+
dict(type="ToTensor"),
|
| 167 |
+
dict(
|
| 168 |
+
type="Collect",
|
| 169 |
+
keys=("coord", "grid_coord", "index"),
|
| 170 |
+
feat_keys=("color", "normal"),
|
| 171 |
+
),
|
| 172 |
+
],
|
| 173 |
+
aug_transform=[
|
| 174 |
+
[
|
| 175 |
+
dict(
|
| 176 |
+
type="RandomRotateTargetAngle",
|
| 177 |
+
angle=[0],
|
| 178 |
+
axis="z",
|
| 179 |
+
center=[0, 0, 0],
|
| 180 |
+
p=1,
|
| 181 |
+
)
|
| 182 |
+
],
|
| 183 |
+
[
|
| 184 |
+
dict(
|
| 185 |
+
type="RandomRotateTargetAngle",
|
| 186 |
+
angle=[1 / 2],
|
| 187 |
+
axis="z",
|
| 188 |
+
center=[0, 0, 0],
|
| 189 |
+
p=1,
|
| 190 |
+
)
|
| 191 |
+
],
|
| 192 |
+
[
|
| 193 |
+
dict(
|
| 194 |
+
type="RandomRotateTargetAngle",
|
| 195 |
+
angle=[1],
|
| 196 |
+
axis="z",
|
| 197 |
+
center=[0, 0, 0],
|
| 198 |
+
p=1,
|
| 199 |
+
)
|
| 200 |
+
],
|
| 201 |
+
[
|
| 202 |
+
dict(
|
| 203 |
+
type="RandomRotateTargetAngle",
|
| 204 |
+
angle=[3 / 2],
|
| 205 |
+
axis="z",
|
| 206 |
+
center=[0, 0, 0],
|
| 207 |
+
p=1,
|
| 208 |
+
)
|
| 209 |
+
],
|
| 210 |
+
[
|
| 211 |
+
dict(
|
| 212 |
+
type="RandomRotateTargetAngle",
|
| 213 |
+
angle=[0],
|
| 214 |
+
axis="z",
|
| 215 |
+
center=[0, 0, 0],
|
| 216 |
+
p=1,
|
| 217 |
+
),
|
| 218 |
+
dict(type="RandomScale", scale=[0.95, 0.95]),
|
| 219 |
+
],
|
| 220 |
+
[
|
| 221 |
+
dict(
|
| 222 |
+
type="RandomRotateTargetAngle",
|
| 223 |
+
angle=[1 / 2],
|
| 224 |
+
axis="z",
|
| 225 |
+
center=[0, 0, 0],
|
| 226 |
+
p=1,
|
| 227 |
+
),
|
| 228 |
+
dict(type="RandomScale", scale=[0.95, 0.95]),
|
| 229 |
+
],
|
| 230 |
+
[
|
| 231 |
+
dict(
|
| 232 |
+
type="RandomRotateTargetAngle",
|
| 233 |
+
angle=[1],
|
| 234 |
+
axis="z",
|
| 235 |
+
center=[0, 0, 0],
|
| 236 |
+
p=1,
|
| 237 |
+
),
|
| 238 |
+
dict(type="RandomScale", scale=[0.95, 0.95]),
|
| 239 |
+
],
|
| 240 |
+
[
|
| 241 |
+
dict(
|
| 242 |
+
type="RandomRotateTargetAngle",
|
| 243 |
+
angle=[3 / 2],
|
| 244 |
+
axis="z",
|
| 245 |
+
center=[0, 0, 0],
|
| 246 |
+
p=1,
|
| 247 |
+
),
|
| 248 |
+
dict(type="RandomScale", scale=[0.95, 0.95]),
|
| 249 |
+
],
|
| 250 |
+
[
|
| 251 |
+
dict(
|
| 252 |
+
type="RandomRotateTargetAngle",
|
| 253 |
+
angle=[0],
|
| 254 |
+
axis="z",
|
| 255 |
+
center=[0, 0, 0],
|
| 256 |
+
p=1,
|
| 257 |
+
),
|
| 258 |
+
dict(type="RandomScale", scale=[1.05, 1.05]),
|
| 259 |
+
],
|
| 260 |
+
[
|
| 261 |
+
dict(
|
| 262 |
+
type="RandomRotateTargetAngle",
|
| 263 |
+
angle=[1 / 2],
|
| 264 |
+
axis="z",
|
| 265 |
+
center=[0, 0, 0],
|
| 266 |
+
p=1,
|
| 267 |
+
),
|
| 268 |
+
dict(type="RandomScale", scale=[1.05, 1.05]),
|
| 269 |
+
],
|
| 270 |
+
[
|
| 271 |
+
dict(
|
| 272 |
+
type="RandomRotateTargetAngle",
|
| 273 |
+
angle=[1],
|
| 274 |
+
axis="z",
|
| 275 |
+
center=[0, 0, 0],
|
| 276 |
+
p=1,
|
| 277 |
+
),
|
| 278 |
+
dict(type="RandomScale", scale=[1.05, 1.05]),
|
| 279 |
+
],
|
| 280 |
+
[
|
| 281 |
+
dict(
|
| 282 |
+
type="RandomRotateTargetAngle",
|
| 283 |
+
angle=[3 / 2],
|
| 284 |
+
axis="z",
|
| 285 |
+
center=[0, 0, 0],
|
| 286 |
+
p=1,
|
| 287 |
+
),
|
| 288 |
+
dict(type="RandomScale", scale=[1.05, 1.05]),
|
| 289 |
+
],
|
| 290 |
+
[dict(type="RandomFlip", p=1)],
|
| 291 |
+
],
|
| 292 |
+
),
|
| 293 |
+
),
|
| 294 |
+
)
|
configs/alc/semseg-pt-v3m1-0-base-wn199-debug.py
ADDED
|
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pointcept.datasets.preprocessing.alc.preprocess_arkitscenes_labelmaker_consensus import WORDNET_NAMES
|
| 2 |
+
|
| 3 |
+
_base_ = ["../_base_/default_runtime.py"]
|
| 4 |
+
|
| 5 |
+
# misc custom setting
|
| 6 |
+
batch_size = 1 # bs: total bs in all gpus
|
| 7 |
+
num_worker = 24
|
| 8 |
+
mix_prob = 0.8
|
| 9 |
+
empty_cache = False
|
| 10 |
+
enable_amp = True
|
| 11 |
+
|
| 12 |
+
# model settings
|
| 13 |
+
model = dict(
|
| 14 |
+
type="DefaultSegmentorV2",
|
| 15 |
+
num_classes=185,
|
| 16 |
+
backbone_out_channels=64,
|
| 17 |
+
backbone=dict(
|
| 18 |
+
type="PT-v3m1",
|
| 19 |
+
in_channels=6,
|
| 20 |
+
order=["z", "z-trans", "hilbert", "hilbert-trans"],
|
| 21 |
+
stride=(2, 2, 2, 2),
|
| 22 |
+
enc_depths=(2, 2, 2, 6, 2),
|
| 23 |
+
enc_channels=(32, 64, 128, 256, 512),
|
| 24 |
+
enc_num_head=(2, 4, 8, 16, 32),
|
| 25 |
+
enc_patch_size=(1024, 1024, 1024, 1024, 1024),
|
| 26 |
+
dec_depths=(2, 2, 2, 2),
|
| 27 |
+
dec_channels=(64, 64, 128, 256),
|
| 28 |
+
dec_num_head=(4, 4, 8, 16),
|
| 29 |
+
dec_patch_size=(1024, 1024, 1024, 1024),
|
| 30 |
+
mlp_ratio=4,
|
| 31 |
+
qkv_bias=True,
|
| 32 |
+
qk_scale=None,
|
| 33 |
+
attn_drop=0.0,
|
| 34 |
+
proj_drop=0.0,
|
| 35 |
+
drop_path=0.3,
|
| 36 |
+
shuffle_orders=True,
|
| 37 |
+
pre_norm=True,
|
| 38 |
+
enable_rpe=False,
|
| 39 |
+
enable_flash=True,
|
| 40 |
+
upcast_attention=False,
|
| 41 |
+
upcast_softmax=False,
|
| 42 |
+
cls_mode=False,
|
| 43 |
+
pdnorm_bn=False,
|
| 44 |
+
pdnorm_ln=False,
|
| 45 |
+
pdnorm_decouple=True,
|
| 46 |
+
pdnorm_adaptive=False,
|
| 47 |
+
pdnorm_affine=True,
|
| 48 |
+
pdnorm_conditions=("ScanNet", "S3DIS", "Structured3D"),
|
| 49 |
+
),
|
| 50 |
+
criteria=[
|
| 51 |
+
dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1),
|
| 52 |
+
dict(type="LovaszLoss", mode="multiclass", loss_weight=1.0, ignore_index=-1),
|
| 53 |
+
],
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
# scheduler settings
|
| 57 |
+
epoch = 800
|
| 58 |
+
optimizer = dict(type="AdamW", lr=0.006, weight_decay=0.05)
|
| 59 |
+
scheduler = dict(
|
| 60 |
+
type="OneCycleLR",
|
| 61 |
+
max_lr=[0.006, 0.0006],
|
| 62 |
+
pct_start=0.05,
|
| 63 |
+
anneal_strategy="cos",
|
| 64 |
+
div_factor=10.0,
|
| 65 |
+
final_div_factor=1000.0,
|
| 66 |
+
)
|
| 67 |
+
param_dicts = [dict(keyword="block", lr=0.0006)]
|
| 68 |
+
|
| 69 |
+
# dataset settings
|
| 70 |
+
dataset_type = "ARKitScenesLabelMakerConsensusDataset"
|
| 71 |
+
data_root = "data/alc"
|
| 72 |
+
|
| 73 |
+
data = dict(
|
| 74 |
+
num_classes=185,
|
| 75 |
+
ignore_index=-1,
|
| 76 |
+
names=WORDNET_NAMES,
|
| 77 |
+
train=dict(
|
| 78 |
+
type=dataset_type,
|
| 79 |
+
split="train",
|
| 80 |
+
data_root=data_root,
|
| 81 |
+
transform=[
|
| 82 |
+
dict(type="CenterShift", apply_z=True),
|
| 83 |
+
dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
|
| 84 |
+
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75),
|
| 85 |
+
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
|
| 86 |
+
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5),
|
| 87 |
+
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5),
|
| 88 |
+
dict(type="RandomScale", scale=[0.9, 1.1]),
|
| 89 |
+
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
|
| 90 |
+
dict(type="RandomFlip", p=0.5),
|
| 91 |
+
dict(type="RandomJitter", sigma=0.005, clip=0.02),
|
| 92 |
+
dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
|
| 93 |
+
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
|
| 94 |
+
dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
|
| 95 |
+
dict(type="ChromaticJitter", p=0.95, std=0.05),
|
| 96 |
+
# dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2),
|
| 97 |
+
# dict(type="RandomColorDrop", p=0.2, color_augment=0.0),
|
| 98 |
+
dict(
|
| 99 |
+
type="GridSample",
|
| 100 |
+
grid_size=0.02,
|
| 101 |
+
hash_type="fnv",
|
| 102 |
+
mode="train",
|
| 103 |
+
return_grid_coord=True,
|
| 104 |
+
),
|
| 105 |
+
dict(type="SphereCrop", point_max=102400, mode="random"),
|
| 106 |
+
dict(type="CenterShift", apply_z=False),
|
| 107 |
+
dict(type="NormalizeColor"),
|
| 108 |
+
# dict(type="ShufflePoint"),
|
| 109 |
+
dict(type="ToTensor"),
|
| 110 |
+
dict(
|
| 111 |
+
type="Collect",
|
| 112 |
+
keys=("coord", "grid_coord", "segment"),
|
| 113 |
+
feat_keys=("color", "normal"),
|
| 114 |
+
),
|
| 115 |
+
],
|
| 116 |
+
test_mode=False,
|
| 117 |
+
),
|
| 118 |
+
val=dict(
|
| 119 |
+
type=dataset_type,
|
| 120 |
+
split="val",
|
| 121 |
+
data_root=data_root,
|
| 122 |
+
transform=[
|
| 123 |
+
dict(type="CenterShift", apply_z=True),
|
| 124 |
+
dict(
|
| 125 |
+
type="GridSample",
|
| 126 |
+
grid_size=0.02,
|
| 127 |
+
hash_type="fnv",
|
| 128 |
+
mode="train",
|
| 129 |
+
return_grid_coord=True,
|
| 130 |
+
),
|
| 131 |
+
dict(type="CenterShift", apply_z=False),
|
| 132 |
+
dict(type="NormalizeColor"),
|
| 133 |
+
dict(type="ToTensor"),
|
| 134 |
+
dict(
|
| 135 |
+
type="Collect",
|
| 136 |
+
keys=("coord", "grid_coord", "segment"),
|
| 137 |
+
feat_keys=("color", "normal"),
|
| 138 |
+
),
|
| 139 |
+
],
|
| 140 |
+
test_mode=False,
|
| 141 |
+
),
|
| 142 |
+
test=dict(
|
| 143 |
+
type=dataset_type,
|
| 144 |
+
split="val",
|
| 145 |
+
data_root=data_root,
|
| 146 |
+
transform=[
|
| 147 |
+
dict(type="CenterShift", apply_z=True),
|
| 148 |
+
dict(type="NormalizeColor"),
|
| 149 |
+
],
|
| 150 |
+
test_mode=True,
|
| 151 |
+
test_cfg=dict(
|
| 152 |
+
voxelize=dict(
|
| 153 |
+
type="GridSample",
|
| 154 |
+
grid_size=0.02,
|
| 155 |
+
hash_type="fnv",
|
| 156 |
+
mode="test",
|
| 157 |
+
keys=("coord", "color", "normal"),
|
| 158 |
+
return_grid_coord=True,
|
| 159 |
+
),
|
| 160 |
+
crop=None,
|
| 161 |
+
post_transform=[
|
| 162 |
+
dict(type="CenterShift", apply_z=False),
|
| 163 |
+
dict(type="ToTensor"),
|
| 164 |
+
dict(
|
| 165 |
+
type="Collect",
|
| 166 |
+
keys=("coord", "grid_coord", "index"),
|
| 167 |
+
feat_keys=("color", "normal"),
|
| 168 |
+
),
|
| 169 |
+
],
|
| 170 |
+
aug_transform=[
|
| 171 |
+
[
|
| 172 |
+
dict(
|
| 173 |
+
type="RandomRotateTargetAngle",
|
| 174 |
+
angle=[0],
|
| 175 |
+
axis="z",
|
| 176 |
+
center=[0, 0, 0],
|
| 177 |
+
p=1,
|
| 178 |
+
)
|
| 179 |
+
],
|
| 180 |
+
[
|
| 181 |
+
dict(
|
| 182 |
+
type="RandomRotateTargetAngle",
|
| 183 |
+
angle=[1 / 2],
|
| 184 |
+
axis="z",
|
| 185 |
+
center=[0, 0, 0],
|
| 186 |
+
p=1,
|
| 187 |
+
)
|
| 188 |
+
],
|
| 189 |
+
[
|
| 190 |
+
dict(
|
| 191 |
+
type="RandomRotateTargetAngle",
|
| 192 |
+
angle=[1],
|
| 193 |
+
axis="z",
|
| 194 |
+
center=[0, 0, 0],
|
| 195 |
+
p=1,
|
| 196 |
+
)
|
| 197 |
+
],
|
| 198 |
+
[
|
| 199 |
+
dict(
|
| 200 |
+
type="RandomRotateTargetAngle",
|
| 201 |
+
angle=[3 / 2],
|
| 202 |
+
axis="z",
|
| 203 |
+
center=[0, 0, 0],
|
| 204 |
+
p=1,
|
| 205 |
+
)
|
| 206 |
+
],
|
| 207 |
+
[
|
| 208 |
+
dict(
|
| 209 |
+
type="RandomRotateTargetAngle",
|
| 210 |
+
angle=[0],
|
| 211 |
+
axis="z",
|
| 212 |
+
center=[0, 0, 0],
|
| 213 |
+
p=1,
|
| 214 |
+
),
|
| 215 |
+
dict(type="RandomScale", scale=[0.95, 0.95]),
|
| 216 |
+
],
|
| 217 |
+
[
|
| 218 |
+
dict(
|
| 219 |
+
type="RandomRotateTargetAngle",
|
| 220 |
+
angle=[1 / 2],
|
| 221 |
+
axis="z",
|
| 222 |
+
center=[0, 0, 0],
|
| 223 |
+
p=1,
|
| 224 |
+
),
|
| 225 |
+
dict(type="RandomScale", scale=[0.95, 0.95]),
|
| 226 |
+
],
|
| 227 |
+
[
|
| 228 |
+
dict(
|
| 229 |
+
type="RandomRotateTargetAngle",
|
| 230 |
+
angle=[1],
|
| 231 |
+
axis="z",
|
| 232 |
+
center=[0, 0, 0],
|
| 233 |
+
p=1,
|
| 234 |
+
),
|
| 235 |
+
dict(type="RandomScale", scale=[0.95, 0.95]),
|
| 236 |
+
],
|
| 237 |
+
[
|
| 238 |
+
dict(
|
| 239 |
+
type="RandomRotateTargetAngle",
|
| 240 |
+
angle=[3 / 2],
|
| 241 |
+
axis="z",
|
| 242 |
+
center=[0, 0, 0],
|
| 243 |
+
p=1,
|
| 244 |
+
),
|
| 245 |
+
dict(type="RandomScale", scale=[0.95, 0.95]),
|
| 246 |
+
],
|
| 247 |
+
[
|
| 248 |
+
dict(
|
| 249 |
+
type="RandomRotateTargetAngle",
|
| 250 |
+
angle=[0],
|
| 251 |
+
axis="z",
|
| 252 |
+
center=[0, 0, 0],
|
| 253 |
+
p=1,
|
| 254 |
+
),
|
| 255 |
+
dict(type="RandomScale", scale=[1.05, 1.05]),
|
| 256 |
+
],
|
| 257 |
+
[
|
| 258 |
+
dict(
|
| 259 |
+
type="RandomRotateTargetAngle",
|
| 260 |
+
angle=[1 / 2],
|
| 261 |
+
axis="z",
|
| 262 |
+
center=[0, 0, 0],
|
| 263 |
+
p=1,
|
| 264 |
+
),
|
| 265 |
+
dict(type="RandomScale", scale=[1.05, 1.05]),
|
| 266 |
+
],
|
| 267 |
+
[
|
| 268 |
+
dict(
|
| 269 |
+
type="RandomRotateTargetAngle",
|
| 270 |
+
angle=[1],
|
| 271 |
+
axis="z",
|
| 272 |
+
center=[0, 0, 0],
|
| 273 |
+
p=1,
|
| 274 |
+
),
|
| 275 |
+
dict(type="RandomScale", scale=[1.05, 1.05]),
|
| 276 |
+
],
|
| 277 |
+
[
|
| 278 |
+
dict(
|
| 279 |
+
type="RandomRotateTargetAngle",
|
| 280 |
+
angle=[3 / 2],
|
| 281 |
+
axis="z",
|
| 282 |
+
center=[0, 0, 0],
|
| 283 |
+
p=1,
|
| 284 |
+
),
|
| 285 |
+
dict(type="RandomScale", scale=[1.05, 1.05]),
|
| 286 |
+
],
|
| 287 |
+
[dict(type="RandomFlip", p=1)],
|
| 288 |
+
],
|
| 289 |
+
),
|
| 290 |
+
),
|
| 291 |
+
)
|
configs/alc/semseg-pt-v3m1-0-base-wn199.py
ADDED
|
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pointcept.datasets.preprocessing.alc.preprocess_arkitscenes_labelmaker_consensus import WORDNET_NAMES
|
| 2 |
+
|
| 3 |
+
_base_ = ["../_base_/default_runtime.py"]
|
| 4 |
+
|
| 5 |
+
# misc custom setting
|
| 6 |
+
batch_size = 12 # bs: total bs in all gpus
|
| 7 |
+
num_worker = 24
|
| 8 |
+
mix_prob = 0.8
|
| 9 |
+
empty_cache = False
|
| 10 |
+
enable_amp = True
|
| 11 |
+
|
| 12 |
+
# model settings
|
| 13 |
+
model = dict(
|
| 14 |
+
type="DefaultSegmentorV2",
|
| 15 |
+
num_classes=185,
|
| 16 |
+
backbone_out_channels=64,
|
| 17 |
+
backbone=dict(
|
| 18 |
+
type="PT-v3m1",
|
| 19 |
+
in_channels=6,
|
| 20 |
+
order=["z", "z-trans", "hilbert", "hilbert-trans"],
|
| 21 |
+
stride=(2, 2, 2, 2),
|
| 22 |
+
enc_depths=(2, 2, 2, 6, 2),
|
| 23 |
+
enc_channels=(32, 64, 128, 256, 512),
|
| 24 |
+
enc_num_head=(2, 4, 8, 16, 32),
|
| 25 |
+
enc_patch_size=(1024, 1024, 1024, 1024, 1024),
|
| 26 |
+
dec_depths=(2, 2, 2, 2),
|
| 27 |
+
dec_channels=(64, 64, 128, 256),
|
| 28 |
+
dec_num_head=(4, 4, 8, 16),
|
| 29 |
+
dec_patch_size=(1024, 1024, 1024, 1024),
|
| 30 |
+
mlp_ratio=4,
|
| 31 |
+
qkv_bias=True,
|
| 32 |
+
qk_scale=None,
|
| 33 |
+
attn_drop=0.0,
|
| 34 |
+
proj_drop=0.0,
|
| 35 |
+
drop_path=0.3,
|
| 36 |
+
shuffle_orders=True,
|
| 37 |
+
pre_norm=True,
|
| 38 |
+
enable_rpe=False,
|
| 39 |
+
enable_flash=True,
|
| 40 |
+
upcast_attention=False,
|
| 41 |
+
upcast_softmax=False,
|
| 42 |
+
cls_mode=False,
|
| 43 |
+
pdnorm_bn=False,
|
| 44 |
+
pdnorm_ln=False,
|
| 45 |
+
pdnorm_decouple=True,
|
| 46 |
+
pdnorm_adaptive=False,
|
| 47 |
+
pdnorm_affine=True,
|
| 48 |
+
pdnorm_conditions=("ScanNet", "S3DIS", "Structured3D"),
|
| 49 |
+
),
|
| 50 |
+
criteria=[
|
| 51 |
+
dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1),
|
| 52 |
+
dict(type="LovaszLoss", mode="multiclass", loss_weight=1.0, ignore_index=-1),
|
| 53 |
+
],
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
# scheduler settings
|
| 57 |
+
epoch = 800
|
| 58 |
+
optimizer = dict(type="AdamW", lr=0.006, weight_decay=0.05)
|
| 59 |
+
scheduler = dict(
|
| 60 |
+
type="OneCycleLR",
|
| 61 |
+
max_lr=[0.006, 0.0006],
|
| 62 |
+
pct_start=0.05,
|
| 63 |
+
anneal_strategy="cos",
|
| 64 |
+
div_factor=10.0,
|
| 65 |
+
final_div_factor=1000.0,
|
| 66 |
+
)
|
| 67 |
+
param_dicts = [dict(keyword="block", lr=0.0006)]
|
| 68 |
+
|
| 69 |
+
# dataset settings
|
| 70 |
+
dataset_type = "ARKitScenesLabelMakerConsensusDataset"
|
| 71 |
+
data_root = "data/alc"
|
| 72 |
+
|
| 73 |
+
data = dict(
|
| 74 |
+
num_classes=185,
|
| 75 |
+
ignore_index=-1,
|
| 76 |
+
names=WORDNET_NAMES,
|
| 77 |
+
train=dict(
|
| 78 |
+
type=dataset_type,
|
| 79 |
+
split="train",
|
| 80 |
+
data_root=data_root,
|
| 81 |
+
transform=[
|
| 82 |
+
dict(type="CenterShift", apply_z=True),
|
| 83 |
+
dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
|
| 84 |
+
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75),
|
| 85 |
+
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
|
| 86 |
+
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5),
|
| 87 |
+
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5),
|
| 88 |
+
dict(type="RandomScale", scale=[0.9, 1.1]),
|
| 89 |
+
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
|
| 90 |
+
dict(type="RandomFlip", p=0.5),
|
| 91 |
+
dict(type="RandomJitter", sigma=0.005, clip=0.02),
|
| 92 |
+
dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
|
| 93 |
+
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
|
| 94 |
+
dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
|
| 95 |
+
dict(type="ChromaticJitter", p=0.95, std=0.05),
|
| 96 |
+
# dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2),
|
| 97 |
+
# dict(type="RandomColorDrop", p=0.2, color_augment=0.0),
|
| 98 |
+
dict(
|
| 99 |
+
type="GridSample",
|
| 100 |
+
grid_size=0.02,
|
| 101 |
+
hash_type="fnv",
|
| 102 |
+
mode="train",
|
| 103 |
+
return_grid_coord=True,
|
| 104 |
+
),
|
| 105 |
+
dict(type="SphereCrop", point_max=102400, mode="random"),
|
| 106 |
+
dict(type="CenterShift", apply_z=False),
|
| 107 |
+
dict(type="NormalizeColor"),
|
| 108 |
+
# dict(type="ShufflePoint"),
|
| 109 |
+
dict(type="ToTensor"),
|
| 110 |
+
dict(
|
| 111 |
+
type="Collect",
|
| 112 |
+
keys=("coord", "grid_coord", "segment"),
|
| 113 |
+
feat_keys=("color", "normal"),
|
| 114 |
+
),
|
| 115 |
+
],
|
| 116 |
+
test_mode=False,
|
| 117 |
+
),
|
| 118 |
+
val=dict(
|
| 119 |
+
type=dataset_type,
|
| 120 |
+
split="val",
|
| 121 |
+
data_root=data_root,
|
| 122 |
+
transform=[
|
| 123 |
+
dict(type="CenterShift", apply_z=True),
|
| 124 |
+
dict(
|
| 125 |
+
type="GridSample",
|
| 126 |
+
grid_size=0.02,
|
| 127 |
+
hash_type="fnv",
|
| 128 |
+
mode="train",
|
| 129 |
+
return_grid_coord=True,
|
| 130 |
+
),
|
| 131 |
+
dict(type="CenterShift", apply_z=False),
|
| 132 |
+
dict(type="NormalizeColor"),
|
| 133 |
+
dict(type="ToTensor"),
|
| 134 |
+
dict(
|
| 135 |
+
type="Collect",
|
| 136 |
+
keys=("coord", "grid_coord", "segment"),
|
| 137 |
+
feat_keys=("color", "normal"),
|
| 138 |
+
),
|
| 139 |
+
],
|
| 140 |
+
test_mode=False,
|
| 141 |
+
),
|
| 142 |
+
test=dict(
|
| 143 |
+
type=dataset_type,
|
| 144 |
+
split="val",
|
| 145 |
+
data_root=data_root,
|
| 146 |
+
transform=[
|
| 147 |
+
dict(type="CenterShift", apply_z=True),
|
| 148 |
+
dict(type="NormalizeColor"),
|
| 149 |
+
],
|
| 150 |
+
test_mode=True,
|
| 151 |
+
test_cfg=dict(
|
| 152 |
+
voxelize=dict(
|
| 153 |
+
type="GridSample",
|
| 154 |
+
grid_size=0.02,
|
| 155 |
+
hash_type="fnv",
|
| 156 |
+
mode="test",
|
| 157 |
+
keys=("coord", "color", "normal"),
|
| 158 |
+
return_grid_coord=True,
|
| 159 |
+
),
|
| 160 |
+
crop=None,
|
| 161 |
+
post_transform=[
|
| 162 |
+
dict(type="CenterShift", apply_z=False),
|
| 163 |
+
dict(type="ToTensor"),
|
| 164 |
+
dict(
|
| 165 |
+
type="Collect",
|
| 166 |
+
keys=("coord", "grid_coord", "index"),
|
| 167 |
+
feat_keys=("color", "normal"),
|
| 168 |
+
),
|
| 169 |
+
],
|
| 170 |
+
aug_transform=[
|
| 171 |
+
[
|
| 172 |
+
dict(
|
| 173 |
+
type="RandomRotateTargetAngle",
|
| 174 |
+
angle=[0],
|
| 175 |
+
axis="z",
|
| 176 |
+
center=[0, 0, 0],
|
| 177 |
+
p=1,
|
| 178 |
+
)
|
| 179 |
+
],
|
| 180 |
+
[
|
| 181 |
+
dict(
|
| 182 |
+
type="RandomRotateTargetAngle",
|
| 183 |
+
angle=[1 / 2],
|
| 184 |
+
axis="z",
|
| 185 |
+
center=[0, 0, 0],
|
| 186 |
+
p=1,
|
| 187 |
+
)
|
| 188 |
+
],
|
| 189 |
+
[
|
| 190 |
+
dict(
|
| 191 |
+
type="RandomRotateTargetAngle",
|
| 192 |
+
angle=[1],
|
| 193 |
+
axis="z",
|
| 194 |
+
center=[0, 0, 0],
|
| 195 |
+
p=1,
|
| 196 |
+
)
|
| 197 |
+
],
|
| 198 |
+
[
|
| 199 |
+
dict(
|
| 200 |
+
type="RandomRotateTargetAngle",
|
| 201 |
+
angle=[3 / 2],
|
| 202 |
+
axis="z",
|
| 203 |
+
center=[0, 0, 0],
|
| 204 |
+
p=1,
|
| 205 |
+
)
|
| 206 |
+
],
|
| 207 |
+
[
|
| 208 |
+
dict(
|
| 209 |
+
type="RandomRotateTargetAngle",
|
| 210 |
+
angle=[0],
|
| 211 |
+
axis="z",
|
| 212 |
+
center=[0, 0, 0],
|
| 213 |
+
p=1,
|
| 214 |
+
),
|
| 215 |
+
dict(type="RandomScale", scale=[0.95, 0.95]),
|
| 216 |
+
],
|
| 217 |
+
[
|
| 218 |
+
dict(
|
| 219 |
+
type="RandomRotateTargetAngle",
|
| 220 |
+
angle=[1 / 2],
|
| 221 |
+
axis="z",
|
| 222 |
+
center=[0, 0, 0],
|
| 223 |
+
p=1,
|
| 224 |
+
),
|
| 225 |
+
dict(type="RandomScale", scale=[0.95, 0.95]),
|
| 226 |
+
],
|
| 227 |
+
[
|
| 228 |
+
dict(
|
| 229 |
+
type="RandomRotateTargetAngle",
|
| 230 |
+
angle=[1],
|
| 231 |
+
axis="z",
|
| 232 |
+
center=[0, 0, 0],
|
| 233 |
+
p=1,
|
| 234 |
+
),
|
| 235 |
+
dict(type="RandomScale", scale=[0.95, 0.95]),
|
| 236 |
+
],
|
| 237 |
+
[
|
| 238 |
+
dict(
|
| 239 |
+
type="RandomRotateTargetAngle",
|
| 240 |
+
angle=[3 / 2],
|
| 241 |
+
axis="z",
|
| 242 |
+
center=[0, 0, 0],
|
| 243 |
+
p=1,
|
| 244 |
+
),
|
| 245 |
+
dict(type="RandomScale", scale=[0.95, 0.95]),
|
| 246 |
+
],
|
| 247 |
+
[
|
| 248 |
+
dict(
|
| 249 |
+
type="RandomRotateTargetAngle",
|
| 250 |
+
angle=[0],
|
| 251 |
+
axis="z",
|
| 252 |
+
center=[0, 0, 0],
|
| 253 |
+
p=1,
|
| 254 |
+
),
|
| 255 |
+
dict(type="RandomScale", scale=[1.05, 1.05]),
|
| 256 |
+
],
|
| 257 |
+
[
|
| 258 |
+
dict(
|
| 259 |
+
type="RandomRotateTargetAngle",
|
| 260 |
+
angle=[1 / 2],
|
| 261 |
+
axis="z",
|
| 262 |
+
center=[0, 0, 0],
|
| 263 |
+
p=1,
|
| 264 |
+
),
|
| 265 |
+
dict(type="RandomScale", scale=[1.05, 1.05]),
|
| 266 |
+
],
|
| 267 |
+
[
|
| 268 |
+
dict(
|
| 269 |
+
type="RandomRotateTargetAngle",
|
| 270 |
+
angle=[1],
|
| 271 |
+
axis="z",
|
| 272 |
+
center=[0, 0, 0],
|
| 273 |
+
p=1,
|
| 274 |
+
),
|
| 275 |
+
dict(type="RandomScale", scale=[1.05, 1.05]),
|
| 276 |
+
],
|
| 277 |
+
[
|
| 278 |
+
dict(
|
| 279 |
+
type="RandomRotateTargetAngle",
|
| 280 |
+
angle=[3 / 2],
|
| 281 |
+
axis="z",
|
| 282 |
+
center=[0, 0, 0],
|
| 283 |
+
p=1,
|
| 284 |
+
),
|
| 285 |
+
dict(type="RandomScale", scale=[1.05, 1.05]),
|
| 286 |
+
],
|
| 287 |
+
[dict(type="RandomFlip", p=1)],
|
| 288 |
+
],
|
| 289 |
+
),
|
| 290 |
+
),
|
| 291 |
+
)
|
configs/scannet/semseg-pt-v3m1-1-ppt-extreme-alc.py
ADDED
|
@@ -0,0 +1,782 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_base_ = ["../_base_/default_runtime.py"]
|
| 2 |
+
|
| 3 |
+
# misc custom setting
|
| 4 |
+
batch_size = 24 # bs: total bs in all gpus
|
| 5 |
+
num_worker = 48
|
| 6 |
+
mix_prob = 0.8
|
| 7 |
+
empty_cache = False
|
| 8 |
+
enable_amp = True
|
| 9 |
+
find_unused_parameters = True
|
| 10 |
+
|
| 11 |
+
# trainer
|
| 12 |
+
train = dict(
|
| 13 |
+
type="MultiDatasetTrainer",
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
# model
|
| 17 |
+
model = dict(
|
| 18 |
+
type="PPT-v1m1",
|
| 19 |
+
backbone=dict(
|
| 20 |
+
type="PT-v3m1",
|
| 21 |
+
in_channels=6,
|
| 22 |
+
order=("z", "z-trans", "hilbert", "hilbert-trans"),
|
| 23 |
+
stride=(2, 2, 2, 2),
|
| 24 |
+
enc_depths=(3, 3, 3, 6, 3),
|
| 25 |
+
enc_channels=(48, 96, 192, 384, 512),
|
| 26 |
+
enc_num_head=(3, 6, 12, 24, 32),
|
| 27 |
+
enc_patch_size=(1024, 1024, 1024, 1024, 1024),
|
| 28 |
+
dec_depths=(3, 3, 3, 3),
|
| 29 |
+
dec_channels=(64, 96, 192, 384),
|
| 30 |
+
dec_num_head=(4, 6, 12, 24),
|
| 31 |
+
dec_patch_size=(1024, 1024, 1024, 1024),
|
| 32 |
+
mlp_ratio=4,
|
| 33 |
+
qkv_bias=True,
|
| 34 |
+
qk_scale=None,
|
| 35 |
+
attn_drop=0.0,
|
| 36 |
+
proj_drop=0.0,
|
| 37 |
+
drop_path=0.3,
|
| 38 |
+
shuffle_orders=True,
|
| 39 |
+
pre_norm=True,
|
| 40 |
+
enable_rpe=False,
|
| 41 |
+
enable_flash=True,
|
| 42 |
+
upcast_attention=False,
|
| 43 |
+
upcast_softmax=False,
|
| 44 |
+
cls_mode=False,
|
| 45 |
+
pdnorm_bn=True,
|
| 46 |
+
pdnorm_ln=True,
|
| 47 |
+
pdnorm_decouple=True,
|
| 48 |
+
pdnorm_adaptive=False,
|
| 49 |
+
pdnorm_affine=True,
|
| 50 |
+
pdnorm_conditions=(
|
| 51 |
+
"S3DIS",
|
| 52 |
+
"ScanNet",
|
| 53 |
+
"Structured3D",
|
| 54 |
+
"ALC",
|
| 55 |
+
# "ScanNet200"
|
| 56 |
+
),
|
| 57 |
+
),
|
| 58 |
+
criteria=[dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1), dict(type="LovaszLoss", mode="multiclass", loss_weight=1.0, ignore_index=-1)],
|
| 59 |
+
backbone_out_channels=64,
|
| 60 |
+
context_channels=256,
|
| 61 |
+
conditions=(
|
| 62 |
+
"S3DIS",
|
| 63 |
+
"ScanNet",
|
| 64 |
+
"Structured3D",
|
| 65 |
+
"ALC",
|
| 66 |
+
# "ScanNet200"
|
| 67 |
+
),
|
| 68 |
+
template="[x]",
|
| 69 |
+
clip_model="ViT-B/16",
|
| 70 |
+
class_name=(
|
| 71 |
+
"wall",
|
| 72 |
+
"floor",
|
| 73 |
+
"cabinet",
|
| 74 |
+
"bed",
|
| 75 |
+
"chair",
|
| 76 |
+
"sofa",
|
| 77 |
+
"table",
|
| 78 |
+
"door",
|
| 79 |
+
"window",
|
| 80 |
+
"bookshelf",
|
| 81 |
+
"bookcase",
|
| 82 |
+
"picture",
|
| 83 |
+
"counter",
|
| 84 |
+
"desk",
|
| 85 |
+
"shelves",
|
| 86 |
+
"curtain",
|
| 87 |
+
"dresser",
|
| 88 |
+
"pillow",
|
| 89 |
+
"mirror",
|
| 90 |
+
"ceiling",
|
| 91 |
+
"refrigerator",
|
| 92 |
+
"television",
|
| 93 |
+
"shower curtain",
|
| 94 |
+
"nightstand",
|
| 95 |
+
"toilet",
|
| 96 |
+
"sink",
|
| 97 |
+
"lamp",
|
| 98 |
+
"bathtub",
|
| 99 |
+
"garbagebin",
|
| 100 |
+
"board",
|
| 101 |
+
"beam",
|
| 102 |
+
"column",
|
| 103 |
+
"clutter",
|
| 104 |
+
"otherstructure",
|
| 105 |
+
"otherfurniture",
|
| 106 |
+
"otherprop",
|
| 107 |
+
"book",
|
| 108 |
+
"ashcan",
|
| 109 |
+
"display",
|
| 110 |
+
"cushion",
|
| 111 |
+
"box",
|
| 112 |
+
"doorframe",
|
| 113 |
+
"swivel chair",
|
| 114 |
+
"towel",
|
| 115 |
+
"backpack",
|
| 116 |
+
"chest of drawers",
|
| 117 |
+
"apparel",
|
| 118 |
+
"armchair",
|
| 119 |
+
"plant",
|
| 120 |
+
"radiator",
|
| 121 |
+
"toilet tissue",
|
| 122 |
+
"shoe",
|
| 123 |
+
"bag",
|
| 124 |
+
"bottle",
|
| 125 |
+
"countertop",
|
| 126 |
+
"coffee table",
|
| 127 |
+
"computer keyboard",
|
| 128 |
+
"fridge",
|
| 129 |
+
"stool",
|
| 130 |
+
"computer",
|
| 131 |
+
"mug",
|
| 132 |
+
"telephone",
|
| 133 |
+
"light",
|
| 134 |
+
"jacket",
|
| 135 |
+
"microwave",
|
| 136 |
+
"footstool",
|
| 137 |
+
"baggage",
|
| 138 |
+
"laptop",
|
| 139 |
+
"printer",
|
| 140 |
+
"shower stall",
|
| 141 |
+
"soap dispenser",
|
| 142 |
+
"stove",
|
| 143 |
+
"fan",
|
| 144 |
+
"paper",
|
| 145 |
+
"stand",
|
| 146 |
+
"bench",
|
| 147 |
+
"wardrobe",
|
| 148 |
+
"blanket",
|
| 149 |
+
"booth",
|
| 150 |
+
"duplicator",
|
| 151 |
+
"bar",
|
| 152 |
+
"soap dish",
|
| 153 |
+
"switch",
|
| 154 |
+
"coffee maker",
|
| 155 |
+
"decoration",
|
| 156 |
+
"range hood",
|
| 157 |
+
"blackboard",
|
| 158 |
+
"clock",
|
| 159 |
+
"railing",
|
| 160 |
+
"mat",
|
| 161 |
+
"seat",
|
| 162 |
+
"bannister",
|
| 163 |
+
"container",
|
| 164 |
+
"mouse",
|
| 165 |
+
"person",
|
| 166 |
+
"stairway",
|
| 167 |
+
"basket",
|
| 168 |
+
"dumbbell",
|
| 169 |
+
"bucket",
|
| 170 |
+
"windowsill",
|
| 171 |
+
"signboard",
|
| 172 |
+
"dishwasher",
|
| 173 |
+
"loudspeaker",
|
| 174 |
+
"washer",
|
| 175 |
+
"paper towel",
|
| 176 |
+
"clothes hamper",
|
| 177 |
+
"piano",
|
| 178 |
+
"sack",
|
| 179 |
+
"handcart",
|
| 180 |
+
"blind",
|
| 181 |
+
"dish rack",
|
| 182 |
+
"mailbox",
|
| 183 |
+
"bicycle",
|
| 184 |
+
"ladder",
|
| 185 |
+
"rack",
|
| 186 |
+
"tray",
|
| 187 |
+
"toaster",
|
| 188 |
+
"paper cutter",
|
| 189 |
+
"plunger",
|
| 190 |
+
"dryer",
|
| 191 |
+
"guitar",
|
| 192 |
+
"fire extinguisher",
|
| 193 |
+
"pitcher",
|
| 194 |
+
"pipe",
|
| 195 |
+
"plate",
|
| 196 |
+
"vacuum",
|
| 197 |
+
"bowl",
|
| 198 |
+
"hat",
|
| 199 |
+
"rod",
|
| 200 |
+
"water cooler",
|
| 201 |
+
"kettle",
|
| 202 |
+
"oven",
|
| 203 |
+
"scale",
|
| 204 |
+
"broom",
|
| 205 |
+
"hand blower",
|
| 206 |
+
"coatrack",
|
| 207 |
+
"teddy",
|
| 208 |
+
"alarm clock",
|
| 209 |
+
"ironing board",
|
| 210 |
+
"fire alarm",
|
| 211 |
+
"machine",
|
| 212 |
+
"music stand",
|
| 213 |
+
"fireplace",
|
| 214 |
+
"furniture",
|
| 215 |
+
"vase",
|
| 216 |
+
"vent",
|
| 217 |
+
"candle",
|
| 218 |
+
"crate",
|
| 219 |
+
"dustpan",
|
| 220 |
+
"earphone",
|
| 221 |
+
"jar",
|
| 222 |
+
"projector",
|
| 223 |
+
"gat",
|
| 224 |
+
"step",
|
| 225 |
+
"step stool",
|
| 226 |
+
"vending machine",
|
| 227 |
+
"coat",
|
| 228 |
+
"coat hanger",
|
| 229 |
+
"drinking fountain",
|
| 230 |
+
"hamper",
|
| 231 |
+
"thermostat",
|
| 232 |
+
"banner",
|
| 233 |
+
"iron",
|
| 234 |
+
"soap",
|
| 235 |
+
"chopping board",
|
| 236 |
+
"kitchen island",
|
| 237 |
+
"shirt",
|
| 238 |
+
"sleeping bag",
|
| 239 |
+
"tire",
|
| 240 |
+
"toothbrush",
|
| 241 |
+
"bathrobe",
|
| 242 |
+
"faucet",
|
| 243 |
+
"slipper",
|
| 244 |
+
"thermos",
|
| 245 |
+
"tripod",
|
| 246 |
+
"dispenser",
|
| 247 |
+
"heater",
|
| 248 |
+
"pool table",
|
| 249 |
+
"remote control",
|
| 250 |
+
"stapler",
|
| 251 |
+
"treadmill",
|
| 252 |
+
"beanbag",
|
| 253 |
+
"dartboard",
|
| 254 |
+
"metronome",
|
| 255 |
+
"rope",
|
| 256 |
+
"sewing machine",
|
| 257 |
+
"shredder",
|
| 258 |
+
"toolbox",
|
| 259 |
+
"water heater",
|
| 260 |
+
"brush",
|
| 261 |
+
"control",
|
| 262 |
+
"dais",
|
| 263 |
+
"dollhouse",
|
| 264 |
+
"envelope",
|
| 265 |
+
"food",
|
| 266 |
+
"frying pan",
|
| 267 |
+
"helmet",
|
| 268 |
+
"tennis racket",
|
| 269 |
+
"umbrella",
|
| 270 |
+
"couch",
|
| 271 |
+
"shelf",
|
| 272 |
+
"office chair",
|
| 273 |
+
"monitor",
|
| 274 |
+
"kitchen cabinet",
|
| 275 |
+
"clothes",
|
| 276 |
+
"tv",
|
| 277 |
+
"end table",
|
| 278 |
+
"dining table",
|
| 279 |
+
"keyboard",
|
| 280 |
+
"toilet paper",
|
| 281 |
+
"tv stand",
|
| 282 |
+
"whiteboard",
|
| 283 |
+
"trash can",
|
| 284 |
+
"closet",
|
| 285 |
+
"stairs",
|
| 286 |
+
"computer tower",
|
| 287 |
+
"bin",
|
| 288 |
+
"ottoman",
|
| 289 |
+
"washing machine",
|
| 290 |
+
"copier",
|
| 291 |
+
"sofa chair",
|
| 292 |
+
"file cabinet",
|
| 293 |
+
"shower",
|
| 294 |
+
"paper towel dispenser",
|
| 295 |
+
"blinds",
|
| 296 |
+
"suitcase",
|
| 297 |
+
"rail",
|
| 298 |
+
"recycling bin",
|
| 299 |
+
"laundry basket",
|
| 300 |
+
"clothes dryer",
|
| 301 |
+
"toilet paper holder",
|
| 302 |
+
"speaker",
|
| 303 |
+
"bathroom stall",
|
| 304 |
+
"shower wall",
|
| 305 |
+
"cup",
|
| 306 |
+
"storage bin",
|
| 307 |
+
"paper towel roll",
|
| 308 |
+
"bulletin board",
|
| 309 |
+
"kitchen counter",
|
| 310 |
+
"toilet paper dispenser",
|
| 311 |
+
"mini fridge",
|
| 312 |
+
"ball",
|
| 313 |
+
"shower curtain rod",
|
| 314 |
+
"shower door",
|
| 315 |
+
"pillar",
|
| 316 |
+
"ledge",
|
| 317 |
+
"toaster oven",
|
| 318 |
+
"toilet seat cover dispenser",
|
| 319 |
+
"cart",
|
| 320 |
+
"storage container",
|
| 321 |
+
"tissue box",
|
| 322 |
+
"light switch",
|
| 323 |
+
"power outlet",
|
| 324 |
+
"sign",
|
| 325 |
+
"closet door",
|
| 326 |
+
"vacuum cleaner",
|
| 327 |
+
"stuffed animal",
|
| 328 |
+
"headphones",
|
| 329 |
+
"guitar case",
|
| 330 |
+
"hair dryer",
|
| 331 |
+
"water bottle",
|
| 332 |
+
"handicap bar",
|
| 333 |
+
"purse",
|
| 334 |
+
"shower floor",
|
| 335 |
+
"water pitcher",
|
| 336 |
+
"paper bag",
|
| 337 |
+
"projector screen",
|
| 338 |
+
"divider",
|
| 339 |
+
"laundry detergent",
|
| 340 |
+
"bathroom counter",
|
| 341 |
+
"object",
|
| 342 |
+
"bathroom vanity",
|
| 343 |
+
"closet wall",
|
| 344 |
+
"laundry hamper",
|
| 345 |
+
"bathroom stall door",
|
| 346 |
+
"ceiling light",
|
| 347 |
+
"trash bin",
|
| 348 |
+
"stair rail",
|
| 349 |
+
"tube",
|
| 350 |
+
"bathroom cabinet",
|
| 351 |
+
"cd case",
|
| 352 |
+
"closet rod",
|
| 353 |
+
"coffee kettle",
|
| 354 |
+
"structure",
|
| 355 |
+
"shower head",
|
| 356 |
+
"keyboard piano",
|
| 357 |
+
"case of water bottles",
|
| 358 |
+
"coat rack",
|
| 359 |
+
"storage organizer",
|
| 360 |
+
"folded chair",
|
| 361 |
+
"power strip",
|
| 362 |
+
"calendar",
|
| 363 |
+
"poster",
|
| 364 |
+
"potted plant",
|
| 365 |
+
"luggage",
|
| 366 |
+
"mattress",
|
| 367 |
+
),
|
| 368 |
+
valid_index=(
|
| 369 |
+
(0, 1, 4, 5, 6, 7, 8, 10, 19, 29, 30, 31, 32),
|
| 370 |
+
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 20, 22, 24, 25, 27, 34),
|
| 371 |
+
(0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25, 26, 33, 34, 35),
|
| 372 |
+
(
|
| 373 |
+
0,
|
| 374 |
+
4,
|
| 375 |
+
36,
|
| 376 |
+
2,
|
| 377 |
+
7,
|
| 378 |
+
1,
|
| 379 |
+
37,
|
| 380 |
+
6,
|
| 381 |
+
8,
|
| 382 |
+
9,
|
| 383 |
+
38,
|
| 384 |
+
39,
|
| 385 |
+
40,
|
| 386 |
+
11,
|
| 387 |
+
19,
|
| 388 |
+
41,
|
| 389 |
+
13,
|
| 390 |
+
42,
|
| 391 |
+
43,
|
| 392 |
+
5,
|
| 393 |
+
25,
|
| 394 |
+
44,
|
| 395 |
+
26,
|
| 396 |
+
45,
|
| 397 |
+
46,
|
| 398 |
+
47,
|
| 399 |
+
3,
|
| 400 |
+
15,
|
| 401 |
+
18,
|
| 402 |
+
48,
|
| 403 |
+
49,
|
| 404 |
+
50,
|
| 405 |
+
51,
|
| 406 |
+
52,
|
| 407 |
+
53,
|
| 408 |
+
54,
|
| 409 |
+
55,
|
| 410 |
+
24,
|
| 411 |
+
56,
|
| 412 |
+
57,
|
| 413 |
+
58,
|
| 414 |
+
59,
|
| 415 |
+
60,
|
| 416 |
+
61,
|
| 417 |
+
62,
|
| 418 |
+
63,
|
| 419 |
+
27,
|
| 420 |
+
22,
|
| 421 |
+
64,
|
| 422 |
+
65,
|
| 423 |
+
66,
|
| 424 |
+
67,
|
| 425 |
+
68,
|
| 426 |
+
69,
|
| 427 |
+
70,
|
| 428 |
+
71,
|
| 429 |
+
72,
|
| 430 |
+
73,
|
| 431 |
+
74,
|
| 432 |
+
75,
|
| 433 |
+
76,
|
| 434 |
+
77,
|
| 435 |
+
78,
|
| 436 |
+
79,
|
| 437 |
+
80,
|
| 438 |
+
81,
|
| 439 |
+
82,
|
| 440 |
+
83,
|
| 441 |
+
84,
|
| 442 |
+
85,
|
| 443 |
+
86,
|
| 444 |
+
87,
|
| 445 |
+
88,
|
| 446 |
+
89,
|
| 447 |
+
90,
|
| 448 |
+
91,
|
| 449 |
+
92,
|
| 450 |
+
93,
|
| 451 |
+
94,
|
| 452 |
+
95,
|
| 453 |
+
96,
|
| 454 |
+
97,
|
| 455 |
+
31,
|
| 456 |
+
98,
|
| 457 |
+
99,
|
| 458 |
+
100,
|
| 459 |
+
101,
|
| 460 |
+
102,
|
| 461 |
+
103,
|
| 462 |
+
104,
|
| 463 |
+
105,
|
| 464 |
+
106,
|
| 465 |
+
107,
|
| 466 |
+
108,
|
| 467 |
+
109,
|
| 468 |
+
110,
|
| 469 |
+
111,
|
| 470 |
+
52,
|
| 471 |
+
112,
|
| 472 |
+
113,
|
| 473 |
+
114,
|
| 474 |
+
115,
|
| 475 |
+
116,
|
| 476 |
+
117,
|
| 477 |
+
118,
|
| 478 |
+
119,
|
| 479 |
+
120,
|
| 480 |
+
121,
|
| 481 |
+
122,
|
| 482 |
+
123,
|
| 483 |
+
124,
|
| 484 |
+
125,
|
| 485 |
+
126,
|
| 486 |
+
127,
|
| 487 |
+
128,
|
| 488 |
+
129,
|
| 489 |
+
130,
|
| 490 |
+
131,
|
| 491 |
+
132,
|
| 492 |
+
133,
|
| 493 |
+
134,
|
| 494 |
+
135,
|
| 495 |
+
136,
|
| 496 |
+
137,
|
| 497 |
+
138,
|
| 498 |
+
139,
|
| 499 |
+
140,
|
| 500 |
+
141,
|
| 501 |
+
142,
|
| 502 |
+
143,
|
| 503 |
+
144,
|
| 504 |
+
145,
|
| 505 |
+
146,
|
| 506 |
+
147,
|
| 507 |
+
148,
|
| 508 |
+
149,
|
| 509 |
+
150,
|
| 510 |
+
151,
|
| 511 |
+
152,
|
| 512 |
+
153,
|
| 513 |
+
154,
|
| 514 |
+
155,
|
| 515 |
+
156,
|
| 516 |
+
157,
|
| 517 |
+
158,
|
| 518 |
+
159,
|
| 519 |
+
160,
|
| 520 |
+
161,
|
| 521 |
+
162,
|
| 522 |
+
163,
|
| 523 |
+
164,
|
| 524 |
+
165,
|
| 525 |
+
166,
|
| 526 |
+
167,
|
| 527 |
+
168,
|
| 528 |
+
169,
|
| 529 |
+
170,
|
| 530 |
+
171,
|
| 531 |
+
172,
|
| 532 |
+
173,
|
| 533 |
+
174,
|
| 534 |
+
175,
|
| 535 |
+
176,
|
| 536 |
+
177,
|
| 537 |
+
178,
|
| 538 |
+
179,
|
| 539 |
+
180,
|
| 540 |
+
181,
|
| 541 |
+
182,
|
| 542 |
+
183,
|
| 543 |
+
184,
|
| 544 |
+
185,
|
| 545 |
+
186,
|
| 546 |
+
187,
|
| 547 |
+
188,
|
| 548 |
+
189,
|
| 549 |
+
190,
|
| 550 |
+
191,
|
| 551 |
+
192,
|
| 552 |
+
193,
|
| 553 |
+
194,
|
| 554 |
+
195,
|
| 555 |
+
196,
|
| 556 |
+
197,
|
| 557 |
+
198,
|
| 558 |
+
),
|
| 559 |
+
),
|
| 560 |
+
backbone_mode=False,
|
| 561 |
+
)
|
| 562 |
+
|
| 563 |
+
# optimizer
|
| 564 |
+
# epoch = 800
|
| 565 |
+
# eval_epoch = 800
|
| 566 |
+
epoch = 1000
|
| 567 |
+
eval_epoch = 1000
|
| 568 |
+
# epoch = 1600
|
| 569 |
+
# eval_epoch = 1600
|
| 570 |
+
optimizer = dict(type="AdamW", lr=0.005, weight_decay=0.05)
|
| 571 |
+
scheduler = dict(
|
| 572 |
+
type="OneCycleLR",
|
| 573 |
+
max_lr=[0.005, 0.0005],
|
| 574 |
+
pct_start=0.05,
|
| 575 |
+
anneal_strategy="cos",
|
| 576 |
+
div_factor=10.0,
|
| 577 |
+
final_div_factor=1000.0,
|
| 578 |
+
)
|
| 579 |
+
param_dicts = [dict(keyword="block", lr=0.0005)]
|
| 580 |
+
|
| 581 |
+
# datasets
|
| 582 |
+
data = dict(
|
| 583 |
+
num_classes=20,
|
| 584 |
+
ignore_index=-1,
|
| 585 |
+
names=["wall", "floor", "cabinet", "bed", "chair", "sofa", "table", "door", "window", "bookshelf", "picture", "counter", "desk", "curtain", "refridgerator", "shower curtain", "toilet", "sink", "bathtub", "otherfurniture"],
|
| 586 |
+
train=dict(
|
| 587 |
+
type="ConcatDataset",
|
| 588 |
+
datasets=[
|
| 589 |
+
# # Structured3DDataset
|
| 590 |
+
# dict(
|
| 591 |
+
# type="Structured3DDataset",
|
| 592 |
+
# split=["train", "val", "test"],
|
| 593 |
+
# data_root="data/structured3d",
|
| 594 |
+
# transform=[
|
| 595 |
+
# dict(type="CenterShift", apply_z=True),
|
| 596 |
+
# dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
|
| 597 |
+
# dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
|
| 598 |
+
# dict(type="RandomRotate", angle=[-0.015625, 0.015625], axis="x", p=0.5),
|
| 599 |
+
# dict(type="RandomRotate", angle=[-0.015625, 0.015625], axis="y", p=0.5),
|
| 600 |
+
# dict(type="RandomScale", scale=[0.9, 1.1]),
|
| 601 |
+
# dict(type="RandomFlip", p=0.5),
|
| 602 |
+
# dict(type="RandomJitter", sigma=0.005, clip=0.02),
|
| 603 |
+
# dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
|
| 604 |
+
# dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
|
| 605 |
+
# dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
|
| 606 |
+
# dict(type="ChromaticJitter", p=0.95, std=0.05),
|
| 607 |
+
# dict(type="GridSample", grid_size=0.02, hash_type="fnv", mode="train", return_grid_coord=True),
|
| 608 |
+
# dict(type="SphereCrop", sample_rate=0.8, mode="random"),
|
| 609 |
+
# dict(type="SphereCrop", point_max=102400, mode="random"),
|
| 610 |
+
# dict(type="CenterShift", apply_z=False),
|
| 611 |
+
# dict(type="NormalizeColor"),
|
| 612 |
+
# dict(type="Add", keys_dict=dict(condition="Structured3D")),
|
| 613 |
+
# dict(type="ToTensor"),
|
| 614 |
+
# dict(type="Collect", keys=("coord", "grid_coord", "segment", "condition"), feat_keys=("color", "normal")),
|
| 615 |
+
# ],
|
| 616 |
+
# test_mode=False,
|
| 617 |
+
# loop=1,
|
| 618 |
+
# ),
|
| 619 |
+
# ScanNetDataset
|
| 620 |
+
dict(
|
| 621 |
+
type="ScanNetDataset",
|
| 622 |
+
split="train",
|
| 623 |
+
data_root="data/scannet",
|
| 624 |
+
transform=[
|
| 625 |
+
dict(type="CenterShift", apply_z=True),
|
| 626 |
+
dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
|
| 627 |
+
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
|
| 628 |
+
dict(type="RandomRotate", angle=[-0.015625, 0.015625], axis="x", p=0.5),
|
| 629 |
+
dict(type="RandomRotate", angle=[-0.015625, 0.015625], axis="y", p=0.5),
|
| 630 |
+
dict(type="RandomScale", scale=[0.9, 1.1]),
|
| 631 |
+
dict(type="RandomFlip", p=0.5),
|
| 632 |
+
dict(type="RandomJitter", sigma=0.005, clip=0.02),
|
| 633 |
+
dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
|
| 634 |
+
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
|
| 635 |
+
dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
|
| 636 |
+
dict(type="ChromaticJitter", p=0.95, std=0.05),
|
| 637 |
+
dict(type="GridSample", grid_size=0.02, hash_type="fnv", mode="train", return_grid_coord=True),
|
| 638 |
+
dict(type="SphereCrop", point_max=102400, mode="random"),
|
| 639 |
+
dict(type="CenterShift", apply_z=False),
|
| 640 |
+
dict(type="NormalizeColor"),
|
| 641 |
+
dict(type="ShufflePoint"),
|
| 642 |
+
dict(type="Add", keys_dict=dict(condition="ScanNet")),
|
| 643 |
+
dict(type="ToTensor"),
|
| 644 |
+
dict(type="Collect", keys=("coord", "grid_coord", "segment", "condition"), feat_keys=("color", "normal")),
|
| 645 |
+
],
|
| 646 |
+
test_mode=False,
|
| 647 |
+
loop=1,
|
| 648 |
+
),
|
| 649 |
+
# S3DISDataset
|
| 650 |
+
dict(
|
| 651 |
+
type="S3DISDataset",
|
| 652 |
+
split=("Area_1", "Area_2", "Area_3", "Area_4", "Area_6"),
|
| 653 |
+
data_root="data/s3dis",
|
| 654 |
+
transform=[
|
| 655 |
+
dict(type="CenterShift", apply_z=True),
|
| 656 |
+
dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
|
| 657 |
+
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
|
| 658 |
+
dict(type="RandomRotate", angle=[-0.015625, 0.015625], axis="x", p=0.5),
|
| 659 |
+
dict(type="RandomRotate", angle=[-0.015625, 0.015625], axis="y", p=0.5),
|
| 660 |
+
dict(type="RandomScale", scale=[0.9, 1.1]),
|
| 661 |
+
dict(type="RandomFlip", p=0.5),
|
| 662 |
+
dict(type="RandomJitter", sigma=0.005, clip=0.02),
|
| 663 |
+
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
|
| 664 |
+
dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
|
| 665 |
+
dict(type="ChromaticJitter", p=0.95, std=0.05),
|
| 666 |
+
dict(type="GridSample", grid_size=0.02, hash_type="fnv", mode="train", return_grid_coord=True),
|
| 667 |
+
dict(type="SphereCrop", sample_rate=0.6, mode="random"),
|
| 668 |
+
dict(type="SphereCrop", point_max=204800, mode="random"),
|
| 669 |
+
dict(type="CenterShift", apply_z=False),
|
| 670 |
+
dict(type="NormalizeColor"),
|
| 671 |
+
dict(type="Add", keys_dict=dict(condition="S3DIS")),
|
| 672 |
+
dict(type="ToTensor"),
|
| 673 |
+
dict(type="Collect", keys=("coord", "grid_coord", "segment", "condition"), feat_keys=("color", "normal")),
|
| 674 |
+
],
|
| 675 |
+
test_mode=False,
|
| 676 |
+
loop=1,
|
| 677 |
+
),
|
| 678 |
+
# ALC
|
| 679 |
+
dict(
|
| 680 |
+
type="ARKitScenesLabelMakerConsensusDataset",
|
| 681 |
+
split=["train", "val"],
|
| 682 |
+
data_root="data/alc",
|
| 683 |
+
transform=[
|
| 684 |
+
dict(type="CenterShift", apply_z=True),
|
| 685 |
+
dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
|
| 686 |
+
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75),
|
| 687 |
+
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
|
| 688 |
+
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5),
|
| 689 |
+
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5),
|
| 690 |
+
dict(type="RandomScale", scale=[0.9, 1.1]),
|
| 691 |
+
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
|
| 692 |
+
dict(type="RandomFlip", p=0.5),
|
| 693 |
+
dict(type="RandomJitter", sigma=0.005, clip=0.02),
|
| 694 |
+
dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
|
| 695 |
+
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
|
| 696 |
+
dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
|
| 697 |
+
dict(type="ChromaticJitter", p=0.95, std=0.05),
|
| 698 |
+
# dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2),
|
| 699 |
+
# dict(type="RandomColorDrop", p=0.2, color_augment=0.0),
|
| 700 |
+
dict(
|
| 701 |
+
type="GridSample",
|
| 702 |
+
grid_size=0.02,
|
| 703 |
+
hash_type="fnv",
|
| 704 |
+
mode="train",
|
| 705 |
+
return_grid_coord=True,
|
| 706 |
+
),
|
| 707 |
+
dict(type="SphereCrop", point_max=102400, mode="random"),
|
| 708 |
+
dict(type="CenterShift", apply_z=False),
|
| 709 |
+
dict(type="NormalizeColor"),
|
| 710 |
+
# dict(type="ShufflePoint"),
|
| 711 |
+
dict(type="Add", keys_dict=dict(condition="ALC")),
|
| 712 |
+
dict(type="ToTensor"),
|
| 713 |
+
dict(
|
| 714 |
+
type="Collect",
|
| 715 |
+
keys=("coord", "grid_coord", "segment", "condition"),
|
| 716 |
+
feat_keys=("color", "normal"),
|
| 717 |
+
),
|
| 718 |
+
],
|
| 719 |
+
test_mode=False,
|
| 720 |
+
loop=2,
|
| 721 |
+
),
|
| 722 |
+
],
|
| 723 |
+
loop=1,
|
| 724 |
+
),
|
| 725 |
+
val=dict(
|
| 726 |
+
type="ScanNetDataset",
|
| 727 |
+
split="val",
|
| 728 |
+
data_root="data/scannet",
|
| 729 |
+
transform=[
|
| 730 |
+
dict(type="CenterShift", apply_z=True),
|
| 731 |
+
dict(type="GridSample", grid_size=0.02, hash_type="fnv", mode="train", return_grid_coord=True),
|
| 732 |
+
dict(type="CenterShift", apply_z=False),
|
| 733 |
+
dict(type="NormalizeColor"),
|
| 734 |
+
dict(type="ToTensor"),
|
| 735 |
+
dict(type="Add", keys_dict=dict(condition="ScanNet")),
|
| 736 |
+
dict(type="Collect", keys=("coord", "grid_coord", "segment", "condition"), feat_keys=("color", "normal")),
|
| 737 |
+
],
|
| 738 |
+
test_mode=False,
|
| 739 |
+
),
|
| 740 |
+
test=dict(
|
| 741 |
+
type="ScanNetDataset",
|
| 742 |
+
split="val",
|
| 743 |
+
data_root="data/scannet",
|
| 744 |
+
transform=[dict(type="CenterShift", apply_z=True), dict(type="NormalizeColor")],
|
| 745 |
+
test_mode=True,
|
| 746 |
+
test_cfg=dict(
|
| 747 |
+
voxelize=dict(type="GridSample", grid_size=0.02, hash_type="fnv", mode="test", keys=("coord", "color", "normal"), return_grid_coord=True),
|
| 748 |
+
crop=None,
|
| 749 |
+
post_transform=[
|
| 750 |
+
dict(type="CenterShift", apply_z=False),
|
| 751 |
+
dict(type="Add", keys_dict=dict(condition="ScanNet")),
|
| 752 |
+
dict(type="ToTensor"),
|
| 753 |
+
dict(type="Collect", keys=("coord", "grid_coord", "index", "condition"), feat_keys=("color", "normal")),
|
| 754 |
+
],
|
| 755 |
+
aug_transform=[
|
| 756 |
+
[{"type": "RandomRotateTargetAngle", "angle": [0], "axis": "z", "center": [0, 0, 0], "p": 1}],
|
| 757 |
+
[{"type": "RandomRotateTargetAngle", "angle": [0.5], "axis": "z", "center": [0, 0, 0], "p": 1}],
|
| 758 |
+
[{"type": "RandomRotateTargetAngle", "angle": [1], "axis": "z", "center": [0, 0, 0], "p": 1}],
|
| 759 |
+
[{"type": "RandomRotateTargetAngle", "angle": [1.5], "axis": "z", "center": [0, 0, 0], "p": 1}],
|
| 760 |
+
[{"type": "RandomRotateTargetAngle", "angle": [0], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [0.95, 0.95]}],
|
| 761 |
+
[{"type": "RandomRotateTargetAngle", "angle": [0.5], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [0.95, 0.95]}],
|
| 762 |
+
[{"type": "RandomRotateTargetAngle", "angle": [1], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [0.95, 0.95]}],
|
| 763 |
+
[{"type": "RandomRotateTargetAngle", "angle": [1.5], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [0.95, 0.95]}],
|
| 764 |
+
[{"type": "RandomRotateTargetAngle", "angle": [0], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [1.05, 1.05]}],
|
| 765 |
+
[{"type": "RandomRotateTargetAngle", "angle": [0.5], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [1.05, 1.05]}],
|
| 766 |
+
[{"type": "RandomRotateTargetAngle", "angle": [1], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [1.05, 1.05]}],
|
| 767 |
+
[{"type": "RandomRotateTargetAngle", "angle": [1.5], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [1.05, 1.05]}],
|
| 768 |
+
[{"type": "RandomFlip", "p": 1}],
|
| 769 |
+
],
|
| 770 |
+
),
|
| 771 |
+
),
|
| 772 |
+
)
|
| 773 |
+
|
| 774 |
+
# hook
|
| 775 |
+
hooks = [
|
| 776 |
+
dict(type="CheckpointLoader"),
|
| 777 |
+
dict(type="IterationTimer", warmup_iter=2),
|
| 778 |
+
dict(type="InformationWriter"),
|
| 779 |
+
dict(type="SemSegEvaluator"),
|
| 780 |
+
dict(type="CheckpointSaver", save_freq=None),
|
| 781 |
+
dict(type="PreciseEvaluator", test_last=True),
|
| 782 |
+
]
|
configs/scannet200/semseg-pt-v3m1-1-ppt-extreme-alc.py
ADDED
|
@@ -0,0 +1,972 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pointcept.datasets.preprocessing.scannet.meta_data.scannet200_constants import CLASS_LABELS_200
|
| 2 |
+
|
| 3 |
+
_base_ = ["../_base_/default_runtime.py"]
|
| 4 |
+
|
| 5 |
+
# misc custom setting
|
| 6 |
+
batch_size = 24 # bs: total bs in all gpus
|
| 7 |
+
num_worker = 36
|
| 8 |
+
mix_prob = 0.8
|
| 9 |
+
empty_cache = False
|
| 10 |
+
enable_amp = True
|
| 11 |
+
find_unused_parameters = True
|
| 12 |
+
|
| 13 |
+
# trainer
|
| 14 |
+
train = dict(
|
| 15 |
+
type="MultiDatasetTrainer",
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
# model
|
| 19 |
+
model = dict(
|
| 20 |
+
type="PPT-v1m1",
|
| 21 |
+
backbone=dict(
|
| 22 |
+
type="PT-v3m1",
|
| 23 |
+
in_channels=6,
|
| 24 |
+
order=("z", "z-trans", "hilbert", "hilbert-trans"),
|
| 25 |
+
stride=(2, 2, 2, 2),
|
| 26 |
+
enc_depths=(3, 3, 3, 6, 3),
|
| 27 |
+
enc_channels=(48, 96, 192, 384, 512),
|
| 28 |
+
enc_num_head=(3, 6, 12, 24, 32),
|
| 29 |
+
enc_patch_size=(1024, 1024, 1024, 1024, 1024),
|
| 30 |
+
dec_depths=(3, 3, 3, 3),
|
| 31 |
+
dec_channels=(64, 96, 192, 384),
|
| 32 |
+
dec_num_head=(4, 6, 12, 24),
|
| 33 |
+
dec_patch_size=(1024, 1024, 1024, 1024),
|
| 34 |
+
mlp_ratio=4,
|
| 35 |
+
qkv_bias=True,
|
| 36 |
+
qk_scale=None,
|
| 37 |
+
attn_drop=0.0,
|
| 38 |
+
proj_drop=0.0,
|
| 39 |
+
drop_path=0.3,
|
| 40 |
+
shuffle_orders=True,
|
| 41 |
+
pre_norm=True,
|
| 42 |
+
enable_rpe=False,
|
| 43 |
+
enable_flash=True,
|
| 44 |
+
upcast_attention=False,
|
| 45 |
+
upcast_softmax=False,
|
| 46 |
+
cls_mode=False,
|
| 47 |
+
pdnorm_bn=True,
|
| 48 |
+
pdnorm_ln=True,
|
| 49 |
+
pdnorm_decouple=True,
|
| 50 |
+
pdnorm_adaptive=False,
|
| 51 |
+
pdnorm_affine=True,
|
| 52 |
+
pdnorm_conditions=(
|
| 53 |
+
"S3DIS",
|
| 54 |
+
# "ScanNet",
|
| 55 |
+
"Structured3D",
|
| 56 |
+
"ALC",
|
| 57 |
+
"ScanNet200",
|
| 58 |
+
),
|
| 59 |
+
),
|
| 60 |
+
criteria=[dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1), dict(type="LovaszLoss", mode="multiclass", loss_weight=1.0, ignore_index=-1)],
|
| 61 |
+
backbone_out_channels=64,
|
| 62 |
+
context_channels=256,
|
| 63 |
+
conditions=(
|
| 64 |
+
"S3DIS",
|
| 65 |
+
# "ScanNet",
|
| 66 |
+
"Structured3D",
|
| 67 |
+
"ALC",
|
| 68 |
+
"ScanNet200",
|
| 69 |
+
),
|
| 70 |
+
template="[x]",
|
| 71 |
+
clip_model="ViT-B/16",
|
| 72 |
+
class_name=(
|
| 73 |
+
"wall",
|
| 74 |
+
"floor",
|
| 75 |
+
"cabinet",
|
| 76 |
+
"bed",
|
| 77 |
+
"chair",
|
| 78 |
+
"sofa",
|
| 79 |
+
"table",
|
| 80 |
+
"door",
|
| 81 |
+
"window",
|
| 82 |
+
"bookshelf",
|
| 83 |
+
"bookcase",
|
| 84 |
+
"picture",
|
| 85 |
+
"counter",
|
| 86 |
+
"desk",
|
| 87 |
+
"shelves",
|
| 88 |
+
"curtain",
|
| 89 |
+
"dresser",
|
| 90 |
+
"pillow",
|
| 91 |
+
"mirror",
|
| 92 |
+
"ceiling",
|
| 93 |
+
"refrigerator",
|
| 94 |
+
"television",
|
| 95 |
+
"shower curtain",
|
| 96 |
+
"nightstand",
|
| 97 |
+
"toilet",
|
| 98 |
+
"sink",
|
| 99 |
+
"lamp",
|
| 100 |
+
"bathtub",
|
| 101 |
+
"garbagebin",
|
| 102 |
+
"board",
|
| 103 |
+
"beam",
|
| 104 |
+
"column",
|
| 105 |
+
"clutter",
|
| 106 |
+
"otherstructure",
|
| 107 |
+
"otherfurniture",
|
| 108 |
+
"otherprop",
|
| 109 |
+
"book",
|
| 110 |
+
"ashcan",
|
| 111 |
+
"display",
|
| 112 |
+
"cushion",
|
| 113 |
+
"box",
|
| 114 |
+
"doorframe",
|
| 115 |
+
"swivel chair",
|
| 116 |
+
"towel",
|
| 117 |
+
"backpack",
|
| 118 |
+
"chest of drawers",
|
| 119 |
+
"apparel",
|
| 120 |
+
"armchair",
|
| 121 |
+
"plant",
|
| 122 |
+
"radiator",
|
| 123 |
+
"toilet tissue",
|
| 124 |
+
"shoe",
|
| 125 |
+
"bag",
|
| 126 |
+
"bottle",
|
| 127 |
+
"countertop",
|
| 128 |
+
"coffee table",
|
| 129 |
+
"computer keyboard",
|
| 130 |
+
"fridge",
|
| 131 |
+
"stool",
|
| 132 |
+
"computer",
|
| 133 |
+
"mug",
|
| 134 |
+
"telephone",
|
| 135 |
+
"light",
|
| 136 |
+
"jacket",
|
| 137 |
+
"microwave",
|
| 138 |
+
"footstool",
|
| 139 |
+
"baggage",
|
| 140 |
+
"laptop",
|
| 141 |
+
"printer",
|
| 142 |
+
"shower stall",
|
| 143 |
+
"soap dispenser",
|
| 144 |
+
"stove",
|
| 145 |
+
"fan",
|
| 146 |
+
"paper",
|
| 147 |
+
"stand",
|
| 148 |
+
"bench",
|
| 149 |
+
"wardrobe",
|
| 150 |
+
"blanket",
|
| 151 |
+
"booth",
|
| 152 |
+
"duplicator",
|
| 153 |
+
"bar",
|
| 154 |
+
"soap dish",
|
| 155 |
+
"switch",
|
| 156 |
+
"coffee maker",
|
| 157 |
+
"decoration",
|
| 158 |
+
"range hood",
|
| 159 |
+
"blackboard",
|
| 160 |
+
"clock",
|
| 161 |
+
"railing",
|
| 162 |
+
"mat",
|
| 163 |
+
"seat",
|
| 164 |
+
"bannister",
|
| 165 |
+
"container",
|
| 166 |
+
"mouse",
|
| 167 |
+
"person",
|
| 168 |
+
"stairway",
|
| 169 |
+
"basket",
|
| 170 |
+
"dumbbell",
|
| 171 |
+
"bucket",
|
| 172 |
+
"windowsill",
|
| 173 |
+
"signboard",
|
| 174 |
+
"dishwasher",
|
| 175 |
+
"loudspeaker",
|
| 176 |
+
"washer",
|
| 177 |
+
"paper towel",
|
| 178 |
+
"clothes hamper",
|
| 179 |
+
"piano",
|
| 180 |
+
"sack",
|
| 181 |
+
"handcart",
|
| 182 |
+
"blind",
|
| 183 |
+
"dish rack",
|
| 184 |
+
"mailbox",
|
| 185 |
+
"bicycle",
|
| 186 |
+
"ladder",
|
| 187 |
+
"rack",
|
| 188 |
+
"tray",
|
| 189 |
+
"toaster",
|
| 190 |
+
"paper cutter",
|
| 191 |
+
"plunger",
|
| 192 |
+
"dryer",
|
| 193 |
+
"guitar",
|
| 194 |
+
"fire extinguisher",
|
| 195 |
+
"pitcher",
|
| 196 |
+
"pipe",
|
| 197 |
+
"plate",
|
| 198 |
+
"vacuum",
|
| 199 |
+
"bowl",
|
| 200 |
+
"hat",
|
| 201 |
+
"rod",
|
| 202 |
+
"water cooler",
|
| 203 |
+
"kettle",
|
| 204 |
+
"oven",
|
| 205 |
+
"scale",
|
| 206 |
+
"broom",
|
| 207 |
+
"hand blower",
|
| 208 |
+
"coatrack",
|
| 209 |
+
"teddy",
|
| 210 |
+
"alarm clock",
|
| 211 |
+
"ironing board",
|
| 212 |
+
"fire alarm",
|
| 213 |
+
"machine",
|
| 214 |
+
"music stand",
|
| 215 |
+
"fireplace",
|
| 216 |
+
"furniture",
|
| 217 |
+
"vase",
|
| 218 |
+
"vent",
|
| 219 |
+
"candle",
|
| 220 |
+
"crate",
|
| 221 |
+
"dustpan",
|
| 222 |
+
"earphone",
|
| 223 |
+
"jar",
|
| 224 |
+
"projector",
|
| 225 |
+
"gat",
|
| 226 |
+
"step",
|
| 227 |
+
"step stool",
|
| 228 |
+
"vending machine",
|
| 229 |
+
"coat",
|
| 230 |
+
"coat hanger",
|
| 231 |
+
"drinking fountain",
|
| 232 |
+
"hamper",
|
| 233 |
+
"thermostat",
|
| 234 |
+
"banner",
|
| 235 |
+
"iron",
|
| 236 |
+
"soap",
|
| 237 |
+
"chopping board",
|
| 238 |
+
"kitchen island",
|
| 239 |
+
"shirt",
|
| 240 |
+
"sleeping bag",
|
| 241 |
+
"tire",
|
| 242 |
+
"toothbrush",
|
| 243 |
+
"bathrobe",
|
| 244 |
+
"faucet",
|
| 245 |
+
"slipper",
|
| 246 |
+
"thermos",
|
| 247 |
+
"tripod",
|
| 248 |
+
"dispenser",
|
| 249 |
+
"heater",
|
| 250 |
+
"pool table",
|
| 251 |
+
"remote control",
|
| 252 |
+
"stapler",
|
| 253 |
+
"treadmill",
|
| 254 |
+
"beanbag",
|
| 255 |
+
"dartboard",
|
| 256 |
+
"metronome",
|
| 257 |
+
"rope",
|
| 258 |
+
"sewing machine",
|
| 259 |
+
"shredder",
|
| 260 |
+
"toolbox",
|
| 261 |
+
"water heater",
|
| 262 |
+
"brush",
|
| 263 |
+
"control",
|
| 264 |
+
"dais",
|
| 265 |
+
"dollhouse",
|
| 266 |
+
"envelope",
|
| 267 |
+
"food",
|
| 268 |
+
"frying pan",
|
| 269 |
+
"helmet",
|
| 270 |
+
"tennis racket",
|
| 271 |
+
"umbrella",
|
| 272 |
+
"couch",
|
| 273 |
+
"shelf",
|
| 274 |
+
"office chair",
|
| 275 |
+
"monitor",
|
| 276 |
+
"kitchen cabinet",
|
| 277 |
+
"clothes",
|
| 278 |
+
"tv",
|
| 279 |
+
"end table",
|
| 280 |
+
"dining table",
|
| 281 |
+
"keyboard",
|
| 282 |
+
"toilet paper",
|
| 283 |
+
"tv stand",
|
| 284 |
+
"whiteboard",
|
| 285 |
+
"trash can",
|
| 286 |
+
"closet",
|
| 287 |
+
"stairs",
|
| 288 |
+
"computer tower",
|
| 289 |
+
"bin",
|
| 290 |
+
"ottoman",
|
| 291 |
+
"washing machine",
|
| 292 |
+
"copier",
|
| 293 |
+
"sofa chair",
|
| 294 |
+
"file cabinet",
|
| 295 |
+
"shower",
|
| 296 |
+
"paper towel dispenser",
|
| 297 |
+
"blinds",
|
| 298 |
+
"suitcase",
|
| 299 |
+
"rail",
|
| 300 |
+
"recycling bin",
|
| 301 |
+
"laundry basket",
|
| 302 |
+
"clothes dryer",
|
| 303 |
+
"toilet paper holder",
|
| 304 |
+
"speaker",
|
| 305 |
+
"bathroom stall",
|
| 306 |
+
"shower wall",
|
| 307 |
+
"cup",
|
| 308 |
+
"storage bin",
|
| 309 |
+
"paper towel roll",
|
| 310 |
+
"bulletin board",
|
| 311 |
+
"kitchen counter",
|
| 312 |
+
"toilet paper dispenser",
|
| 313 |
+
"mini fridge",
|
| 314 |
+
"ball",
|
| 315 |
+
"shower curtain rod",
|
| 316 |
+
"shower door",
|
| 317 |
+
"pillar",
|
| 318 |
+
"ledge",
|
| 319 |
+
"toaster oven",
|
| 320 |
+
"toilet seat cover dispenser",
|
| 321 |
+
"cart",
|
| 322 |
+
"storage container",
|
| 323 |
+
"tissue box",
|
| 324 |
+
"light switch",
|
| 325 |
+
"power outlet",
|
| 326 |
+
"sign",
|
| 327 |
+
"closet door",
|
| 328 |
+
"vacuum cleaner",
|
| 329 |
+
"stuffed animal",
|
| 330 |
+
"headphones",
|
| 331 |
+
"guitar case",
|
| 332 |
+
"hair dryer",
|
| 333 |
+
"water bottle",
|
| 334 |
+
"handicap bar",
|
| 335 |
+
"purse",
|
| 336 |
+
"shower floor",
|
| 337 |
+
"water pitcher",
|
| 338 |
+
"paper bag",
|
| 339 |
+
"projector screen",
|
| 340 |
+
"divider",
|
| 341 |
+
"laundry detergent",
|
| 342 |
+
"bathroom counter",
|
| 343 |
+
"object",
|
| 344 |
+
"bathroom vanity",
|
| 345 |
+
"closet wall",
|
| 346 |
+
"laundry hamper",
|
| 347 |
+
"bathroom stall door",
|
| 348 |
+
"ceiling light",
|
| 349 |
+
"trash bin",
|
| 350 |
+
"stair rail",
|
| 351 |
+
"tube",
|
| 352 |
+
"bathroom cabinet",
|
| 353 |
+
"cd case",
|
| 354 |
+
"closet rod",
|
| 355 |
+
"coffee kettle",
|
| 356 |
+
"structure",
|
| 357 |
+
"shower head",
|
| 358 |
+
"keyboard piano",
|
| 359 |
+
"case of water bottles",
|
| 360 |
+
"coat rack",
|
| 361 |
+
"storage organizer",
|
| 362 |
+
"folded chair",
|
| 363 |
+
"power strip",
|
| 364 |
+
"calendar",
|
| 365 |
+
"poster",
|
| 366 |
+
"potted plant",
|
| 367 |
+
"luggage",
|
| 368 |
+
"mattress",
|
| 369 |
+
),
|
| 370 |
+
valid_index=(
|
| 371 |
+
(0, 1, 4, 5, 6, 7, 8, 10, 19, 29, 30, 31, 32),
|
| 372 |
+
(0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25, 26, 33, 34, 35),
|
| 373 |
+
(
|
| 374 |
+
0,
|
| 375 |
+
4,
|
| 376 |
+
36,
|
| 377 |
+
2,
|
| 378 |
+
7,
|
| 379 |
+
1,
|
| 380 |
+
37,
|
| 381 |
+
6,
|
| 382 |
+
8,
|
| 383 |
+
9,
|
| 384 |
+
38,
|
| 385 |
+
39,
|
| 386 |
+
40,
|
| 387 |
+
11,
|
| 388 |
+
19,
|
| 389 |
+
41,
|
| 390 |
+
13,
|
| 391 |
+
42,
|
| 392 |
+
43,
|
| 393 |
+
5,
|
| 394 |
+
25,
|
| 395 |
+
44,
|
| 396 |
+
26,
|
| 397 |
+
45,
|
| 398 |
+
46,
|
| 399 |
+
47,
|
| 400 |
+
3,
|
| 401 |
+
15,
|
| 402 |
+
18,
|
| 403 |
+
48,
|
| 404 |
+
49,
|
| 405 |
+
50,
|
| 406 |
+
51,
|
| 407 |
+
52,
|
| 408 |
+
53,
|
| 409 |
+
54,
|
| 410 |
+
55,
|
| 411 |
+
24,
|
| 412 |
+
56,
|
| 413 |
+
57,
|
| 414 |
+
58,
|
| 415 |
+
59,
|
| 416 |
+
60,
|
| 417 |
+
61,
|
| 418 |
+
62,
|
| 419 |
+
63,
|
| 420 |
+
27,
|
| 421 |
+
22,
|
| 422 |
+
64,
|
| 423 |
+
65,
|
| 424 |
+
66,
|
| 425 |
+
67,
|
| 426 |
+
68,
|
| 427 |
+
69,
|
| 428 |
+
70,
|
| 429 |
+
71,
|
| 430 |
+
72,
|
| 431 |
+
73,
|
| 432 |
+
74,
|
| 433 |
+
75,
|
| 434 |
+
76,
|
| 435 |
+
77,
|
| 436 |
+
78,
|
| 437 |
+
79,
|
| 438 |
+
80,
|
| 439 |
+
81,
|
| 440 |
+
82,
|
| 441 |
+
83,
|
| 442 |
+
84,
|
| 443 |
+
85,
|
| 444 |
+
86,
|
| 445 |
+
87,
|
| 446 |
+
88,
|
| 447 |
+
89,
|
| 448 |
+
90,
|
| 449 |
+
91,
|
| 450 |
+
92,
|
| 451 |
+
93,
|
| 452 |
+
94,
|
| 453 |
+
95,
|
| 454 |
+
96,
|
| 455 |
+
97,
|
| 456 |
+
31,
|
| 457 |
+
98,
|
| 458 |
+
99,
|
| 459 |
+
100,
|
| 460 |
+
101,
|
| 461 |
+
102,
|
| 462 |
+
103,
|
| 463 |
+
104,
|
| 464 |
+
105,
|
| 465 |
+
106,
|
| 466 |
+
107,
|
| 467 |
+
108,
|
| 468 |
+
109,
|
| 469 |
+
110,
|
| 470 |
+
111,
|
| 471 |
+
52,
|
| 472 |
+
112,
|
| 473 |
+
113,
|
| 474 |
+
114,
|
| 475 |
+
115,
|
| 476 |
+
116,
|
| 477 |
+
117,
|
| 478 |
+
118,
|
| 479 |
+
119,
|
| 480 |
+
120,
|
| 481 |
+
121,
|
| 482 |
+
122,
|
| 483 |
+
123,
|
| 484 |
+
124,
|
| 485 |
+
125,
|
| 486 |
+
126,
|
| 487 |
+
127,
|
| 488 |
+
128,
|
| 489 |
+
129,
|
| 490 |
+
130,
|
| 491 |
+
131,
|
| 492 |
+
132,
|
| 493 |
+
133,
|
| 494 |
+
134,
|
| 495 |
+
135,
|
| 496 |
+
136,
|
| 497 |
+
137,
|
| 498 |
+
138,
|
| 499 |
+
139,
|
| 500 |
+
140,
|
| 501 |
+
141,
|
| 502 |
+
142,
|
| 503 |
+
143,
|
| 504 |
+
144,
|
| 505 |
+
145,
|
| 506 |
+
146,
|
| 507 |
+
147,
|
| 508 |
+
148,
|
| 509 |
+
149,
|
| 510 |
+
150,
|
| 511 |
+
151,
|
| 512 |
+
152,
|
| 513 |
+
153,
|
| 514 |
+
154,
|
| 515 |
+
155,
|
| 516 |
+
156,
|
| 517 |
+
157,
|
| 518 |
+
158,
|
| 519 |
+
159,
|
| 520 |
+
160,
|
| 521 |
+
161,
|
| 522 |
+
162,
|
| 523 |
+
163,
|
| 524 |
+
164,
|
| 525 |
+
165,
|
| 526 |
+
166,
|
| 527 |
+
167,
|
| 528 |
+
168,
|
| 529 |
+
169,
|
| 530 |
+
170,
|
| 531 |
+
171,
|
| 532 |
+
172,
|
| 533 |
+
173,
|
| 534 |
+
174,
|
| 535 |
+
175,
|
| 536 |
+
176,
|
| 537 |
+
177,
|
| 538 |
+
178,
|
| 539 |
+
179,
|
| 540 |
+
180,
|
| 541 |
+
181,
|
| 542 |
+
182,
|
| 543 |
+
183,
|
| 544 |
+
184,
|
| 545 |
+
185,
|
| 546 |
+
186,
|
| 547 |
+
187,
|
| 548 |
+
188,
|
| 549 |
+
189,
|
| 550 |
+
190,
|
| 551 |
+
191,
|
| 552 |
+
192,
|
| 553 |
+
193,
|
| 554 |
+
194,
|
| 555 |
+
195,
|
| 556 |
+
196,
|
| 557 |
+
197,
|
| 558 |
+
198,
|
| 559 |
+
),
|
| 560 |
+
(
|
| 561 |
+
0,
|
| 562 |
+
4,
|
| 563 |
+
1,
|
| 564 |
+
6,
|
| 565 |
+
7,
|
| 566 |
+
199,
|
| 567 |
+
2,
|
| 568 |
+
200,
|
| 569 |
+
13,
|
| 570 |
+
201,
|
| 571 |
+
3,
|
| 572 |
+
17,
|
| 573 |
+
25,
|
| 574 |
+
11,
|
| 575 |
+
8,
|
| 576 |
+
24,
|
| 577 |
+
9,
|
| 578 |
+
202,
|
| 579 |
+
15,
|
| 580 |
+
36,
|
| 581 |
+
47,
|
| 582 |
+
55,
|
| 583 |
+
40,
|
| 584 |
+
20,
|
| 585 |
+
26,
|
| 586 |
+
203,
|
| 587 |
+
43,
|
| 588 |
+
204,
|
| 589 |
+
205,
|
| 590 |
+
23,
|
| 591 |
+
12,
|
| 592 |
+
16,
|
| 593 |
+
58,
|
| 594 |
+
39,
|
| 595 |
+
48,
|
| 596 |
+
19,
|
| 597 |
+
27,
|
| 598 |
+
206,
|
| 599 |
+
207,
|
| 600 |
+
208,
|
| 601 |
+
52,
|
| 602 |
+
44,
|
| 603 |
+
209,
|
| 604 |
+
68,
|
| 605 |
+
210,
|
| 606 |
+
211,
|
| 607 |
+
77,
|
| 608 |
+
22,
|
| 609 |
+
212,
|
| 610 |
+
213,
|
| 611 |
+
214,
|
| 612 |
+
64,
|
| 613 |
+
71,
|
| 614 |
+
51,
|
| 615 |
+
215,
|
| 616 |
+
53,
|
| 617 |
+
216,
|
| 618 |
+
217,
|
| 619 |
+
75,
|
| 620 |
+
29,
|
| 621 |
+
218,
|
| 622 |
+
18,
|
| 623 |
+
219,
|
| 624 |
+
96,
|
| 625 |
+
220,
|
| 626 |
+
221,
|
| 627 |
+
72,
|
| 628 |
+
67,
|
| 629 |
+
222,
|
| 630 |
+
73,
|
| 631 |
+
94,
|
| 632 |
+
223,
|
| 633 |
+
131,
|
| 634 |
+
224,
|
| 635 |
+
114,
|
| 636 |
+
124,
|
| 637 |
+
86,
|
| 638 |
+
106,
|
| 639 |
+
225,
|
| 640 |
+
226,
|
| 641 |
+
49,
|
| 642 |
+
227,
|
| 643 |
+
92,
|
| 644 |
+
76,
|
| 645 |
+
70,
|
| 646 |
+
61,
|
| 647 |
+
98,
|
| 648 |
+
87,
|
| 649 |
+
74,
|
| 650 |
+
62,
|
| 651 |
+
228,
|
| 652 |
+
123,
|
| 653 |
+
229,
|
| 654 |
+
120,
|
| 655 |
+
230,
|
| 656 |
+
90,
|
| 657 |
+
231,
|
| 658 |
+
31,
|
| 659 |
+
112,
|
| 660 |
+
113,
|
| 661 |
+
232,
|
| 662 |
+
233,
|
| 663 |
+
234,
|
| 664 |
+
63,
|
| 665 |
+
235,
|
| 666 |
+
83,
|
| 667 |
+
101,
|
| 668 |
+
236,
|
| 669 |
+
140,
|
| 670 |
+
89,
|
| 671 |
+
99,
|
| 672 |
+
80,
|
| 673 |
+
116,
|
| 674 |
+
237,
|
| 675 |
+
138,
|
| 676 |
+
142,
|
| 677 |
+
81,
|
| 678 |
+
238,
|
| 679 |
+
41,
|
| 680 |
+
239,
|
| 681 |
+
240,
|
| 682 |
+
121,
|
| 683 |
+
241,
|
| 684 |
+
127,
|
| 685 |
+
242,
|
| 686 |
+
129,
|
| 687 |
+
117,
|
| 688 |
+
115,
|
| 689 |
+
243,
|
| 690 |
+
244,
|
| 691 |
+
245,
|
| 692 |
+
246,
|
| 693 |
+
93,
|
| 694 |
+
247,
|
| 695 |
+
143,
|
| 696 |
+
248,
|
| 697 |
+
249,
|
| 698 |
+
132,
|
| 699 |
+
250,
|
| 700 |
+
251,
|
| 701 |
+
147,
|
| 702 |
+
252,
|
| 703 |
+
84,
|
| 704 |
+
253,
|
| 705 |
+
151,
|
| 706 |
+
254,
|
| 707 |
+
255,
|
| 708 |
+
146,
|
| 709 |
+
118,
|
| 710 |
+
256,
|
| 711 |
+
257,
|
| 712 |
+
110,
|
| 713 |
+
133,
|
| 714 |
+
258,
|
| 715 |
+
85,
|
| 716 |
+
148,
|
| 717 |
+
259,
|
| 718 |
+
260,
|
| 719 |
+
261,
|
| 720 |
+
262,
|
| 721 |
+
145,
|
| 722 |
+
263,
|
| 723 |
+
264,
|
| 724 |
+
111,
|
| 725 |
+
126,
|
| 726 |
+
265,
|
| 727 |
+
137,
|
| 728 |
+
141,
|
| 729 |
+
266,
|
| 730 |
+
267,
|
| 731 |
+
268,
|
| 732 |
+
269,
|
| 733 |
+
270,
|
| 734 |
+
271,
|
| 735 |
+
272,
|
| 736 |
+
273,
|
| 737 |
+
274,
|
| 738 |
+
275,
|
| 739 |
+
276,
|
| 740 |
+
97,
|
| 741 |
+
277,
|
| 742 |
+
278,
|
| 743 |
+
279,
|
| 744 |
+
280,
|
| 745 |
+
281,
|
| 746 |
+
282,
|
| 747 |
+
283,
|
| 748 |
+
284,
|
| 749 |
+
285,
|
| 750 |
+
286,
|
| 751 |
+
287,
|
| 752 |
+
288,
|
| 753 |
+
289,
|
| 754 |
+
139,
|
| 755 |
+
290,
|
| 756 |
+
291,
|
| 757 |
+
292,
|
| 758 |
+
293,
|
| 759 |
+
294,
|
| 760 |
+
295,
|
| 761 |
+
),
|
| 762 |
+
),
|
| 763 |
+
backbone_mode=False,
|
| 764 |
+
)
|
| 765 |
+
|
| 766 |
+
# optimizer
|
| 767 |
+
epoch = 800
|
| 768 |
+
eval_epoch = 800
|
| 769 |
+
# epoch = 1600
|
| 770 |
+
# eval_epoch = 1600
|
| 771 |
+
optimizer = dict(type="AdamW", lr=0.005, weight_decay=0.05)
|
| 772 |
+
scheduler = dict(
|
| 773 |
+
type="OneCycleLR",
|
| 774 |
+
max_lr=[0.005, 0.0005],
|
| 775 |
+
pct_start=0.05,
|
| 776 |
+
anneal_strategy="cos",
|
| 777 |
+
div_factor=10.0,
|
| 778 |
+
final_div_factor=1000.0,
|
| 779 |
+
)
|
| 780 |
+
param_dicts = [dict(keyword="block", lr=0.0005)]
|
| 781 |
+
|
| 782 |
+
# datasets
|
| 783 |
+
data = dict(
|
| 784 |
+
num_classes=200,
|
| 785 |
+
ignore_index=-1,
|
| 786 |
+
names=CLASS_LABELS_200,
|
| 787 |
+
train=dict(
|
| 788 |
+
type="ConcatDataset",
|
| 789 |
+
datasets=[
|
| 790 |
+
# Structured3DDataset
|
| 791 |
+
dict(
|
| 792 |
+
type="Structured3DDataset",
|
| 793 |
+
split=["train", "val", "test"],
|
| 794 |
+
data_root="data/structured3d",
|
| 795 |
+
transform=[
|
| 796 |
+
dict(type="CenterShift", apply_z=True),
|
| 797 |
+
dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
|
| 798 |
+
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
|
| 799 |
+
dict(type="RandomRotate", angle=[-0.015625, 0.015625], axis="x", p=0.5),
|
| 800 |
+
dict(type="RandomRotate", angle=[-0.015625, 0.015625], axis="y", p=0.5),
|
| 801 |
+
dict(type="RandomScale", scale=[0.9, 1.1]),
|
| 802 |
+
dict(type="RandomFlip", p=0.5),
|
| 803 |
+
dict(type="RandomJitter", sigma=0.005, clip=0.02),
|
| 804 |
+
dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
|
| 805 |
+
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
|
| 806 |
+
dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
|
| 807 |
+
dict(type="ChromaticJitter", p=0.95, std=0.05),
|
| 808 |
+
dict(type="GridSample", grid_size=0.02, hash_type="fnv", mode="train", return_grid_coord=True),
|
| 809 |
+
dict(type="SphereCrop", sample_rate=0.8, mode="random"),
|
| 810 |
+
dict(type="SphereCrop", point_max=102400, mode="random"),
|
| 811 |
+
dict(type="CenterShift", apply_z=False),
|
| 812 |
+
dict(type="NormalizeColor"),
|
| 813 |
+
dict(type="Add", keys_dict=dict(condition="Structured3D")),
|
| 814 |
+
dict(type="ToTensor"),
|
| 815 |
+
dict(type="Collect", keys=("coord", "grid_coord", "segment", "condition"), feat_keys=("color", "normal")),
|
| 816 |
+
],
|
| 817 |
+
test_mode=False,
|
| 818 |
+
loop=1,
|
| 819 |
+
),
|
| 820 |
+
# ScanNet200Dataset
|
| 821 |
+
dict(
|
| 822 |
+
type="ScanNet200Dataset",
|
| 823 |
+
split="train",
|
| 824 |
+
data_root="data/scannet",
|
| 825 |
+
transform=[
|
| 826 |
+
dict(type="CenterShift", apply_z=True),
|
| 827 |
+
dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
|
| 828 |
+
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
|
| 829 |
+
dict(type="RandomRotate", angle=[-0.015625, 0.015625], axis="x", p=0.5),
|
| 830 |
+
dict(type="RandomRotate", angle=[-0.015625, 0.015625], axis="y", p=0.5),
|
| 831 |
+
dict(type="RandomScale", scale=[0.9, 1.1]),
|
| 832 |
+
dict(type="RandomFlip", p=0.5),
|
| 833 |
+
dict(type="RandomJitter", sigma=0.005, clip=0.02),
|
| 834 |
+
dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
|
| 835 |
+
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
|
| 836 |
+
dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
|
| 837 |
+
dict(type="ChromaticJitter", p=0.95, std=0.05),
|
| 838 |
+
dict(type="GridSample", grid_size=0.02, hash_type="fnv", mode="train", return_grid_coord=True),
|
| 839 |
+
dict(type="SphereCrop", point_max=102400, mode="random"),
|
| 840 |
+
dict(type="CenterShift", apply_z=False),
|
| 841 |
+
dict(type="NormalizeColor"),
|
| 842 |
+
dict(type="ShufflePoint"),
|
| 843 |
+
dict(type="Add", keys_dict=dict(condition="ScanNet200")),
|
| 844 |
+
dict(type="ToTensor"),
|
| 845 |
+
dict(type="Collect", keys=("coord", "grid_coord", "segment", "condition"), feat_keys=("color", "normal")),
|
| 846 |
+
],
|
| 847 |
+
test_mode=False,
|
| 848 |
+
loop=1,
|
| 849 |
+
),
|
| 850 |
+
# S3DISDataset
|
| 851 |
+
dict(
|
| 852 |
+
type="S3DISDataset",
|
| 853 |
+
split=("Area_1", "Area_2", "Area_3", "Area_4", "Area_6"),
|
| 854 |
+
data_root="data/s3dis",
|
| 855 |
+
transform=[
|
| 856 |
+
dict(type="CenterShift", apply_z=True),
|
| 857 |
+
dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
|
| 858 |
+
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
|
| 859 |
+
dict(type="RandomRotate", angle=[-0.015625, 0.015625], axis="x", p=0.5),
|
| 860 |
+
dict(type="RandomRotate", angle=[-0.015625, 0.015625], axis="y", p=0.5),
|
| 861 |
+
dict(type="RandomScale", scale=[0.9, 1.1]),
|
| 862 |
+
dict(type="RandomFlip", p=0.5),
|
| 863 |
+
dict(type="RandomJitter", sigma=0.005, clip=0.02),
|
| 864 |
+
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
|
| 865 |
+
dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
|
| 866 |
+
dict(type="ChromaticJitter", p=0.95, std=0.05),
|
| 867 |
+
dict(type="GridSample", grid_size=0.02, hash_type="fnv", mode="train", return_grid_coord=True),
|
| 868 |
+
dict(type="SphereCrop", sample_rate=0.6, mode="random"),
|
| 869 |
+
dict(type="SphereCrop", point_max=204800, mode="random"),
|
| 870 |
+
dict(type="CenterShift", apply_z=False),
|
| 871 |
+
dict(type="NormalizeColor"),
|
| 872 |
+
dict(type="Add", keys_dict=dict(condition="S3DIS")),
|
| 873 |
+
dict(type="ToTensor"),
|
| 874 |
+
dict(type="Collect", keys=("coord", "grid_coord", "segment", "condition"), feat_keys=("color", "normal")),
|
| 875 |
+
],
|
| 876 |
+
test_mode=False,
|
| 877 |
+
loop=1,
|
| 878 |
+
),
|
| 879 |
+
# ALC dataset
|
| 880 |
+
dict(
|
| 881 |
+
type="ARKitScenesLabelMakerConsensusDataset",
|
| 882 |
+
split=["train", "val"],
|
| 883 |
+
data_root="data/alc",
|
| 884 |
+
transform=[
|
| 885 |
+
dict(type="CenterShift", apply_z=True),
|
| 886 |
+
dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
|
| 887 |
+
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75),
|
| 888 |
+
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
|
| 889 |
+
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5),
|
| 890 |
+
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5),
|
| 891 |
+
dict(type="RandomScale", scale=[0.9, 1.1]),
|
| 892 |
+
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
|
| 893 |
+
dict(type="RandomFlip", p=0.5),
|
| 894 |
+
dict(type="RandomJitter", sigma=0.005, clip=0.02),
|
| 895 |
+
dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
|
| 896 |
+
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
|
| 897 |
+
dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
|
| 898 |
+
dict(type="ChromaticJitter", p=0.95, std=0.05),
|
| 899 |
+
# dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2),
|
| 900 |
+
# dict(type="RandomColorDrop", p=0.2, color_augment=0.0),
|
| 901 |
+
dict(
|
| 902 |
+
type="GridSample",
|
| 903 |
+
grid_size=0.02,
|
| 904 |
+
hash_type="fnv",
|
| 905 |
+
mode="train",
|
| 906 |
+
return_grid_coord=True,
|
| 907 |
+
),
|
| 908 |
+
dict(type="SphereCrop", point_max=102400, mode="random"),
|
| 909 |
+
dict(type="CenterShift", apply_z=False),
|
| 910 |
+
dict(type="NormalizeColor"),
|
| 911 |
+
# dict(type="ShufflePoint"),
|
| 912 |
+
dict(type="Add", keys_dict=dict(condition="ALC")),
|
| 913 |
+
dict(type="ToTensor"),
|
| 914 |
+
dict(
|
| 915 |
+
type="Collect",
|
| 916 |
+
keys=("coord", "grid_coord", "segment", "condition"),
|
| 917 |
+
feat_keys=("color", "normal"),
|
| 918 |
+
),
|
| 919 |
+
],
|
| 920 |
+
test_mode=False,
|
| 921 |
+
),
|
| 922 |
+
],
|
| 923 |
+
loop=1,
|
| 924 |
+
),
|
| 925 |
+
val=dict(
|
| 926 |
+
type="ScanNet200Dataset",
|
| 927 |
+
split="val",
|
| 928 |
+
data_root="data/scannet",
|
| 929 |
+
transform=[
|
| 930 |
+
dict(type="CenterShift", apply_z=True),
|
| 931 |
+
dict(type="GridSample", grid_size=0.02, hash_type="fnv", mode="train", return_grid_coord=True),
|
| 932 |
+
dict(type="CenterShift", apply_z=False),
|
| 933 |
+
dict(type="NormalizeColor"),
|
| 934 |
+
dict(type="ToTensor"),
|
| 935 |
+
dict(type="Add", keys_dict=dict(condition="ScanNet200")),
|
| 936 |
+
dict(type="Collect", keys=("coord", "grid_coord", "segment", "condition"), feat_keys=("color", "normal")),
|
| 937 |
+
],
|
| 938 |
+
test_mode=False,
|
| 939 |
+
),
|
| 940 |
+
test=dict(
|
| 941 |
+
type="ScanNet200Dataset",
|
| 942 |
+
split="val",
|
| 943 |
+
data_root="data/scannet",
|
| 944 |
+
transform=[dict(type="CenterShift", apply_z=True), dict(type="NormalizeColor")],
|
| 945 |
+
test_mode=True,
|
| 946 |
+
test_cfg=dict(
|
| 947 |
+
voxelize=dict(type="GridSample", grid_size=0.02, hash_type="fnv", mode="test", keys=("coord", "color", "normal"), return_grid_coord=True),
|
| 948 |
+
crop=None,
|
| 949 |
+
post_transform=[
|
| 950 |
+
dict(type="CenterShift", apply_z=False),
|
| 951 |
+
dict(type="Add", keys_dict=dict(condition="ScanNet200")),
|
| 952 |
+
dict(type="ToTensor"),
|
| 953 |
+
dict(type="Collect", keys=("coord", "grid_coord", "index", "condition"), feat_keys=("color", "normal")),
|
| 954 |
+
],
|
| 955 |
+
aug_transform=[
|
| 956 |
+
[{"type": "RandomRotateTargetAngle", "angle": [0], "axis": "z", "center": [0, 0, 0], "p": 1}],
|
| 957 |
+
[{"type": "RandomRotateTargetAngle", "angle": [0.5], "axis": "z", "center": [0, 0, 0], "p": 1}],
|
| 958 |
+
[{"type": "RandomRotateTargetAngle", "angle": [1], "axis": "z", "center": [0, 0, 0], "p": 1}],
|
| 959 |
+
[{"type": "RandomRotateTargetAngle", "angle": [1.5], "axis": "z", "center": [0, 0, 0], "p": 1}],
|
| 960 |
+
[{"type": "RandomRotateTargetAngle", "angle": [0], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [0.95, 0.95]}],
|
| 961 |
+
[{"type": "RandomRotateTargetAngle", "angle": [0.5], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [0.95, 0.95]}],
|
| 962 |
+
[{"type": "RandomRotateTargetAngle", "angle": [1], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [0.95, 0.95]}],
|
| 963 |
+
[{"type": "RandomRotateTargetAngle", "angle": [1.5], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [0.95, 0.95]}],
|
| 964 |
+
[{"type": "RandomRotateTargetAngle", "angle": [0], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [1.05, 1.05]}],
|
| 965 |
+
[{"type": "RandomRotateTargetAngle", "angle": [0.5], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [1.05, 1.05]}],
|
| 966 |
+
[{"type": "RandomRotateTargetAngle", "angle": [1], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [1.05, 1.05]}],
|
| 967 |
+
[{"type": "RandomRotateTargetAngle", "angle": [1.5], "axis": "z", "center": [0, 0, 0], "p": 1}, {"type": "RandomScale", "scale": [1.05, 1.05]}],
|
| 968 |
+
[{"type": "RandomFlip", "p": 1}],
|
| 969 |
+
],
|
| 970 |
+
),
|
| 971 |
+
),
|
| 972 |
+
)
|
configs/scannetpp/semseg-pt-v3m1-2-ppt-extreme-alc.py
ADDED
|
@@ -0,0 +1,445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_base_ = [
|
| 2 |
+
"../_base_/default_runtime.py",
|
| 3 |
+
"../_base_/dataset/scannetpp.py",
|
| 4 |
+
]
|
| 5 |
+
|
| 6 |
+
# misc custom setting
|
| 7 |
+
batch_size = 24 # bs: total bs in all gpus
|
| 8 |
+
num_worker = 48
|
| 9 |
+
mix_prob = 0.8
|
| 10 |
+
empty_cache = False
|
| 11 |
+
enable_amp = True
|
| 12 |
+
find_unused_parameters = True
|
| 13 |
+
|
| 14 |
+
# trainer
|
| 15 |
+
train = dict(
|
| 16 |
+
type="MultiDatasetTrainer",
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
# model settings
|
| 20 |
+
model = dict(
|
| 21 |
+
type="PPT-v1m2",
|
| 22 |
+
backbone=dict(
|
| 23 |
+
type="PT-v3m1",
|
| 24 |
+
in_channels=6,
|
| 25 |
+
order=("z", "z-trans", "hilbert", "hilbert-trans"),
|
| 26 |
+
stride=(2, 2, 2, 2),
|
| 27 |
+
enc_depths=(3, 3, 3, 6, 3),
|
| 28 |
+
enc_channels=(48, 96, 192, 384, 512),
|
| 29 |
+
enc_num_head=(3, 6, 12, 24, 32),
|
| 30 |
+
enc_patch_size=(1024, 1024, 1024, 1024, 1024),
|
| 31 |
+
dec_depths=(3, 3, 3, 3),
|
| 32 |
+
dec_channels=(64, 96, 192, 384),
|
| 33 |
+
dec_num_head=(4, 6, 12, 24),
|
| 34 |
+
dec_patch_size=(1024, 1024, 1024, 1024),
|
| 35 |
+
mlp_ratio=4,
|
| 36 |
+
qkv_bias=True,
|
| 37 |
+
qk_scale=None,
|
| 38 |
+
attn_drop=0.0,
|
| 39 |
+
proj_drop=0.0,
|
| 40 |
+
drop_path=0.3,
|
| 41 |
+
shuffle_orders=True,
|
| 42 |
+
pre_norm=True,
|
| 43 |
+
enable_rpe=False,
|
| 44 |
+
enable_flash=True,
|
| 45 |
+
upcast_attention=False,
|
| 46 |
+
upcast_softmax=False,
|
| 47 |
+
cls_mode=False,
|
| 48 |
+
pdnorm_bn=True,
|
| 49 |
+
pdnorm_ln=True,
|
| 50 |
+
pdnorm_decouple=True,
|
| 51 |
+
pdnorm_adaptive=False,
|
| 52 |
+
pdnorm_affine=True,
|
| 53 |
+
pdnorm_conditions=("ScanNet", "ScanNet++", "S3DIS", "Structured3D", "ALC"),
|
| 54 |
+
),
|
| 55 |
+
criteria=[
|
| 56 |
+
dict(type="CrossEntropyLoss", loss_weight=1.0, ignore_index=-1),
|
| 57 |
+
dict(type="LovaszLoss", mode="multiclass", loss_weight=1.0, ignore_index=-1),
|
| 58 |
+
],
|
| 59 |
+
backbone_out_channels=64,
|
| 60 |
+
context_channels=256,
|
| 61 |
+
conditions=("ScanNet", "ScanNet++", "S3DIS", "Structured3D", "ALC"),
|
| 62 |
+
num_classes=(200, 100, 13, 25, 185),
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
# scheduler settings
|
| 66 |
+
epoch = 100
|
| 67 |
+
eval_epoch = 100
|
| 68 |
+
# epoch = 200
|
| 69 |
+
# eval_epoch = 200
|
| 70 |
+
optimizer = dict(type="AdamW", lr=0.005, weight_decay=0.05)
|
| 71 |
+
scheduler = dict(
|
| 72 |
+
type="OneCycleLR",
|
| 73 |
+
max_lr=[0.005, 0.0005],
|
| 74 |
+
pct_start=0.05,
|
| 75 |
+
anneal_strategy="cos",
|
| 76 |
+
div_factor=10.0,
|
| 77 |
+
final_div_factor=1000.0,
|
| 78 |
+
)
|
| 79 |
+
param_dicts = [dict(keyword="block", lr=0.0005)]
|
| 80 |
+
|
| 81 |
+
# dataset settings
|
| 82 |
+
data = dict(
|
| 83 |
+
num_classes=100,
|
| 84 |
+
ignore_index=-1,
|
| 85 |
+
train=dict(
|
| 86 |
+
type="ConcatDataset",
|
| 87 |
+
datasets=[
|
| 88 |
+
# ScanNet
|
| 89 |
+
dict(
|
| 90 |
+
type="ScanNet200Dataset",
|
| 91 |
+
split=["train", "val"],
|
| 92 |
+
data_root="data/scannet",
|
| 93 |
+
transform=[
|
| 94 |
+
dict(type="CenterShift", apply_z=True),
|
| 95 |
+
dict(
|
| 96 |
+
type="RandomDropout",
|
| 97 |
+
dropout_ratio=0.2,
|
| 98 |
+
dropout_application_ratio=0.2,
|
| 99 |
+
),
|
| 100 |
+
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75),
|
| 101 |
+
dict(
|
| 102 |
+
type="RandomRotate",
|
| 103 |
+
angle=[-1, 1],
|
| 104 |
+
axis="z",
|
| 105 |
+
center=[0, 0, 0],
|
| 106 |
+
p=0.5,
|
| 107 |
+
),
|
| 108 |
+
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5),
|
| 109 |
+
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5),
|
| 110 |
+
dict(type="RandomScale", scale=[0.9, 1.1]),
|
| 111 |
+
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
|
| 112 |
+
dict(type="RandomFlip", p=0.5),
|
| 113 |
+
dict(type="RandomJitter", sigma=0.005, clip=0.02),
|
| 114 |
+
dict(
|
| 115 |
+
type="ElasticDistortion",
|
| 116 |
+
distortion_params=[[0.2, 0.4], [0.8, 1.6]],
|
| 117 |
+
),
|
| 118 |
+
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
|
| 119 |
+
dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
|
| 120 |
+
dict(type="ChromaticJitter", p=0.95, std=0.05),
|
| 121 |
+
# dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2),
|
| 122 |
+
# dict(type="RandomColorDrop", p=0.2, color_augment=0.0),
|
| 123 |
+
dict(
|
| 124 |
+
type="GridSample",
|
| 125 |
+
grid_size=0.02,
|
| 126 |
+
hash_type="fnv",
|
| 127 |
+
mode="train",
|
| 128 |
+
return_grid_coord=True,
|
| 129 |
+
),
|
| 130 |
+
dict(type="SphereCrop", point_max=204800, mode="random"),
|
| 131 |
+
dict(type="CenterShift", apply_z=False),
|
| 132 |
+
dict(type="NormalizeColor"),
|
| 133 |
+
dict(type="ShufflePoint"),
|
| 134 |
+
dict(type="Add", keys_dict={"condition": "ScanNet"}),
|
| 135 |
+
dict(type="ToTensor"),
|
| 136 |
+
dict(
|
| 137 |
+
type="Collect",
|
| 138 |
+
keys=("coord", "grid_coord", "segment", "condition"),
|
| 139 |
+
feat_keys=("color", "normal"),
|
| 140 |
+
),
|
| 141 |
+
],
|
| 142 |
+
test_mode=False,
|
| 143 |
+
loop=1, # sampling weight
|
| 144 |
+
),
|
| 145 |
+
# ScanNetPPDataset
|
| 146 |
+
dict(
|
| 147 |
+
type="ScanNetPPDataset",
|
| 148 |
+
# split="train_grid1mm_chunk6x6_stride3x3",
|
| 149 |
+
split=[
|
| 150 |
+
"train_grid1mm_chunk6x6_stride3x3",
|
| 151 |
+
"val_grid1mm_chunk6x6_stride3x3",
|
| 152 |
+
],
|
| 153 |
+
data_root="data/scannetpp",
|
| 154 |
+
transform=[
|
| 155 |
+
dict(type="CenterShift", apply_z=True),
|
| 156 |
+
dict(
|
| 157 |
+
type="RandomDropout",
|
| 158 |
+
dropout_ratio=0.2,
|
| 159 |
+
dropout_application_ratio=0.2,
|
| 160 |
+
),
|
| 161 |
+
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75),
|
| 162 |
+
dict(
|
| 163 |
+
type="RandomRotate",
|
| 164 |
+
angle=[-1, 1],
|
| 165 |
+
axis="z",
|
| 166 |
+
center=[0, 0, 0],
|
| 167 |
+
p=0.5,
|
| 168 |
+
),
|
| 169 |
+
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5),
|
| 170 |
+
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5),
|
| 171 |
+
dict(type="RandomScale", scale=[0.9, 1.1]),
|
| 172 |
+
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
|
| 173 |
+
dict(type="RandomFlip", p=0.5),
|
| 174 |
+
dict(type="RandomJitter", sigma=0.005, clip=0.02),
|
| 175 |
+
dict(
|
| 176 |
+
type="ElasticDistortion",
|
| 177 |
+
distortion_params=[[0.2, 0.4], [0.8, 1.6]],
|
| 178 |
+
),
|
| 179 |
+
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
|
| 180 |
+
dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
|
| 181 |
+
dict(type="ChromaticJitter", p=0.95, std=0.05),
|
| 182 |
+
# dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2),
|
| 183 |
+
# dict(type="RandomColorDrop", p=0.2, color_augment=0.0),
|
| 184 |
+
dict(
|
| 185 |
+
type="GridSample",
|
| 186 |
+
grid_size=0.02,
|
| 187 |
+
hash_type="fnv",
|
| 188 |
+
mode="train",
|
| 189 |
+
return_grid_coord=True,
|
| 190 |
+
),
|
| 191 |
+
dict(type="SphereCrop", point_max=204800, mode="random"),
|
| 192 |
+
dict(type="CenterShift", apply_z=False),
|
| 193 |
+
dict(type="NormalizeColor"),
|
| 194 |
+
# dict(type="ShufflePoint"),
|
| 195 |
+
dict(type="Add", keys_dict={"condition": "ScanNet++"}),
|
| 196 |
+
dict(type="ToTensor"),
|
| 197 |
+
dict(
|
| 198 |
+
type="Collect",
|
| 199 |
+
keys=("coord", "grid_coord", "segment", "condition"),
|
| 200 |
+
feat_keys=("color", "normal"),
|
| 201 |
+
),
|
| 202 |
+
],
|
| 203 |
+
test_mode=False,
|
| 204 |
+
),
|
| 205 |
+
# ALC dataset
|
| 206 |
+
dict(
|
| 207 |
+
type="ARKitScenesLabelMakerConsensusDataset",
|
| 208 |
+
split=["train", "val"],
|
| 209 |
+
data_root="data/alc",
|
| 210 |
+
transform=[
|
| 211 |
+
dict(type="CenterShift", apply_z=True),
|
| 212 |
+
dict(type="RandomDropout", dropout_ratio=0.2, dropout_application_ratio=0.2),
|
| 213 |
+
# dict(type="RandomRotateTargetAngle", angle=(1/2, 1, 3/2), center=[0, 0, 0], axis="z", p=0.75),
|
| 214 |
+
dict(type="RandomRotate", angle=[-1, 1], axis="z", center=[0, 0, 0], p=0.5),
|
| 215 |
+
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="x", p=0.5),
|
| 216 |
+
dict(type="RandomRotate", angle=[-1 / 64, 1 / 64], axis="y", p=0.5),
|
| 217 |
+
dict(type="RandomScale", scale=[0.9, 1.1]),
|
| 218 |
+
# dict(type="RandomShift", shift=[0.2, 0.2, 0.2]),
|
| 219 |
+
dict(type="RandomFlip", p=0.5),
|
| 220 |
+
dict(type="RandomJitter", sigma=0.005, clip=0.02),
|
| 221 |
+
dict(type="ElasticDistortion", distortion_params=[[0.2, 0.4], [0.8, 1.6]]),
|
| 222 |
+
dict(type="ChromaticAutoContrast", p=0.2, blend_factor=None),
|
| 223 |
+
dict(type="ChromaticTranslation", p=0.95, ratio=0.05),
|
| 224 |
+
dict(type="ChromaticJitter", p=0.95, std=0.05),
|
| 225 |
+
# dict(type="HueSaturationTranslation", hue_max=0.2, saturation_max=0.2),
|
| 226 |
+
# dict(type="RandomColorDrop", p=0.2, color_augment=0.0),
|
| 227 |
+
dict(
|
| 228 |
+
type="GridSample",
|
| 229 |
+
grid_size=0.02,
|
| 230 |
+
hash_type="fnv",
|
| 231 |
+
mode="train",
|
| 232 |
+
return_grid_coord=True,
|
| 233 |
+
),
|
| 234 |
+
dict(type="SphereCrop", point_max=102400, mode="random"),
|
| 235 |
+
dict(type="CenterShift", apply_z=False),
|
| 236 |
+
dict(type="NormalizeColor"),
|
| 237 |
+
# dict(type="ShufflePoint"),
|
| 238 |
+
dict(type="Add", keys_dict=dict(condition="ALC")),
|
| 239 |
+
dict(type="ToTensor"),
|
| 240 |
+
dict(
|
| 241 |
+
type="Collect",
|
| 242 |
+
keys=("coord", "grid_coord", "segment", "condition"),
|
| 243 |
+
feat_keys=("color", "normal"),
|
| 244 |
+
),
|
| 245 |
+
],
|
| 246 |
+
test_mode=False,
|
| 247 |
+
loop=2,
|
| 248 |
+
),
|
| 249 |
+
],
|
| 250 |
+
),
|
| 251 |
+
val=dict(
|
| 252 |
+
type="ScanNetPPDataset",
|
| 253 |
+
split="val",
|
| 254 |
+
data_root="data/scannetpp",
|
| 255 |
+
transform=[
|
| 256 |
+
dict(type="CenterShift", apply_z=True),
|
| 257 |
+
dict(
|
| 258 |
+
type="GridSample",
|
| 259 |
+
grid_size=0.02,
|
| 260 |
+
hash_type="fnv",
|
| 261 |
+
mode="train",
|
| 262 |
+
return_grid_coord=True,
|
| 263 |
+
),
|
| 264 |
+
dict(type="CenterShift", apply_z=False),
|
| 265 |
+
dict(type="NormalizeColor"),
|
| 266 |
+
dict(type="ToTensor"),
|
| 267 |
+
dict(type="Add", keys_dict={"condition": "ScanNet++"}),
|
| 268 |
+
dict(
|
| 269 |
+
type="Collect",
|
| 270 |
+
keys=("coord", "grid_coord", "segment", "condition"),
|
| 271 |
+
feat_keys=("color", "normal"),
|
| 272 |
+
),
|
| 273 |
+
],
|
| 274 |
+
test_mode=False,
|
| 275 |
+
),
|
| 276 |
+
test=dict(
|
| 277 |
+
type="ScanNetPPDataset",
|
| 278 |
+
split="test",
|
| 279 |
+
data_root="data/scannetpp",
|
| 280 |
+
transform=[
|
| 281 |
+
dict(type="CenterShift", apply_z=True),
|
| 282 |
+
dict(type="NormalizeColor"),
|
| 283 |
+
dict(type="Copy", keys_dict={"segment": "origin_segment"}),
|
| 284 |
+
dict(
|
| 285 |
+
type="GridSample",
|
| 286 |
+
grid_size=0.01,
|
| 287 |
+
hash_type="fnv",
|
| 288 |
+
mode="train",
|
| 289 |
+
keys=("coord", "color", "normal", "segment"),
|
| 290 |
+
return_inverse=True,
|
| 291 |
+
),
|
| 292 |
+
],
|
| 293 |
+
test_mode=True,
|
| 294 |
+
test_cfg=dict(
|
| 295 |
+
voxelize=dict(
|
| 296 |
+
type="GridSample",
|
| 297 |
+
grid_size=0.02,
|
| 298 |
+
hash_type="fnv",
|
| 299 |
+
mode="test",
|
| 300 |
+
keys=("coord", "color", "normal"),
|
| 301 |
+
return_grid_coord=True,
|
| 302 |
+
),
|
| 303 |
+
crop=None,
|
| 304 |
+
post_transform=[
|
| 305 |
+
dict(type="CenterShift", apply_z=False),
|
| 306 |
+
dict(type="Add", keys_dict={"condition": "ScanNet++"}),
|
| 307 |
+
dict(type="ToTensor"),
|
| 308 |
+
dict(
|
| 309 |
+
type="Collect",
|
| 310 |
+
keys=("coord", "grid_coord", "index", "condition"),
|
| 311 |
+
feat_keys=("color", "normal"),
|
| 312 |
+
),
|
| 313 |
+
],
|
| 314 |
+
aug_transform=[
|
| 315 |
+
[
|
| 316 |
+
dict(
|
| 317 |
+
type="RandomRotateTargetAngle",
|
| 318 |
+
angle=[0],
|
| 319 |
+
axis="z",
|
| 320 |
+
center=[0, 0, 0],
|
| 321 |
+
p=1,
|
| 322 |
+
)
|
| 323 |
+
],
|
| 324 |
+
[
|
| 325 |
+
dict(
|
| 326 |
+
type="RandomRotateTargetAngle",
|
| 327 |
+
angle=[1 / 2],
|
| 328 |
+
axis="z",
|
| 329 |
+
center=[0, 0, 0],
|
| 330 |
+
p=1,
|
| 331 |
+
)
|
| 332 |
+
],
|
| 333 |
+
[
|
| 334 |
+
dict(
|
| 335 |
+
type="RandomRotateTargetAngle",
|
| 336 |
+
angle=[1],
|
| 337 |
+
axis="z",
|
| 338 |
+
center=[0, 0, 0],
|
| 339 |
+
p=1,
|
| 340 |
+
)
|
| 341 |
+
],
|
| 342 |
+
[
|
| 343 |
+
dict(
|
| 344 |
+
type="RandomRotateTargetAngle",
|
| 345 |
+
angle=[3 / 2],
|
| 346 |
+
axis="z",
|
| 347 |
+
center=[0, 0, 0],
|
| 348 |
+
p=1,
|
| 349 |
+
)
|
| 350 |
+
],
|
| 351 |
+
[
|
| 352 |
+
dict(
|
| 353 |
+
type="RandomRotateTargetAngle",
|
| 354 |
+
angle=[0],
|
| 355 |
+
axis="z",
|
| 356 |
+
center=[0, 0, 0],
|
| 357 |
+
p=1,
|
| 358 |
+
),
|
| 359 |
+
dict(type="RandomScale", scale=[0.95, 0.95]),
|
| 360 |
+
],
|
| 361 |
+
[
|
| 362 |
+
dict(
|
| 363 |
+
type="RandomRotateTargetAngle",
|
| 364 |
+
angle=[1 / 2],
|
| 365 |
+
axis="z",
|
| 366 |
+
center=[0, 0, 0],
|
| 367 |
+
p=1,
|
| 368 |
+
),
|
| 369 |
+
dict(type="RandomScale", scale=[0.95, 0.95]),
|
| 370 |
+
],
|
| 371 |
+
[
|
| 372 |
+
dict(
|
| 373 |
+
type="RandomRotateTargetAngle",
|
| 374 |
+
angle=[1],
|
| 375 |
+
axis="z",
|
| 376 |
+
center=[0, 0, 0],
|
| 377 |
+
p=1,
|
| 378 |
+
),
|
| 379 |
+
dict(type="RandomScale", scale=[0.95, 0.95]),
|
| 380 |
+
],
|
| 381 |
+
[
|
| 382 |
+
dict(
|
| 383 |
+
type="RandomRotateTargetAngle",
|
| 384 |
+
angle=[3 / 2],
|
| 385 |
+
axis="z",
|
| 386 |
+
center=[0, 0, 0],
|
| 387 |
+
p=1,
|
| 388 |
+
),
|
| 389 |
+
dict(type="RandomScale", scale=[0.95, 0.95]),
|
| 390 |
+
],
|
| 391 |
+
[
|
| 392 |
+
dict(
|
| 393 |
+
type="RandomRotateTargetAngle",
|
| 394 |
+
angle=[0],
|
| 395 |
+
axis="z",
|
| 396 |
+
center=[0, 0, 0],
|
| 397 |
+
p=1,
|
| 398 |
+
),
|
| 399 |
+
dict(type="RandomScale", scale=[1.05, 1.05]),
|
| 400 |
+
],
|
| 401 |
+
[
|
| 402 |
+
dict(
|
| 403 |
+
type="RandomRotateTargetAngle",
|
| 404 |
+
angle=[1 / 2],
|
| 405 |
+
axis="z",
|
| 406 |
+
center=[0, 0, 0],
|
| 407 |
+
p=1,
|
| 408 |
+
),
|
| 409 |
+
dict(type="RandomScale", scale=[1.05, 1.05]),
|
| 410 |
+
],
|
| 411 |
+
[
|
| 412 |
+
dict(
|
| 413 |
+
type="RandomRotateTargetAngle",
|
| 414 |
+
angle=[1],
|
| 415 |
+
axis="z",
|
| 416 |
+
center=[0, 0, 0],
|
| 417 |
+
p=1,
|
| 418 |
+
),
|
| 419 |
+
dict(type="RandomScale", scale=[1.05, 1.05]),
|
| 420 |
+
],
|
| 421 |
+
[
|
| 422 |
+
dict(
|
| 423 |
+
type="RandomRotateTargetAngle",
|
| 424 |
+
angle=[3 / 2],
|
| 425 |
+
axis="z",
|
| 426 |
+
center=[0, 0, 0],
|
| 427 |
+
p=1,
|
| 428 |
+
),
|
| 429 |
+
dict(type="RandomScale", scale=[1.05, 1.05]),
|
| 430 |
+
],
|
| 431 |
+
[dict(type="RandomFlip", p=1)],
|
| 432 |
+
],
|
| 433 |
+
),
|
| 434 |
+
),
|
| 435 |
+
)
|
| 436 |
+
|
| 437 |
+
# hook
|
| 438 |
+
hooks = [
|
| 439 |
+
dict(type="CheckpointLoader"),
|
| 440 |
+
dict(type="IterationTimer", warmup_iter=2),
|
| 441 |
+
dict(type="InformationWriter"),
|
| 442 |
+
dict(type="SemSegEvaluator"),
|
| 443 |
+
dict(type="CheckpointSaver", save_freq=None),
|
| 444 |
+
dict(type="PreciseEvaluator", test_last=True),
|
| 445 |
+
]
|
pointcept/datasets/alc.py
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import glob
|
| 2 |
+
import os
|
| 3 |
+
from collections.abc import Sequence
|
| 4 |
+
from copy import deepcopy
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
from labelmaker.label_data import get_wordnet
|
| 9 |
+
from torch.utils.data import Dataset
|
| 10 |
+
|
| 11 |
+
from pointcept.utils.cache import shared_dict
|
| 12 |
+
from pointcept.utils.logger import get_root_logger
|
| 13 |
+
|
| 14 |
+
from .builder import DATASETS
|
| 15 |
+
from .preprocessing.alc.preprocess_arkitscenes_labelmaker_consensus import get_wordnet_compact_mapping
|
| 16 |
+
from .preprocessing.scannet.meta_data.scannet200_constants import VALID_CLASS_IDS_20, VALID_CLASS_IDS_200
|
| 17 |
+
from .transform import TRANSFORMS, Compose
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
@DATASETS.register_module()
|
| 21 |
+
class ARKitScenesLabelMakerConsensusDataset(Dataset):
|
| 22 |
+
|
| 23 |
+
label_key = "semantic_pseudo_gt_wn199"
|
| 24 |
+
|
| 25 |
+
def __init__(
|
| 26 |
+
self,
|
| 27 |
+
split="train",
|
| 28 |
+
data_root="data/alc",
|
| 29 |
+
transform=None,
|
| 30 |
+
ignore_index=-1,
|
| 31 |
+
test_mode=False,
|
| 32 |
+
test_cfg=None,
|
| 33 |
+
cache=False,
|
| 34 |
+
loop=1,
|
| 35 |
+
):
|
| 36 |
+
super(ARKitScenesLabelMakerConsensusDataset, self).__init__()
|
| 37 |
+
self.get_class_to_id()
|
| 38 |
+
|
| 39 |
+
self.data_root = data_root
|
| 40 |
+
self.split = split
|
| 41 |
+
self.transform = Compose(transform)
|
| 42 |
+
self.cache = cache
|
| 43 |
+
self.loop = loop if not test_mode else 1 # force make loop = 1 while in test mode
|
| 44 |
+
self.test_mode = test_mode
|
| 45 |
+
self.test_cfg = test_cfg if test_mode else None
|
| 46 |
+
|
| 47 |
+
if test_mode:
|
| 48 |
+
self.test_voxelize = TRANSFORMS.build(self.test_cfg.voxelize)
|
| 49 |
+
self.test_crop = TRANSFORMS.build(self.test_cfg.crop) if self.test_cfg.crop else None
|
| 50 |
+
self.post_transform = Compose(self.test_cfg.post_transform)
|
| 51 |
+
self.aug_transform = [Compose(aug) for aug in self.test_cfg.aug_transform]
|
| 52 |
+
|
| 53 |
+
self.data_list = self.get_data_list()
|
| 54 |
+
|
| 55 |
+
self.ignore_index = ignore_index
|
| 56 |
+
|
| 57 |
+
logger = get_root_logger()
|
| 58 |
+
logger.info(
|
| 59 |
+
"Totally {} x {} samples in {} set.".format(
|
| 60 |
+
len(self.data_list),
|
| 61 |
+
self.loop,
|
| 62 |
+
split,
|
| 63 |
+
)
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
def get_class_to_id(self):
|
| 67 |
+
self.class2id = get_wordnet_compact_mapping()[0]
|
| 68 |
+
|
| 69 |
+
def get_data_list(self):
|
| 70 |
+
if isinstance(self.split, str):
|
| 71 |
+
data_list = glob.glob(os.path.join(self.data_root, self.split, "*.pth"))
|
| 72 |
+
elif isinstance(self.split, Sequence):
|
| 73 |
+
data_list = []
|
| 74 |
+
for split in self.split:
|
| 75 |
+
data_list += glob.glob(os.path.join(self.data_root, split, "*.pth"))
|
| 76 |
+
else:
|
| 77 |
+
raise NotImplementedError
|
| 78 |
+
return data_list
|
| 79 |
+
|
| 80 |
+
def get_data(self, idx):
|
| 81 |
+
data_path = self.data_list[idx % len(self.data_list)]
|
| 82 |
+
|
| 83 |
+
if not self.cache:
|
| 84 |
+
data = torch.load(data_path)
|
| 85 |
+
else:
|
| 86 |
+
data_name = data_path.replace(os.path.dirname(self.data_root), "").split(".")[0]
|
| 87 |
+
cache_name = "pointcept" + data_name.replace(os.path.sep, "-")
|
| 88 |
+
data = shared_dict(cache_name)
|
| 89 |
+
|
| 90 |
+
coord = data["coord"]
|
| 91 |
+
color = data["color"]
|
| 92 |
+
normal = data["normal"]
|
| 93 |
+
scene_id = data["scene_id"]
|
| 94 |
+
segment = data[self.label_key].reshape(-1)
|
| 95 |
+
instance = np.ones(coord.shape[0]) * -1
|
| 96 |
+
|
| 97 |
+
data_dict = dict(
|
| 98 |
+
coord=coord,
|
| 99 |
+
normal=normal,
|
| 100 |
+
color=color,
|
| 101 |
+
segment=segment,
|
| 102 |
+
instance=instance,
|
| 103 |
+
scene_id=scene_id,
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
return data_dict
|
| 107 |
+
|
| 108 |
+
def get_data_name(self, idx):
|
| 109 |
+
return os.path.basename(self.data_list[idx % len(self.data_list)]).split(".")[0]
|
| 110 |
+
|
| 111 |
+
def prepare_train_data(self, idx):
|
| 112 |
+
# load data
|
| 113 |
+
data_dict = self.get_data(idx)
|
| 114 |
+
data_dict = self.transform(data_dict)
|
| 115 |
+
return data_dict
|
| 116 |
+
|
| 117 |
+
def prepare_test_data(self, idx):
|
| 118 |
+
# load data
|
| 119 |
+
data_dict = self.get_data(idx)
|
| 120 |
+
segment = data_dict.pop("segment")
|
| 121 |
+
data_dict = self.transform(data_dict)
|
| 122 |
+
data_dict_list = []
|
| 123 |
+
for aug in self.aug_transform:
|
| 124 |
+
data_dict_list.append(aug(deepcopy(data_dict)))
|
| 125 |
+
|
| 126 |
+
input_dict_list = []
|
| 127 |
+
for data in data_dict_list:
|
| 128 |
+
data_part_list = self.test_voxelize(data)
|
| 129 |
+
for data_part in data_part_list:
|
| 130 |
+
if self.test_crop:
|
| 131 |
+
data_part = self.test_crop(data_part)
|
| 132 |
+
else:
|
| 133 |
+
data_part = [data_part]
|
| 134 |
+
input_dict_list += data_part
|
| 135 |
+
|
| 136 |
+
for i in range(len(input_dict_list)):
|
| 137 |
+
input_dict_list[i] = self.post_transform(input_dict_list[i])
|
| 138 |
+
data_dict = dict(fragment_list=input_dict_list, segment=segment, name=self.get_data_name(idx))
|
| 139 |
+
return data_dict
|
| 140 |
+
|
| 141 |
+
def __getitem__(self, idx):
|
| 142 |
+
if self.test_mode:
|
| 143 |
+
return self.prepare_test_data(idx)
|
| 144 |
+
else:
|
| 145 |
+
return self.prepare_train_data(idx)
|
| 146 |
+
|
| 147 |
+
def __len__(self):
|
| 148 |
+
return len(self.data_list) * self.loop
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
@DATASETS.register_module()
|
| 152 |
+
class ARKitScenesLabelMakerScanNet200Dataset(ARKitScenesLabelMakerConsensusDataset):
|
| 153 |
+
label_key = "semantic_pseudo_gt_scannet200"
|
| 154 |
+
|
| 155 |
+
def get_class_to_id(self):
|
| 156 |
+
self.class2id = np.array(VALID_CLASS_IDS_200)
|
pointcept/datasets/preprocessing/alc/preprocess_arkitscenes_labelmaker_consensus.py
ADDED
|
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import warnings
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
| 6 |
+
|
| 7 |
+
import argparse
|
| 8 |
+
import glob
|
| 9 |
+
import json
|
| 10 |
+
import multiprocessing as mp
|
| 11 |
+
import os
|
| 12 |
+
from concurrent.futures import ProcessPoolExecutor
|
| 13 |
+
from itertools import repeat
|
| 14 |
+
from pathlib import Path
|
| 15 |
+
|
| 16 |
+
import numpy as np
|
| 17 |
+
import pandas as pd
|
| 18 |
+
import plyfile
|
| 19 |
+
from labelmaker import label_mappings
|
| 20 |
+
from labelmaker.label_data import get_wordnet
|
| 21 |
+
from labelmaker.scannet_200_labels import VALID_CLASS_IDS_200
|
| 22 |
+
from tqdm import tqdm
|
| 23 |
+
|
| 24 |
+
IGNORE_INDEX = -1
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def get_wordnet_to_scannet200_mapping():
|
| 28 |
+
table = pd.read_csv(Path(os.path.dirname(os.path.realpath(label_mappings.__file__))) / "mappings" / "label_mapping.csv")
|
| 29 |
+
wordnet = get_wordnet()
|
| 30 |
+
wordnet_keys = [x["name"] for x in wordnet]
|
| 31 |
+
mapping = {}
|
| 32 |
+
for row in table.index:
|
| 33 |
+
if table["wnsynsetkey"][row] not in wordnet_keys:
|
| 34 |
+
continue
|
| 35 |
+
scannet_id = table.loc[row, "id"]
|
| 36 |
+
wordnet199_id = next(x for x in wordnet if x["name"] == table["wnsynsetkey"][row])["id"]
|
| 37 |
+
|
| 38 |
+
if scannet_id in VALID_CLASS_IDS_200:
|
| 39 |
+
mapping.setdefault(wordnet199_id, set()).add(scannet_id)
|
| 40 |
+
|
| 41 |
+
wn199_size = np.array([x["id"] for x in wordnet]).max() + 1
|
| 42 |
+
mapping_array = np.zeros(shape=(wn199_size,), dtype=np.uint16)
|
| 43 |
+
for wordnet199_id in mapping.keys():
|
| 44 |
+
mapping_array[wordnet199_id] = min(mapping[wordnet199_id])
|
| 45 |
+
|
| 46 |
+
return mapping_array
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def get_wordnet_compact_mapping():
|
| 50 |
+
wordnet_info = get_wordnet()[1:]
|
| 51 |
+
wordnet_info = sorted(wordnet_info, key=lambda x: x["id"])
|
| 52 |
+
|
| 53 |
+
class2id = np.array([item["id"] for item in wordnet_info])
|
| 54 |
+
id2class = np.array([IGNORE_INDEX] * (class2id.max() + 1))
|
| 55 |
+
for class_, id_ in enumerate(class2id):
|
| 56 |
+
id2class[id_] = class_
|
| 57 |
+
|
| 58 |
+
return class2id, id2class
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_scannet200_compact_mapping():
|
| 62 |
+
class2id = np.array(VALID_CLASS_IDS_200)
|
| 63 |
+
id2class = np.array([IGNORE_INDEX] * (class2id.max() + 1))
|
| 64 |
+
for class_, id_ in enumerate(VALID_CLASS_IDS_200):
|
| 65 |
+
id2class[id_] = class_
|
| 66 |
+
|
| 67 |
+
return class2id, id2class
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def get_wordnet_names():
|
| 71 |
+
wordnet_info = get_wordnet()[1:]
|
| 72 |
+
wordnet_info = sorted(wordnet_info, key=lambda x: x["id"])
|
| 73 |
+
|
| 74 |
+
names = [item["name"].split(".")[0].replace("_", " ") for item in wordnet_info]
|
| 75 |
+
|
| 76 |
+
return names
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def read_plypcd(filepath):
|
| 80 |
+
"""Read ply file and return it as numpy array. Returns None if emtpy."""
|
| 81 |
+
|
| 82 |
+
with open(filepath, "rb") as f:
|
| 83 |
+
plydata = plyfile.PlyData.read(f)
|
| 84 |
+
if plydata.elements:
|
| 85 |
+
data = plydata.elements[0].data
|
| 86 |
+
coords = np.array([data["x"], data["y"], data["z"]], dtype=np.float32).T
|
| 87 |
+
|
| 88 |
+
colors = None
|
| 89 |
+
if ({"red", "green", "blue"} - set(data.dtype.names)) == set():
|
| 90 |
+
colors = np.array([data["red"], data["green"], data["blue"]], dtype=np.uint8).T
|
| 91 |
+
|
| 92 |
+
normals = None
|
| 93 |
+
if ({"nx", "ny", "nz"} - set(data.dtype.names)) == set():
|
| 94 |
+
normals = np.array([data["nx"], data["ny"], data["nz"]], dtype=np.float32).T
|
| 95 |
+
|
| 96 |
+
return coords, colors, normals
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def handle_process(
|
| 100 |
+
scene_dir: str,
|
| 101 |
+
output_path: str,
|
| 102 |
+
label_mapping,
|
| 103 |
+
wn199_id2class,
|
| 104 |
+
scannet200_id2class,
|
| 105 |
+
):
|
| 106 |
+
scene_dir = Path(scene_dir)
|
| 107 |
+
|
| 108 |
+
print(f"Processing: {scene_dir.name} in {scene_dir.parent.name}")
|
| 109 |
+
|
| 110 |
+
coords, colors, normals = read_plypcd(str(scene_dir / "pcd_downsampled.ply"))
|
| 111 |
+
save_dict = dict(
|
| 112 |
+
coord=coords,
|
| 113 |
+
color=colors,
|
| 114 |
+
scene_id=scene_dir.name,
|
| 115 |
+
normal=normals,
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
label_file = scene_dir / "labels_downsampled.txt"
|
| 119 |
+
wordnet_label = np.loadtxt(str(label_file), dtype=np.uint8).reshape(-1, 1)
|
| 120 |
+
scannet200_label = label_mapping[wordnet_label]
|
| 121 |
+
save_dict["semantic_pseudo_gt_wn199"] = wn199_id2class[wordnet_label]
|
| 122 |
+
save_dict["semantic_pseudo_gt_scannet200"] = scannet200_id2class[scannet200_label]
|
| 123 |
+
|
| 124 |
+
torch.save(save_dict, output_path)
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
if __name__ == "__main__":
|
| 128 |
+
parser = argparse.ArgumentParser()
|
| 129 |
+
parser.add_argument(
|
| 130 |
+
"--dataset_root",
|
| 131 |
+
required=True,
|
| 132 |
+
help="Path to the ScanNet dataset containing scene folders",
|
| 133 |
+
)
|
| 134 |
+
parser.add_argument(
|
| 135 |
+
"--output_root",
|
| 136 |
+
required=True,
|
| 137 |
+
help="Output path where train/val folders will be located",
|
| 138 |
+
)
|
| 139 |
+
config = parser.parse_args()
|
| 140 |
+
|
| 141 |
+
# Create output directories
|
| 142 |
+
train_output_dir = os.path.join(config.output_root, "train")
|
| 143 |
+
os.makedirs(train_output_dir, exist_ok=True)
|
| 144 |
+
val_output_dir = os.path.join(config.output_root, "val")
|
| 145 |
+
os.makedirs(val_output_dir, exist_ok=True)
|
| 146 |
+
|
| 147 |
+
# Load label map
|
| 148 |
+
wn_scannet200_label_mapping = get_wordnet_to_scannet200_mapping()
|
| 149 |
+
_, wn199_id2class = get_wordnet_compact_mapping()
|
| 150 |
+
_, scannet200_id2class = get_scannet200_compact_mapping()
|
| 151 |
+
|
| 152 |
+
scene_dirs = []
|
| 153 |
+
output_paths = []
|
| 154 |
+
|
| 155 |
+
# Load train/val splits
|
| 156 |
+
train_folder = Path(config.dataset_root) / "Training"
|
| 157 |
+
train_scene_names = os.listdir(str(train_folder))
|
| 158 |
+
for scene in tqdm(train_scene_names):
|
| 159 |
+
file_path = train_folder / scene / "pcd_downsampled.ply"
|
| 160 |
+
if file_path.exists() and os.path.getsize(str(file_path)) <= 50 * 1024 * 1024:
|
| 161 |
+
scene_dirs.append(str(train_folder / scene))
|
| 162 |
+
output_paths.append(str(Path(config.output_root) / "train" / f"{scene}.pth"))
|
| 163 |
+
|
| 164 |
+
val_folder = Path(config.dataset_root) / "Validation"
|
| 165 |
+
val_scene_names = os.listdir(str(val_folder))
|
| 166 |
+
for scene in tqdm(val_scene_names):
|
| 167 |
+
file_path = val_folder / scene / "pcd_downsampled.ply"
|
| 168 |
+
if file_path.exists() and os.path.getsize(str(file_path)) <= 50 * 1024 * 1024:
|
| 169 |
+
scene_dirs.append(str(val_folder / scene))
|
| 170 |
+
output_paths.append(str(Path(config.output_root) / "val" / f"{scene}.pth"))
|
| 171 |
+
|
| 172 |
+
# Preprocess data.
|
| 173 |
+
print("Processing scenes...")
|
| 174 |
+
pool = ProcessPoolExecutor(max_workers=mp.cpu_count())
|
| 175 |
+
print(f"Using {mp.cpu_count()} cores")
|
| 176 |
+
# pool = ProcessPoolExecutor(max_workers=1)
|
| 177 |
+
_ = list(
|
| 178 |
+
pool.map(
|
| 179 |
+
handle_process,
|
| 180 |
+
scene_dirs,
|
| 181 |
+
output_paths,
|
| 182 |
+
repeat(wn_scannet200_label_mapping),
|
| 183 |
+
repeat(wn199_id2class),
|
| 184 |
+
repeat(scannet200_id2class),
|
| 185 |
+
)
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
WORDNET_NAMES = (
|
| 190 |
+
"wall",
|
| 191 |
+
"chair",
|
| 192 |
+
"book",
|
| 193 |
+
"cabinet",
|
| 194 |
+
"door",
|
| 195 |
+
"floor",
|
| 196 |
+
"ashcan",
|
| 197 |
+
"table",
|
| 198 |
+
"window",
|
| 199 |
+
"bookshelf",
|
| 200 |
+
"display",
|
| 201 |
+
"cushion",
|
| 202 |
+
"box",
|
| 203 |
+
"picture",
|
| 204 |
+
"ceiling",
|
| 205 |
+
"doorframe",
|
| 206 |
+
"desk",
|
| 207 |
+
"swivel chair",
|
| 208 |
+
"towel",
|
| 209 |
+
"sofa",
|
| 210 |
+
"sink",
|
| 211 |
+
"backpack",
|
| 212 |
+
"lamp",
|
| 213 |
+
"chest of drawers",
|
| 214 |
+
"apparel",
|
| 215 |
+
"armchair",
|
| 216 |
+
"bed",
|
| 217 |
+
"curtain",
|
| 218 |
+
"mirror",
|
| 219 |
+
"plant",
|
| 220 |
+
"radiator",
|
| 221 |
+
"toilet tissue",
|
| 222 |
+
"shoe",
|
| 223 |
+
"bag",
|
| 224 |
+
"bottle",
|
| 225 |
+
"countertop",
|
| 226 |
+
"coffee table",
|
| 227 |
+
"toilet",
|
| 228 |
+
"computer keyboard",
|
| 229 |
+
"fridge",
|
| 230 |
+
"stool",
|
| 231 |
+
"computer",
|
| 232 |
+
"mug",
|
| 233 |
+
"telephone",
|
| 234 |
+
"light",
|
| 235 |
+
"jacket",
|
| 236 |
+
"bathtub",
|
| 237 |
+
"shower curtain",
|
| 238 |
+
"microwave",
|
| 239 |
+
"footstool",
|
| 240 |
+
"baggage",
|
| 241 |
+
"laptop",
|
| 242 |
+
"printer",
|
| 243 |
+
"shower stall",
|
| 244 |
+
"soap dispenser",
|
| 245 |
+
"stove",
|
| 246 |
+
"fan",
|
| 247 |
+
"paper",
|
| 248 |
+
"stand",
|
| 249 |
+
"bench",
|
| 250 |
+
"wardrobe",
|
| 251 |
+
"blanket",
|
| 252 |
+
"booth",
|
| 253 |
+
"duplicator",
|
| 254 |
+
"bar",
|
| 255 |
+
"soap dish",
|
| 256 |
+
"switch",
|
| 257 |
+
"coffee maker",
|
| 258 |
+
"decoration",
|
| 259 |
+
"range hood",
|
| 260 |
+
"blackboard",
|
| 261 |
+
"clock",
|
| 262 |
+
"railing",
|
| 263 |
+
"mat",
|
| 264 |
+
"seat",
|
| 265 |
+
"bannister",
|
| 266 |
+
"container",
|
| 267 |
+
"mouse",
|
| 268 |
+
"person",
|
| 269 |
+
"stairway",
|
| 270 |
+
"basket",
|
| 271 |
+
"dumbbell",
|
| 272 |
+
"column",
|
| 273 |
+
"bucket",
|
| 274 |
+
"windowsill",
|
| 275 |
+
"signboard",
|
| 276 |
+
"dishwasher",
|
| 277 |
+
"loudspeaker",
|
| 278 |
+
"washer",
|
| 279 |
+
"paper towel",
|
| 280 |
+
"clothes hamper",
|
| 281 |
+
"piano",
|
| 282 |
+
"sack",
|
| 283 |
+
"handcart",
|
| 284 |
+
"blind",
|
| 285 |
+
"dish rack",
|
| 286 |
+
"mailbox",
|
| 287 |
+
"bag",
|
| 288 |
+
"bicycle",
|
| 289 |
+
"ladder",
|
| 290 |
+
"rack",
|
| 291 |
+
"tray",
|
| 292 |
+
"toaster",
|
| 293 |
+
"paper cutter",
|
| 294 |
+
"plunger",
|
| 295 |
+
"dryer",
|
| 296 |
+
"guitar",
|
| 297 |
+
"fire extinguisher",
|
| 298 |
+
"pitcher",
|
| 299 |
+
"pipe",
|
| 300 |
+
"plate",
|
| 301 |
+
"vacuum",
|
| 302 |
+
"bowl",
|
| 303 |
+
"hat",
|
| 304 |
+
"rod",
|
| 305 |
+
"water cooler",
|
| 306 |
+
"kettle",
|
| 307 |
+
"oven",
|
| 308 |
+
"scale",
|
| 309 |
+
"broom",
|
| 310 |
+
"hand blower",
|
| 311 |
+
"coatrack",
|
| 312 |
+
"teddy",
|
| 313 |
+
"alarm clock",
|
| 314 |
+
"ironing board",
|
| 315 |
+
"fire alarm",
|
| 316 |
+
"machine",
|
| 317 |
+
"music stand",
|
| 318 |
+
"fireplace",
|
| 319 |
+
"furniture",
|
| 320 |
+
"vase",
|
| 321 |
+
"vent",
|
| 322 |
+
"candle",
|
| 323 |
+
"crate",
|
| 324 |
+
"dustpan",
|
| 325 |
+
"earphone",
|
| 326 |
+
"jar",
|
| 327 |
+
"projector",
|
| 328 |
+
"gat",
|
| 329 |
+
"step",
|
| 330 |
+
"step stool",
|
| 331 |
+
"vending machine",
|
| 332 |
+
"coat",
|
| 333 |
+
"coat hanger",
|
| 334 |
+
"drinking fountain",
|
| 335 |
+
"hamper",
|
| 336 |
+
"thermostat",
|
| 337 |
+
"banner",
|
| 338 |
+
"iron",
|
| 339 |
+
"soap",
|
| 340 |
+
"chopping board",
|
| 341 |
+
"kitchen island",
|
| 342 |
+
"shirt",
|
| 343 |
+
"sleeping bag",
|
| 344 |
+
"tire",
|
| 345 |
+
"toothbrush",
|
| 346 |
+
"bathrobe",
|
| 347 |
+
"faucet",
|
| 348 |
+
"slipper",
|
| 349 |
+
"thermos",
|
| 350 |
+
"tripod",
|
| 351 |
+
"dispenser",
|
| 352 |
+
"heater",
|
| 353 |
+
"pool table",
|
| 354 |
+
"remote control",
|
| 355 |
+
"stapler",
|
| 356 |
+
"treadmill",
|
| 357 |
+
"beanbag",
|
| 358 |
+
"dartboard",
|
| 359 |
+
"metronome",
|
| 360 |
+
"rope",
|
| 361 |
+
"sewing machine",
|
| 362 |
+
"shredder",
|
| 363 |
+
"toolbox",
|
| 364 |
+
"water heater",
|
| 365 |
+
"brush",
|
| 366 |
+
"control",
|
| 367 |
+
"dais",
|
| 368 |
+
"dollhouse",
|
| 369 |
+
"envelope",
|
| 370 |
+
"food",
|
| 371 |
+
"frying pan",
|
| 372 |
+
"helmet",
|
| 373 |
+
"tennis racket",
|
| 374 |
+
"umbrella",
|
| 375 |
+
)
|