Datasets:
				
			
			
	
			
			
	
		Tasks:
	
	
	
	
	Object Detection
	
	
	Size:
	
	
	
	
	< 1K
	
	
	Commit 
							
							·
						
						f016e54
	
1
								Parent(s):
							
							cdd31f6
								
dataset uploaded by roboflow2huggingface package
Browse files- README.dataset.txt +39 -0
- README.md +58 -0
- README.roboflow.txt +24 -0
- blood-cell-object-detection.py +121 -0
- data/test.zip +3 -0
- data/train.zip +3 -0
- data/valid.zip +3 -0
    	
        README.dataset.txt
    ADDED
    
    | @@ -0,0 +1,39 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Blood Cell Detection > 2022-10-27 4:01pm
         | 
| 2 | 
            +
            https://universe.roboflow.com/team-roboflow/blood-cell-detection-1ekwu
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            Provided by a Roboflow user
         | 
| 5 | 
            +
            License: Public Domain
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Overview
         | 
| 8 | 
            +
             
         | 
| 9 | 
            +
            This is a dataset of blood cells photos, originally open sourced by [cosmicad](https://github.com/cosmicad/dataset) and [akshaylambda](https://github.com/akshaylamba/all_CELL_data). 
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            There are 364 images across three classes: `WBC` (white blood cells), `RBC` (red blood cells), and `Platelets`. There are 4888 labels across 3 classes (and 0 null examples).
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            Here's a class count from Roboflow's Dataset Health Check:
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            And here's an example image:
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            `Fork` this dataset (upper right hand corner) to receive the raw images, or (to save space) grab the 500x500 export.
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            # Use Cases
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            This is a small scale object detection dataset, commonly used to assess model performance. It's a first example of medical imaging capabilities.
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            # Using this Dataset
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            We're releasing the data as public domain. Feel free to use it for any purpose.
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            It's not required to provide attribution, but it'd be nice! :)
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            # About Roboflow
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            [Roboflow](https://roboflow.ai) makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless. 
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            Developers reduce 50% of their boilerplate code when using Roboflow's workflow, automate annotation quality assurance, save training time, and increase model reproducibility.
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            #### [](https://roboflow.ai)
         | 
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,58 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            task_categories:
         | 
| 3 | 
            +
            - object-detection
         | 
| 4 | 
            +
            tags:
         | 
| 5 | 
            +
            - roboflow
         | 
| 6 | 
            +
            ---
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            ### Roboflow Dataset Page
         | 
| 9 | 
            +
            https://universe.roboflow.com/team-roboflow/blood-cell-detection-1ekwu/dataset/3
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            ### Dataset Labels
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            ```
         | 
| 14 | 
            +
            ['platelets', 'rbc', 'wbc']
         | 
| 15 | 
            +
            ```
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            ### Citation
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            ```
         | 
| 20 | 
            +
            @misc{ blood-cell-detection-1ekwu_dataset,
         | 
| 21 | 
            +
                title = { Blood Cell Detection Dataset },
         | 
| 22 | 
            +
                type = { Open Source Dataset },
         | 
| 23 | 
            +
                author = { Team Roboflow },
         | 
| 24 | 
            +
                howpublished = { \\url{ https://universe.roboflow.com/team-roboflow/blood-cell-detection-1ekwu } },
         | 
| 25 | 
            +
                url = { https://universe.roboflow.com/team-roboflow/blood-cell-detection-1ekwu },
         | 
| 26 | 
            +
                journal = { Roboflow Universe },
         | 
| 27 | 
            +
                publisher = { Roboflow },
         | 
| 28 | 
            +
                year = { 2022 },
         | 
| 29 | 
            +
                month = { nov },
         | 
| 30 | 
            +
                note = { visited on 2022-12-31 },
         | 
| 31 | 
            +
            }
         | 
| 32 | 
            +
            ```
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            ### License
         | 
| 35 | 
            +
            Public Domain
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            ### Dataset Summary
         | 
| 38 | 
            +
            This dataset was exported via roboflow.com on November 4, 2022 at 7:46 PM GMT
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            Roboflow is an end-to-end computer vision platform that helps you
         | 
| 41 | 
            +
            * collaborate with your team on computer vision projects
         | 
| 42 | 
            +
            * collect & organize images
         | 
| 43 | 
            +
            * understand unstructured image data
         | 
| 44 | 
            +
            * annotate, and create datasets
         | 
| 45 | 
            +
            * export, train, and deploy computer vision models
         | 
| 46 | 
            +
            * use active learning to improve your dataset over time
         | 
| 47 | 
            +
             | 
| 48 | 
            +
            It includes 364 images.
         | 
| 49 | 
            +
            Cells are annotated in COCO format.
         | 
| 50 | 
            +
             | 
| 51 | 
            +
            The following pre-processing was applied to each image:
         | 
| 52 | 
            +
            * Auto-orientation of pixel data (with EXIF-orientation stripping)
         | 
| 53 | 
            +
            * Resize to 416x416 (Stretch)
         | 
| 54 | 
            +
             | 
| 55 | 
            +
            No image augmentation techniques were applied.
         | 
| 56 | 
            +
             | 
| 57 | 
            +
             | 
| 58 | 
            +
             | 
    	
        README.roboflow.txt
    ADDED
    
    | @@ -0,0 +1,24 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
             | 
| 2 | 
            +
            Blood Cell Detection - v3 2022-10-27 4:01pm
         | 
| 3 | 
            +
            ==============================
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            This dataset was exported via roboflow.com on November 4, 2022 at 7:46 PM GMT
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            Roboflow is an end-to-end computer vision platform that helps you
         | 
| 8 | 
            +
            * collaborate with your team on computer vision projects
         | 
| 9 | 
            +
            * collect & organize images
         | 
| 10 | 
            +
            * understand unstructured image data
         | 
| 11 | 
            +
            * annotate, and create datasets
         | 
| 12 | 
            +
            * export, train, and deploy computer vision models
         | 
| 13 | 
            +
            * use active learning to improve your dataset over time
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            It includes 364 images.
         | 
| 16 | 
            +
            Cells are annotated in COCO format.
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            The following pre-processing was applied to each image:
         | 
| 19 | 
            +
            * Auto-orientation of pixel data (with EXIF-orientation stripping)
         | 
| 20 | 
            +
            * Resize to 416x416 (Stretch)
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            No image augmentation techniques were applied.
         | 
| 23 | 
            +
             | 
| 24 | 
            +
             | 
    	
        blood-cell-object-detection.py
    ADDED
    
    | @@ -0,0 +1,121 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import collections
         | 
| 2 | 
            +
            import json
         | 
| 3 | 
            +
            import os
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            import datasets
         | 
| 6 | 
            +
             | 
| 7 | 
            +
             | 
| 8 | 
            +
            _HOMEPAGE = "https://universe.roboflow.com/team-roboflow/blood-cell-detection-1ekwu/dataset/3"
         | 
| 9 | 
            +
            _LICENSE = "Public Domain"
         | 
| 10 | 
            +
            _CITATION = """\
         | 
| 11 | 
            +
            @misc{ blood-cell-detection-1ekwu_dataset,
         | 
| 12 | 
            +
                title = { Blood Cell Detection Dataset },
         | 
| 13 | 
            +
                type = { Open Source Dataset },
         | 
| 14 | 
            +
                author = { Team Roboflow },
         | 
| 15 | 
            +
                howpublished = { \\url{ https://universe.roboflow.com/team-roboflow/blood-cell-detection-1ekwu } },
         | 
| 16 | 
            +
                url = { https://universe.roboflow.com/team-roboflow/blood-cell-detection-1ekwu },
         | 
| 17 | 
            +
                journal = { Roboflow Universe },
         | 
| 18 | 
            +
                publisher = { Roboflow },
         | 
| 19 | 
            +
                year = { 2022 },
         | 
| 20 | 
            +
                month = { nov },
         | 
| 21 | 
            +
                note = { visited on 2022-12-31 },
         | 
| 22 | 
            +
            }
         | 
| 23 | 
            +
            """
         | 
| 24 | 
            +
            _URLS = {
         | 
| 25 | 
            +
                "train": "https://huggingface.co/datasets/keremberke/blood-cell-object-detection/resolve/main/data/train.zip",
         | 
| 26 | 
            +
                "validation": "https://huggingface.co/datasets/keremberke/blood-cell-object-detection/resolve/main/data/valid.zip",
         | 
| 27 | 
            +
                "test": "https://huggingface.co/datasets/keremberke/blood-cell-object-detection/resolve/main/data/test.zip",
         | 
| 28 | 
            +
            }
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            _CATEGORIES = ['platelets', 'rbc', 'wbc']
         | 
| 31 | 
            +
            _ANNOTATION_FILENAME = "_annotations.coco.json"
         | 
| 32 | 
            +
             | 
| 33 | 
            +
             | 
| 34 | 
            +
            class BLOODCELLOBJECTDETECTION(datasets.GeneratorBasedBuilder):
         | 
| 35 | 
            +
                VERSION = datasets.Version("1.0.0")
         | 
| 36 | 
            +
             | 
| 37 | 
            +
                def _info(self):
         | 
| 38 | 
            +
                    features = datasets.Features(
         | 
| 39 | 
            +
                        {
         | 
| 40 | 
            +
                            "image_id": datasets.Value("int64"),
         | 
| 41 | 
            +
                            "image": datasets.Image(),
         | 
| 42 | 
            +
                            "width": datasets.Value("int32"),
         | 
| 43 | 
            +
                            "height": datasets.Value("int32"),
         | 
| 44 | 
            +
                            "objects": datasets.Sequence(
         | 
| 45 | 
            +
                                {
         | 
| 46 | 
            +
                                    "id": datasets.Value("int64"),
         | 
| 47 | 
            +
                                    "area": datasets.Value("int64"),
         | 
| 48 | 
            +
                                    "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
         | 
| 49 | 
            +
                                    "category": datasets.ClassLabel(names=_CATEGORIES),
         | 
| 50 | 
            +
                                }
         | 
| 51 | 
            +
                            ),
         | 
| 52 | 
            +
                        }
         | 
| 53 | 
            +
                    )
         | 
| 54 | 
            +
                    return datasets.DatasetInfo(
         | 
| 55 | 
            +
                        features=features,
         | 
| 56 | 
            +
                        homepage=_HOMEPAGE,
         | 
| 57 | 
            +
                        citation=_CITATION,
         | 
| 58 | 
            +
                        license=_LICENSE,
         | 
| 59 | 
            +
                    )
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                def _split_generators(self, dl_manager):
         | 
| 62 | 
            +
                    data_files = dl_manager.download_and_extract(_URLS)
         | 
| 63 | 
            +
                    return [
         | 
| 64 | 
            +
                        datasets.SplitGenerator(
         | 
| 65 | 
            +
                            name=datasets.Split.TRAIN,
         | 
| 66 | 
            +
                            gen_kwargs={
         | 
| 67 | 
            +
                                "folder_dir": data_files["train"],
         | 
| 68 | 
            +
                            },
         | 
| 69 | 
            +
                        ),
         | 
| 70 | 
            +
                        datasets.SplitGenerator(
         | 
| 71 | 
            +
                            name=datasets.Split.VALIDATION,
         | 
| 72 | 
            +
                            gen_kwargs={
         | 
| 73 | 
            +
                                "folder_dir": data_files["validation"],
         | 
| 74 | 
            +
                            },
         | 
| 75 | 
            +
                        ),
         | 
| 76 | 
            +
                        datasets.SplitGenerator(
         | 
| 77 | 
            +
                            name=datasets.Split.TEST,
         | 
| 78 | 
            +
                            gen_kwargs={
         | 
| 79 | 
            +
                                "folder_dir": data_files["test"],
         | 
| 80 | 
            +
                            },
         | 
| 81 | 
            +
                        ),
         | 
| 82 | 
            +
            ]
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                def _generate_examples(self, folder_dir):
         | 
| 85 | 
            +
                    def process_annot(annot, category_id_to_category):
         | 
| 86 | 
            +
                        return {
         | 
| 87 | 
            +
                            "id": annot["id"],
         | 
| 88 | 
            +
                            "area": annot["area"],
         | 
| 89 | 
            +
                            "bbox": annot["bbox"],
         | 
| 90 | 
            +
                            "category": category_id_to_category[annot["category_id"]],
         | 
| 91 | 
            +
                        }
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                    image_id_to_image = {}
         | 
| 94 | 
            +
                    idx = 0
         | 
| 95 | 
            +
                    
         | 
| 96 | 
            +
                    annotation_filepath = os.path.join(folder_dir, _ANNOTATION_FILENAME)
         | 
| 97 | 
            +
                    with open(annotation_filepath, "r") as f:
         | 
| 98 | 
            +
                        annotations = json.load(f)
         | 
| 99 | 
            +
                    category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
         | 
| 100 | 
            +
                    image_id_to_annotations = collections.defaultdict(list)
         | 
| 101 | 
            +
                    for annot in annotations["annotations"]:
         | 
| 102 | 
            +
                        image_id_to_annotations[annot["image_id"]].append(annot)
         | 
| 103 | 
            +
                    image_id_to_image = {annot["file_name"]: annot for annot in annotations["images"]}
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                    for filename in os.listdir(folder_dir):
         | 
| 106 | 
            +
                        filepath = os.path.join(folder_dir, filename)
         | 
| 107 | 
            +
                        if filename in image_id_to_image:
         | 
| 108 | 
            +
                            image = image_id_to_image[filename]
         | 
| 109 | 
            +
                            objects = [
         | 
| 110 | 
            +
                                process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
         | 
| 111 | 
            +
                            ]
         | 
| 112 | 
            +
                            with open(filepath, "rb") as f:
         | 
| 113 | 
            +
                                image_bytes = f.read()
         | 
| 114 | 
            +
                            yield idx, {
         | 
| 115 | 
            +
                                "image_id": image["id"],
         | 
| 116 | 
            +
                                "image": {"path": filepath, "bytes": image_bytes},
         | 
| 117 | 
            +
                                "width": image["width"],
         | 
| 118 | 
            +
                                "height": image["height"],
         | 
| 119 | 
            +
                                "objects": objects,
         | 
| 120 | 
            +
                            }
         | 
| 121 | 
            +
                            idx += 1
         | 
    	
        data/test.zip
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:d2239ef3b1d9574edd0dc7b4dd2b12bcab2cb6c7fad69d750b90de74095af6e1
         | 
| 3 | 
            +
            size 471118
         | 
    	
        data/train.zip
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:42081183d4a75b2f6b43ab7b572650dd924afb96c21d7f1468ad29feca50e59e
         | 
| 3 | 
            +
            size 3361545
         | 
    	
        data/valid.zip
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:ba16c63bfa5bc08eebd2ef0f8eea7d8b5acdbbddc55ad3d07631c958238359e1
         | 
| 3 | 
            +
            size 959009
         | 
