Datasets:
Size:
10K - 100K
License:
:sparkles: Add jsick.py
Browse files- jsick.py +137 -0
- poetry.lock +0 -0
- pyproject.toml +23 -0
jsick.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import datasets as ds
|
| 2 |
+
import pandas as pd
|
| 3 |
+
|
| 4 |
+
_CITATION = """\
|
| 5 |
+
@article{yanaka-mineshima-2022-compositional,
|
| 6 |
+
title = "Compositional Evaluation on {J}apanese Textual Entailment and Similarity",
|
| 7 |
+
author = "Yanaka, Hitomi and Mineshima, Koji",
|
| 8 |
+
journal = "Transactions of the Association for Computational Linguistics",
|
| 9 |
+
volume = "10",
|
| 10 |
+
year = "2022",
|
| 11 |
+
address = "Cambridge, MA",
|
| 12 |
+
publisher = "MIT Press",
|
| 13 |
+
url = "https://aclanthology.org/2022.tacl-1.73",
|
| 14 |
+
doi = "10.1162/tacl_a_00518",
|
| 15 |
+
pages = "1266--1284",
|
| 16 |
+
}
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
_DESCRIPTION = """\
|
| 20 |
+
|
| 21 |
+
"""
|
| 22 |
+
|
| 23 |
+
_HOMEPAGE = "https://github.com/verypluming/JSICK"
|
| 24 |
+
|
| 25 |
+
_LICENSE = "CC BY-SA 4.0"
|
| 26 |
+
|
| 27 |
+
_URLS = {
|
| 28 |
+
"base": "https://raw.githubusercontent.com/verypluming/JSICK/main/jsick/jsick.tsv",
|
| 29 |
+
"stress": "https://raw.githubusercontent.com/verypluming/JSICK/main/jsick-stress/jsick-stress-all-annotations.tsv",
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class JSICKDataset(ds.GeneratorBasedBuilder):
|
| 34 |
+
VERSION = ds.Version("1.0.0")
|
| 35 |
+
DEFAULT_CONFIG_NAME = "base"
|
| 36 |
+
|
| 37 |
+
BUILDER_CONFIGS = [
|
| 38 |
+
ds.BuilderConfig(
|
| 39 |
+
name="base",
|
| 40 |
+
version=VERSION,
|
| 41 |
+
description="hoge",
|
| 42 |
+
),
|
| 43 |
+
ds.BuilderConfig(
|
| 44 |
+
name="stress",
|
| 45 |
+
version=VERSION,
|
| 46 |
+
description="fuga",
|
| 47 |
+
),
|
| 48 |
+
]
|
| 49 |
+
|
| 50 |
+
def _info(self) -> ds.DatasetInfo:
|
| 51 |
+
labels = ds.ClassLabel(names=["entailment", "neutral", "contradiction"])
|
| 52 |
+
if self.config.name == "base":
|
| 53 |
+
features = ds.Features(
|
| 54 |
+
{
|
| 55 |
+
"pair_ID": ds.Value("int32"),
|
| 56 |
+
"sentence_A_Ja": ds.Value("string"),
|
| 57 |
+
"sentence_B_Ja": ds.Value("string"),
|
| 58 |
+
"entailment_label_Ja": labels,
|
| 59 |
+
"relatedness_score_Ja": ds.Value("float32"),
|
| 60 |
+
"sentence_A_En": ds.Value("string"),
|
| 61 |
+
"sentence_B_En": ds.Value("string"),
|
| 62 |
+
"entailment_label_En": labels,
|
| 63 |
+
"relatedness_score_En": ds.Value("float32"),
|
| 64 |
+
"corr_entailment_labelAB_En": ds.Value("string"),
|
| 65 |
+
"corr_entailment_labelBA_En": ds.Value("string"),
|
| 66 |
+
"image_ID": ds.Value("string"),
|
| 67 |
+
"original_caption": ds.Value("string"),
|
| 68 |
+
"semtag_short": ds.Value("string"),
|
| 69 |
+
"semtag_long": ds.Value("string"),
|
| 70 |
+
}
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
elif self.config.name == "stress":
|
| 74 |
+
features = ds.Features(
|
| 75 |
+
{
|
| 76 |
+
"pair_ID": ds.Value("string"),
|
| 77 |
+
"sentence_A_Ja": ds.Value("string"),
|
| 78 |
+
"sentence_B_Ja": ds.Value("string"),
|
| 79 |
+
"entailment_label_Ja": labels,
|
| 80 |
+
"relatedness_score_Ja": ds.Value("float32"),
|
| 81 |
+
"sentence_A_Ja_origin": ds.Value("string"),
|
| 82 |
+
"entailment_label_origin": labels,
|
| 83 |
+
"relatedness_score_Ja_origin": ds.Value("float32"),
|
| 84 |
+
"rephrase_type": ds.Value("string"),
|
| 85 |
+
"case_particles": ds.Value("string"),
|
| 86 |
+
}
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
return ds.DatasetInfo(
|
| 90 |
+
description=_DESCRIPTION,
|
| 91 |
+
citation=_CITATION,
|
| 92 |
+
homepage=_HOMEPAGE,
|
| 93 |
+
license=_LICENSE,
|
| 94 |
+
features=features,
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
def _split_generators(self, dl_manager: ds.DownloadManager):
|
| 98 |
+
data_path = dl_manager.download_and_extract(_URLS[self.config.name])
|
| 99 |
+
df: pd.DataFrame = pd.read_table(data_path, sep="\t", header=0)
|
| 100 |
+
|
| 101 |
+
if self.config.name == "base":
|
| 102 |
+
return [
|
| 103 |
+
ds.SplitGenerator(
|
| 104 |
+
name=ds.Split.TRAIN,
|
| 105 |
+
gen_kwargs={"df": df[df["data"] == "train"].drop("data", axis=1)},
|
| 106 |
+
),
|
| 107 |
+
ds.SplitGenerator(
|
| 108 |
+
name=ds.Split.TEST,
|
| 109 |
+
gen_kwargs={"df": df[df["data"] == "test"].drop("data", axis=1)},
|
| 110 |
+
),
|
| 111 |
+
]
|
| 112 |
+
|
| 113 |
+
elif self.config.name == "stress":
|
| 114 |
+
df = df[
|
| 115 |
+
[
|
| 116 |
+
"pair_ID",
|
| 117 |
+
"sentence_A_Ja",
|
| 118 |
+
"sentence_B_Ja",
|
| 119 |
+
"entailment_label_Ja",
|
| 120 |
+
"relatedness_score_Ja",
|
| 121 |
+
"sentence_A_Ja_origin",
|
| 122 |
+
"entailment_label_origin",
|
| 123 |
+
"relatedness_score_Ja_origin",
|
| 124 |
+
"rephrase_type",
|
| 125 |
+
"case_particles",
|
| 126 |
+
]
|
| 127 |
+
]
|
| 128 |
+
return [
|
| 129 |
+
ds.SplitGenerator(
|
| 130 |
+
name=ds.Split.TEST,
|
| 131 |
+
gen_kwargs={"df": df},
|
| 132 |
+
),
|
| 133 |
+
]
|
| 134 |
+
|
| 135 |
+
def _generate_examples(self, df: pd.DataFrame):
|
| 136 |
+
for i, row in enumerate(df.to_dict("records")):
|
| 137 |
+
yield i, row
|
poetry.lock
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
pyproject.toml
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[tool.poetry]
|
| 2 |
+
name = "datasets-jsick"
|
| 3 |
+
version = "0.1.0"
|
| 4 |
+
description = ""
|
| 5 |
+
authors = ["hppRC <[email protected]>"]
|
| 6 |
+
readme = "README.md"
|
| 7 |
+
packages = []
|
| 8 |
+
|
| 9 |
+
[tool.poetry.dependencies]
|
| 10 |
+
python = "^3.8.1"
|
| 11 |
+
datasets = "^2.11.0"
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
[tool.poetry.group.dev.dependencies]
|
| 15 |
+
black = "^22.12.0"
|
| 16 |
+
isort = "^5.11.4"
|
| 17 |
+
flake8 = "^6.0.0"
|
| 18 |
+
mypy = "^0.991"
|
| 19 |
+
pytest = "^7.2.0"
|
| 20 |
+
|
| 21 |
+
[build-system]
|
| 22 |
+
requires = ["poetry-core"]
|
| 23 |
+
build-backend = "poetry.core.masonry.api"
|