Datasets:
Size:
10K - 100K
License:
| import datasets as ds | |
| import pandas as pd | |
| _CITATION = """\ | |
| @article{yanaka-mineshima-2022-compositional, | |
| title = "Compositional Evaluation on {J}apanese Textual Entailment and Similarity", | |
| author = "Yanaka, Hitomi and Mineshima, Koji", | |
| journal = "Transactions of the Association for Computational Linguistics", | |
| volume = "10", | |
| year = "2022", | |
| address = "Cambridge, MA", | |
| publisher = "MIT Press", | |
| url = "https://aclanthology.org/2022.tacl-1.73", | |
| doi = "10.1162/tacl_a_00518", | |
| pages = "1266--1284", | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| Japanese Sentences Involving Compositional Knowledge (JSICK) Dataset. | |
| JSICK is the Japanese NLI and STS dataset by manually translating the English dataset SICK (Marelli et al., 2014) into Japanese. | |
| We hope that our dataset will be useful in research for realizing more advanced models that are capable of appropriately performing multilingual compositional inference. | |
| (from official website) | |
| """ | |
| _HOMEPAGE = "https://github.com/verypluming/JSICK" | |
| _LICENSE = "CC BY-SA 4.0" | |
| _URLS = { | |
| "base": "https://raw.githubusercontent.com/verypluming/JSICK/main/jsick/jsick.tsv", | |
| "stress": "https://raw.githubusercontent.com/verypluming/JSICK/main/jsick-stress/jsick-stress-all-annotations.tsv", | |
| } | |
| class JSICKDataset(ds.GeneratorBasedBuilder): | |
| VERSION = ds.Version("1.0.0") | |
| DEFAULT_CONFIG_NAME = "base" | |
| BUILDER_CONFIGS = [ | |
| ds.BuilderConfig( | |
| name="base", | |
| version=VERSION, | |
| description="A version adopting the column names of a typical NLI dataset.", | |
| ), | |
| ds.BuilderConfig( | |
| name="original", | |
| version=VERSION, | |
| description="The original version retaining the unaltered column names.", | |
| ), | |
| ds.BuilderConfig( | |
| name="stress", | |
| version=VERSION, | |
| description="The dataset to investigate whether models capture word order and case particles in Japanese.", | |
| ), | |
| ds.BuilderConfig( | |
| name="stress-original", | |
| version=VERSION, | |
| description="The original version of JSICK-stress Test set retaining the unaltered column names.", | |
| ), | |
| ] | |
| def _info(self) -> ds.DatasetInfo: | |
| labels = ds.ClassLabel(names=["entailment", "neutral", "contradiction"]) | |
| if self.config.name == "base": | |
| features = ds.Features( | |
| { | |
| "id": ds.Value("int32"), | |
| "premise": ds.Value("string"), | |
| "hypothesis": ds.Value("string"), | |
| "label": labels, | |
| "score": ds.Value("float32"), | |
| "premise_en": ds.Value("string"), | |
| "hypothesis_en": ds.Value("string"), | |
| "label_en": labels, | |
| "score_en": ds.Value("float32"), | |
| "corr_entailment_labelAB_En": ds.Value("string"), | |
| "corr_entailment_labelBA_En": ds.Value("string"), | |
| "image_ID": ds.Value("string"), | |
| "original_caption": ds.Value("string"), | |
| "semtag_short": ds.Value("string"), | |
| "semtag_long": ds.Value("string"), | |
| } | |
| ) | |
| elif self.config.name == "original": | |
| features = ds.Features( | |
| { | |
| "pair_ID": ds.Value("int32"), | |
| "sentence_A_Ja": ds.Value("string"), | |
| "sentence_B_Ja": ds.Value("string"), | |
| "entailment_label_Ja": labels, | |
| "relatedness_score_Ja": ds.Value("float32"), | |
| "sentence_A_En": ds.Value("string"), | |
| "sentence_B_En": ds.Value("string"), | |
| "entailment_label_En": labels, | |
| "relatedness_score_En": ds.Value("float32"), | |
| "corr_entailment_labelAB_En": ds.Value("string"), | |
| "corr_entailment_labelBA_En": ds.Value("string"), | |
| "image_ID": ds.Value("string"), | |
| "original_caption": ds.Value("string"), | |
| "semtag_short": ds.Value("string"), | |
| "semtag_long": ds.Value("string"), | |
| } | |
| ) | |
| elif self.config.name == "stress": | |
| features = ds.Features( | |
| { | |
| "id": ds.Value("string"), | |
| "premise": ds.Value("string"), | |
| "hypothesis": ds.Value("string"), | |
| "label": labels, | |
| "score": ds.Value("float32"), | |
| "sentence_A_Ja_origin": ds.Value("string"), | |
| "entailment_label_origin": labels, | |
| "relatedness_score_Ja_origin": ds.Value("float32"), | |
| "rephrase_type": ds.Value("string"), | |
| "case_particles": ds.Value("string"), | |
| } | |
| ) | |
| elif self.config.name == "stress-original": | |
| features = ds.Features( | |
| { | |
| "pair_ID": ds.Value("string"), | |
| "sentence_A_Ja": ds.Value("string"), | |
| "sentence_B_Ja": ds.Value("string"), | |
| "entailment_label_Ja": labels, | |
| "relatedness_score_Ja": ds.Value("float32"), | |
| "sentence_A_Ja_origin": ds.Value("string"), | |
| "entailment_label_origin": labels, | |
| "relatedness_score_Ja_origin": ds.Value("float32"), | |
| "rephrase_type": ds.Value("string"), | |
| "case_particles": ds.Value("string"), | |
| } | |
| ) | |
| return ds.DatasetInfo( | |
| description=_DESCRIPTION, | |
| citation=_CITATION, | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| features=features, | |
| ) | |
| def _split_generators(self, dl_manager: ds.DownloadManager): | |
| if self.config.name in ["base", "original"]: | |
| url = _URLS["base"] | |
| elif self.config.name in ["stress", "stress-original"]: | |
| url = _URLS["stress"] | |
| data_path = dl_manager.download_and_extract(url) | |
| df: pd.DataFrame = pd.read_table(data_path, sep="\t", header=0) | |
| if self.config.name in ["stress", "stress-original"]: | |
| df = df[ | |
| [ | |
| "pair_ID", | |
| "sentence_A_Ja", | |
| "sentence_B_Ja", | |
| "entailment_label_Ja", | |
| "relatedness_score_Ja", | |
| "sentence_A_Ja_origin", | |
| "entailment_label_origin", | |
| "relatedness_score_Ja_origin", | |
| "rephrase_type", | |
| "case_particles", | |
| ] | |
| ] | |
| if self.config.name in ["base", "stress"]: | |
| df = df.rename( | |
| columns={ | |
| "pair_ID": "id", | |
| "sentence_A_Ja": "premise", | |
| "sentence_B_Ja": "hypothesis", | |
| "entailment_label_Ja": "label", | |
| "relatedness_score_Ja": "score", | |
| "sentence_A_En": "premise_en", | |
| "sentence_B_En": "hypothesis_en", | |
| "entailment_label_En": "label_en", | |
| "relatedness_score_En": "score_en", | |
| } | |
| ) | |
| if self.config.name in ["base", "original"]: | |
| return [ | |
| ds.SplitGenerator( | |
| name=ds.Split.TRAIN, | |
| gen_kwargs={"df": df[df["data"] == "train"].drop("data", axis=1)}, | |
| ), | |
| ds.SplitGenerator( | |
| name=ds.Split.TEST, | |
| gen_kwargs={"df": df[df["data"] == "test"].drop("data", axis=1)}, | |
| ), | |
| ] | |
| elif self.config.name in ["stress", "stress-original"]: | |
| return [ | |
| ds.SplitGenerator( | |
| name=ds.Split.TEST, | |
| gen_kwargs={"df": df}, | |
| ), | |
| ] | |
| def _generate_examples(self, df: pd.DataFrame): | |
| for i, row in enumerate(df.to_dict("records")): | |
| yield i, row | |