Add README
Browse files
README.md
ADDED
|
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- code
|
| 4 |
+
pretty_name: CoCoNuT-Python(2010)
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
# Dataset Card for CoCoNuT-Python(2010)
|
| 8 |
+
|
| 9 |
+
## Dataset Description
|
| 10 |
+
|
| 11 |
+
- **Homepage:** [CoCoNuT training data](https://github.com/lin-tan/CoCoNut-Artifact/releases/tag/training_data_1.0.0)
|
| 12 |
+
- **Repository:** [CoCoNuT repository](https://github.com/lin-tan/CoCoNut-Artifact)
|
| 13 |
+
- **Paper:** [CoCoNuT: Combining Context-Aware Neural Translation Models using Ensemble for Program Repair](https://dl.acm.org/doi/abs/10.1145/3395363.3397369)
|
| 14 |
+
|
| 15 |
+
### Dataset Summary
|
| 16 |
+
|
| 17 |
+
Part of the data used to train the models in the "CoCoNuT: Combining Context-Aware Neural Translation Models using Ensemble for Program Repair" paper.
|
| 18 |
+
These datasets contain raw data extracted from GitHub, GitLab, and Bitbucket, and have neither been shuffled nor tokenized.
|
| 19 |
+
The year in the dataset’s name is the cutting year that shows the year of the newest commit in the dataset.
|
| 20 |
+
|
| 21 |
+
### Languages
|
| 22 |
+
|
| 23 |
+
- Python
|
| 24 |
+
|
| 25 |
+
## Dataset Structure
|
| 26 |
+
|
| 27 |
+
### Data Fields
|
| 28 |
+
|
| 29 |
+
The dataset consists of 4 columns: `add`, `rem`, `context`, and `meta`.
|
| 30 |
+
These match the original dataset files: `add.txt`, `rem.txt`, `context.txt`, and `meta.txt`.
|
| 31 |
+
|
| 32 |
+
### Data Instances
|
| 33 |
+
|
| 34 |
+
There is a mapping between the 4 columns for each instance.
|
| 35 |
+
For example:
|
| 36 |
+
|
| 37 |
+
5 first rows of `rem` (i.e., the buggy line/hunk):
|
| 38 |
+
|
| 39 |
+
```
|
| 40 |
+
1 public synchronized StringBuffer append(char ch)
|
| 41 |
+
2 ensureCapacity_unsynchronized(count + 1); value[count++] = ch; return this;
|
| 42 |
+
3 public String substring(int beginIndex, int endIndex)
|
| 43 |
+
4 if (beginIndex < 0 || endIndex > count || beginIndex > endIndex) throw new StringIndexOutOfBoundsException(); if (beginIndex == 0 && endIndex == count) return this; int len = endIndex - beginIndex; return new String(value, beginIndex + offset, len, (len << 2) >= value.length);
|
| 44 |
+
5 public Object next() {
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
5 first rows of add (i.e., the fixed line/hunk):
|
| 48 |
+
|
| 49 |
+
```
|
| 50 |
+
1 public StringBuffer append(Object obj)
|
| 51 |
+
2 return append(obj == null ? "null" : obj.toString());
|
| 52 |
+
3 public String substring(int begin)
|
| 53 |
+
4 return substring(begin, count);
|
| 54 |
+
5 public FSEntry next() {
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
These map to the 5 instances:
|
| 58 |
+
|
| 59 |
+
```diff
|
| 60 |
+
- public synchronized StringBuffer append(char ch)
|
| 61 |
+
+ public StringBuffer append(Object obj)
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
```diff
|
| 65 |
+
- ensureCapacity_unsynchronized(count + 1); value[count++] = ch; return this;
|
| 66 |
+
+ return append(obj == null ? "null" : obj.toString());
|
| 67 |
+
```
|
| 68 |
+
|
| 69 |
+
```diff
|
| 70 |
+
- public String substring(int beginIndex, int endIndex)
|
| 71 |
+
+ public String substring(int begin)
|
| 72 |
+
```
|
| 73 |
+
|
| 74 |
+
```diff
|
| 75 |
+
- if (beginIndex < 0 || endIndex > count || beginIndex > endIndex) throw new StringIndexOutOfBoundsException(); if (beginIndex == 0 && endIndex == count) return this; int len = endIndex - beginIndex; return new String(value, beginIndex + offset, len, (len << 2) >= value.length);
|
| 76 |
+
+ return substring(begin, count);
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
```diff
|
| 80 |
+
- public Object next() {
|
| 81 |
+
+ public FSEntry next() {
|
| 82 |
+
```
|
| 83 |
+
|
| 84 |
+
`context` contains the associated "context". Context is the (in-lined) buggy function (including the buggy lines and comments).
|
| 85 |
+
For example, the context of
|
| 86 |
+
|
| 87 |
+
```
|
| 88 |
+
public synchronized StringBuffer append(char ch)
|
| 89 |
+
```
|
| 90 |
+
|
| 91 |
+
is its associated function:
|
| 92 |
+
|
| 93 |
+
```java
|
| 94 |
+
public synchronized StringBuffer append(char ch) { ensureCapacity_unsynchronized(count + 1); value[count++] = ch; return this; }
|
| 95 |
+
```
|
| 96 |
+
|
| 97 |
+
`meta` contains some metadata about the project:
|
| 98 |
+
|
| 99 |
+
```
|
| 100 |
+
1056 /local/tlutelli/issta_data/temp/all_java0context/java/2006_temp/2006/1056/68a6301301378680519f2b146daec37812a1bc22/StringBuffer.java/buggy/core/src/classpath/java/java/lang/StringBuffer.java
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
`1056` is the project id. `/local/...` is the absolute path to the buggy file. This can be parsed to extract the commit id: `68a6301301378680519f2b146daec37812a1bc22`, the file name: `StringBuffer.java` and the original path within the project
|
| 104 |
+
`core/src/classpath/java/java/lang/StringBuffer.java`
|
| 105 |
+
|
| 106 |
+
| Number of projects | Number of Instances |
|
| 107 |
+
| ------------------ |-------------------- |
|
| 108 |
+
| 13,899 | 480,777 |
|
| 109 |
+
|
| 110 |
+
## Dataset Creation
|
| 111 |
+
|
| 112 |
+
### Curation Rationale
|
| 113 |
+
|
| 114 |
+
Data is collected to train automated program repair (APR) models.
|
| 115 |
+
|
| 116 |
+
### Citation Information
|
| 117 |
+
|
| 118 |
+
```bib
|
| 119 |
+
@inproceedings{lutellierCoCoNuTCombiningContextaware2020,
|
| 120 |
+
title = {{{CoCoNuT}}: Combining Context-Aware Neural Translation Models Using Ensemble for Program Repair},
|
| 121 |
+
shorttitle = {{{CoCoNuT}}},
|
| 122 |
+
booktitle = {Proceedings of the 29th {{ACM SIGSOFT International Symposium}} on {{Software Testing}} and {{Analysis}}},
|
| 123 |
+
author = {Lutellier, Thibaud and Pham, Hung Viet and Pang, Lawrence and Li, Yitong and Wei, Moshi and Tan, Lin},
|
| 124 |
+
year = {2020},
|
| 125 |
+
month = jul,
|
| 126 |
+
series = {{{ISSTA}} 2020},
|
| 127 |
+
pages = {101--114},
|
| 128 |
+
publisher = {{Association for Computing Machinery}},
|
| 129 |
+
address = {{New York, NY, USA}},
|
| 130 |
+
doi = {10.1145/3395363.3397369},
|
| 131 |
+
url = {https://doi.org/10.1145/3395363.3397369},
|
| 132 |
+
urldate = {2022-12-06},
|
| 133 |
+
isbn = {978-1-4503-8008-9},
|
| 134 |
+
keywords = {AI and Software Engineering,Automated program repair,Deep Learning,Neural Machine Translation}
|
| 135 |
+
}
|
| 136 |
+
```
|