Datasets:
Tasks:
Visual Question Answering
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
Tags:
medical
License:
Commit
·
d90b4c1
1
Parent(s):
5d83468
Create scripts/processing.py
Browse files- scripts/processing.py +35 -0
scripts/processing.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""This script de-duplicates the data provided by the PathVQA authors,
|
| 2 |
+
creates an "imagefolder" dataset and pushes it to the Hugging Face Hub.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
import shutil
|
| 7 |
+
import pickle
|
| 8 |
+
import datasets
|
| 9 |
+
import pandas as pd
|
| 10 |
+
|
| 11 |
+
for split in ["train", "val", "test"]:
|
| 12 |
+
|
| 13 |
+
os.makedirs(f"data/{split}/", exist_ok=True)
|
| 14 |
+
|
| 15 |
+
# load the image-question-answer triplets
|
| 16 |
+
data = pd.DataFrame(pickle.load(open(f"pvqa/qas/{split}/{split}_qa.pkl", "rb")))
|
| 17 |
+
|
| 18 |
+
# drop the duplicate image-question-answer triplets
|
| 19 |
+
data = data.drop_duplicates(ignore_index=True)
|
| 20 |
+
|
| 21 |
+
# copy the images using unique file names
|
| 22 |
+
data.insert(0, "file_name", "")
|
| 23 |
+
for i, row in data.iterrows():
|
| 24 |
+
file_name = f"img_{i}.jpg"
|
| 25 |
+
data["file_name"].iloc[i] = file_name
|
| 26 |
+
shutil.copyfile(src=f"pvqa/images/{split}/{row['image']}.jpg", dst=f"data/{split}/{file_name}")
|
| 27 |
+
_ = data.pop("image")
|
| 28 |
+
|
| 29 |
+
# save the metadata
|
| 30 |
+
data.to_csv(f"data/{split}/metadata.csv", index=False)
|
| 31 |
+
|
| 32 |
+
# push the dataset to the hub
|
| 33 |
+
dataset = datasets.load_dataset("imagefolder", data_dir="data/")
|
| 34 |
+
dataset.push_to_hub("flaviagiammarino/path-vqa")
|
| 35 |
+
|