Commit
·
0140f09
1
Parent(s):
422bc15
Update README.md
Browse files
README.md
CHANGED
|
@@ -96,6 +96,61 @@ Simulation-based testing is constrained to the parameter variability represented
|
|
| 96 |
There is a risk of misjudging model performance if the simulated examples do not capture the variability in real patients. Please
|
| 97 |
see the paper for a full discussion of biases, risks, and limitations.
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
## Citation
|
| 101 |
```
|
|
|
|
| 96 |
There is a risk of misjudging model performance if the simulated examples do not capture the variability in real patients. Please
|
| 97 |
see the paper for a full discussion of biases, risks, and limitations.
|
| 98 |
|
| 99 |
+
## How to use it
|
| 100 |
+
The msynth dataset is a very large dataset so for most use cases it is recommended to make use of the streaming API of `datasets`.
|
| 101 |
+
The msynth dataset has three configurations: 1) device_data, 2) segmentation_mask, and 3) metadata
|
| 102 |
+
You can load and iterate through the dataset using the configurations with the following lines of code:
|
| 103 |
+
|
| 104 |
+
```python
|
| 105 |
+
from datasets import load_dataset
|
| 106 |
+
ds = load_dataset("didsr/msynth", 'device_data') # For device data for all breast density, mass redius, mass density, and relative dose, change configuration to 'segmentation_mask' and 'metadata' to load the segmentation masks and bound information
|
| 107 |
+
print(ds_data["device_data"])
|
| 108 |
+
|
| 109 |
+
# A sample data instance
|
| 110 |
+
|
| 111 |
+
{'Raw': '~\\.cache\\huggingface\\datasets\\downloads\\extracted\\59384cf05fc44e8c0cb23bb19e1fcd8f0c39720b282109d204a85561fe66bdb1\\SIM\\P2_5.0_fatty.8336179.1\\1\\projection_DM1.raw',
|
| 112 |
+
'mhd': '~/.cache/huggingface/datasets/downloads/extracted/59384cf05fc44e8c0cb23bb19e1fcd8f0c39720b282109d204a85561fe66bdb1/SIM/P2_5.0_fatty.8336179.1/1\\projection_DM1.mhd',
|
| 113 |
+
'loc': '~/.cache/huggingface/datasets/downloads/extracted/59384cf05fc44e8c0cb23bb19e1fcd8f0c39720b282109d204a85561fe66bdb1/SIM/P2_5.0_fatty.8336179.1/1\\projection_DM1.loc',
|
| 114 |
+
'dcm': '~/.cache/huggingface/datasets/downloads/extracted/59384cf05fc44e8c0cb23bb19e1fcd8f0c39720b282109d204a85561fe66bdb1/SIM/P2_5.0_fatty.8336179.1/1\\DICOM_dm\\000.dcm',
|
| 115 |
+
'density': 'fatty',
|
| 116 |
+
'mass_radius': 5.0}
|
| 117 |
+
```
|
| 118 |
+
Msynth dataset can also be loaded using custom breast density, mass redius, mass density, and relative dose information
|
| 119 |
+
|
| 120 |
+
```python
|
| 121 |
+
from datasets import load_dataset
|
| 122 |
+
|
| 123 |
+
# Dataset properties. change to 'all' to include all the values of breast density, mass redius, mass density, and relative dose information
|
| 124 |
+
config_kwargs = {
|
| 125 |
+
"lesion_density": ["1.0"],
|
| 126 |
+
"dose": ["20%"],
|
| 127 |
+
"density": ["fatty"],
|
| 128 |
+
"size": ["5.0"]
|
| 129 |
+
}
|
| 130 |
+
|
| 131 |
+
# Loading device data
|
| 132 |
+
ds_data = load_dataset("didsr/msynth", 'device_data', **config_kwargs)
|
| 133 |
+
# Loading segmentation-mask
|
| 134 |
+
ds_seg = load_dataset("didsr/msynth", 'segmentation_mask', **config_kwargs)
|
| 135 |
+
```
|
| 136 |
+
The meta data can also be loaded using the datasets API. An example of using metadata is given in **Demo:** [https://github.com/DIDSR/msynth-release/tree/master/examples](https://github.com/DIDSR/msynth-release/tree/master/examples)
|
| 137 |
+
|
| 138 |
+
```python
|
| 139 |
+
from datasets import load_dataset
|
| 140 |
+
# Loading metadata
|
| 141 |
+
ds_meta = load_dataset("didsr/msynth", 'metadata')
|
| 142 |
+
|
| 143 |
+
# A sample data instance
|
| 144 |
+
ds_meta['metadata'][0]
|
| 145 |
+
|
| 146 |
+
# Output
|
| 147 |
+
|
| 148 |
+
{'fatty': '~\\.cache\\huggingface\\datasets\\downloads\\extracted\\3ea85fc6b3fcc253ac8550b5d1b21db406ca9a59ea125ff8fc63d9b754c88348\\bounds\\bounds_fatty.npy',
|
| 149 |
+
'dense': '~\\.cache\\huggingface\\datasets\\downloads\\extracted\\3ea85fc6b3fcc253ac8550b5d1b21db406ca9a59ea125ff8fc63d9b754c88348\\bounds\\bounds_dense.npy',
|
| 150 |
+
'hetero': '~\\.cache\\huggingface\\datasets\\downloads\\extracted\\3ea85fc6b3fcc253ac8550b5d1b21db406ca9a59ea125ff8fc63d9b754c88348\\bounds\\bounds_hetero.npy',
|
| 151 |
+
'scattered': '~\\.cache\\huggingface\\datasets\\downloads\\extracted\\3ea85fc6b3fcc253ac8550b5d1b21db406ca9a59ea125ff8fc63d9b754c88348\\bounds\\bounds_scattered.npy'}
|
| 152 |
+
|
| 153 |
+
```
|
| 154 |
|
| 155 |
## Citation
|
| 156 |
```
|