diff --git a/.gitattributes b/.gitattributes index a6344aac8c09253b3b630fb776ae94478aa0275b..bbd609de02490518ee34aa623561daf0b65b676f 100644 --- a/.gitattributes +++ b/.gitattributes @@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text *.zst filter=lfs diff=lfs merge=lfs -text *tfevents* filter=lfs diff=lfs merge=lfs -text +pytorch-image-models/timm/models/__pycache__/vision_transformer.cpython-39.pyc filter=lfs diff=lfs merge=lfs -text +pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/run-w1u5xl1c.wandb filter=lfs diff=lfs merge=lfs -text diff --git a/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/args.yaml b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/args.yaml new file mode 100644 index 0000000000000000000000000000000000000000..300d4249d68b7200bc6d00bbd3d4a0f9ca83602e --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/args.yaml @@ -0,0 +1,153 @@ +aa: null +amp: true +amp_dtype: float16 +amp_impl: native +aug_repeats: 0 +aug_splits: 0 +batch_size: 256 +bce_loss: false +bce_pos_weight: null +bce_sum: false +bce_target_thresh: null +bn_eps: null +bn_momentum: null +channels_last: false +checkpoint_hist: 10 +class_map: '' +clip_grad: null +clip_mode: norm +color_jitter: 0.4 +color_jitter_prob: null +cooldown_epochs: 0 +crop_pct: null +cutmix: 0.0 +cutmix_minmax: null +data: null +data_dir: null +dataset: hfds/datacomp/imagenet-1k-random-20.0-frac-1over4 +dataset_download: false +dataset_trust_remote_code: false +decay_epochs: 90 +decay_milestones: +- 90 +- 180 +- 270 +decay_rate: 0.1 +device: cuda +device_modules: null +dist_bn: reduce +drop: 0.0 +drop_block: null +drop_connect: null +drop_path: null +epoch_repeats: 0.0 +epochs: 150 +eval_metric: top1 +experiment: ImageNetTraining20.0-frac-1over4 +fast_norm: false +fuser: '' +gaussian_blur_prob: null +gp: null +grad_accum_steps: 1 +grad_checkpointing: false +grayscale_prob: null +head_init_bias: null +head_init_scale: null +hflip: 0.5 +img_size: null +in_chans: null +initial_checkpoint: '' +input_img_mode: null +input_key: null +input_size: null +interpolation: '' +jsd_loss: false +layer_decay: null +local_rank: 0 +log_interval: 50 +log_wandb: true +lr: 0.4 +lr_base: 0.1 +lr_base_scale: '' +lr_base_size: 256 +lr_cycle_decay: 0.5 +lr_cycle_limit: 1 +lr_cycle_mul: 1.0 +lr_k_decay: 1.0 +lr_noise: null +lr_noise_pct: 0.67 +lr_noise_std: 1.0 +mean: null +min_lr: 0 +mixup: 0.0 +mixup_mode: batch +mixup_off_epoch: 0 +mixup_prob: 1.0 +mixup_switch_prob: 0.5 +model: seresnet34 +model_dtype: null +model_ema: false +model_ema_decay: 0.9998 +model_ema_force_cpu: false +model_ema_warmup: false +model_kwargs: {} +momentum: 0.9 +no_aug: false +no_ddp_bb: false +no_prefetcher: false +no_resume_opt: false +num_classes: null +opt: sgd +opt_betas: null +opt_eps: null +opt_kwargs: {} +output: '' +patience_epochs: 10 +pin_mem: false +pretrained: false +pretrained_path: null +ratio: +- 0.75 +- 1.3333333333333333 +recount: 1 +recovery_interval: 0 +remode: pixel +reprob: 0.5 +resplit: false +resume: '' +save_images: false +scale: +- 0.08 +- 1.0 +sched: cosine +sched_on_updates: false +seed: 42 +smoothing: 0.1 +split_bn: false +start_epoch: null +std: null +sync_bn: false +synchronize_step: false +target_key: null +torchcompile: null +torchcompile_mode: null +torchscript: false +train_crop_mode: null +train_interpolation: random +train_num_samples: null +train_split: train +tta: 0 +use_multi_epochs_loader: false +val_num_samples: null +val_split: validation +validation_batch_size: null +vflip: 0.0 +wandb_project: ImageNetTraining20.0-frac-1over4 +wandb_resume_id: '' +wandb_tags: [] +warmup_epochs: 5 +warmup_lr: 1.0e-05 +warmup_prefix: false +weight_decay: 2.0e-05 +worker_seeding: all +workers: 4 diff --git a/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-141.pth.tar b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-141.pth.tar new file mode 100644 index 0000000000000000000000000000000000000000..cb9e04b6c58463d9efbc1c5678d88c52ee6b5e2d --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-141.pth.tar @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2b08d86484f186220f2edbd5645889583f7e2edf3713dee4de21986825f622fa +size 175905122 diff --git a/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-142.pth.tar b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-142.pth.tar new file mode 100644 index 0000000000000000000000000000000000000000..aad73a8c7a2f686f3f1e6ae8b55c1f3260787525 --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-142.pth.tar @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5c1af56905cfe290a36855c7ce9e3c169304d90a2cd1e0be27c4390b126fc43c +size 175905122 diff --git a/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-143.pth.tar b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-143.pth.tar new file mode 100644 index 0000000000000000000000000000000000000000..99e3f0ce087079763eb9fff63f405bc522b2bc9f --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-143.pth.tar @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a2abb8020f5cfc24616a229cd533b96fc481b592cd5d658a4c81c4a8cdb3a315 +size 175905122 diff --git a/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-146.pth.tar b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-146.pth.tar new file mode 100644 index 0000000000000000000000000000000000000000..dc48a6cfa22556f24bc33e3b064041361158f92c --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-146.pth.tar @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:bdafc9e2afea3dfd629f600f8abac00dfc83e03ca40d3d5ecc3ca054ea252d86 +size 175905122 diff --git a/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-147.pth.tar b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-147.pth.tar new file mode 100644 index 0000000000000000000000000000000000000000..01963149e93f8084e3d702970ef1f7d2d4899c5f --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-147.pth.tar @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1ddce2ff347896cb3184887783cc13d8101cdf70f8e76e5b7234b08e7ac285a5 +size 175905122 diff --git a/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-148.pth.tar b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-148.pth.tar new file mode 100644 index 0000000000000000000000000000000000000000..aafea2fe769126970313042713d6af46b1b13a15 --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-148.pth.tar @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5bdfc0bfed47169e1ce205be3310456b44edfbb20b0e7813a2a3dc302c738354 +size 175905122 diff --git a/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-60.pth.tar b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-60.pth.tar new file mode 100644 index 0000000000000000000000000000000000000000..18de2dcebb2d8bf94378762bf4c9cd43a6c845c2 --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-60.pth.tar @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b4b9b0a36fc5c6bb845e793b7de1edc2722449299ece5ebb83f9b58de6de8609 +size 175905122 diff --git a/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-62.pth.tar b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-62.pth.tar new file mode 100644 index 0000000000000000000000000000000000000000..9c5da0454a327d405a70ad3741d6d25e352de917 --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-62.pth.tar @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:30b3ec4336912ee2ec9288c07cd00c6bcf6c081cedf8025cd32c8267551ac845 +size 175905122 diff --git a/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-78.pth.tar b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-78.pth.tar new file mode 100644 index 0000000000000000000000000000000000000000..f0753d1f03c8542333459c5e12310620e3882efe --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-78.pth.tar @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3bc8b936e974d13b6b9a488bc5f444b46657470cc642e72183a08252d1391a13 +size 175905122 diff --git a/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-90.pth.tar b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-90.pth.tar new file mode 100644 index 0000000000000000000000000000000000000000..ae2baf9f5051b15f9c9a4ece8a89d9f6f8ae4b41 --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/checkpoint-90.pth.tar @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ed05e52e73b2780cf040e8cfa87b4e57e9cab1dbb5517a8f2239bbf8d1cb8d5f +size 175905122 diff --git a/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/last.pth.tar b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/last.pth.tar new file mode 100644 index 0000000000000000000000000000000000000000..a13f9ab7bd9227442a8409f0f67c32bbb7ee090b --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/last.pth.tar @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:14564189b8cc8b445ac928fa89568ff945074d9fcd6bd8193ccd6873bbdedf15 +size 175905122 diff --git a/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/model_best.pth.tar b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/model_best.pth.tar new file mode 100644 index 0000000000000000000000000000000000000000..18de2dcebb2d8bf94378762bf4c9cd43a6c845c2 --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/model_best.pth.tar @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b4b9b0a36fc5c6bb845e793b7de1edc2722449299ece5ebb83f9b58de6de8609 +size 175905122 diff --git a/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/summary.csv b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/summary.csv new file mode 100644 index 0000000000000000000000000000000000000000..3fe571fe7a9d60e06c8260d51e0a4a569b27dc32 --- /dev/null +++ b/pytorch-image-models/output/train/ImageNetTraining20.0-frac-1over4/summary.csv @@ -0,0 +1,151 @@ +epoch,train_loss,eval_loss,eval_top1,eval_top5,lr +0,6.943629741668701,6.938709296722412,0.0879999999666214,0.504000000152588,1e-05 +1,6.7792534828186035,6.521883741149902,1.2099999978637694,4.160000004730224,0.080008 +2,6.612157821655273,6.128859116821289,2.331999997177124,7.886000012207031,0.160006 +3,6.422335624694824,5.741931113891601,4.723999999694824,14.202000001220703,0.240004 +4,6.208123207092285,5.607990102081299,5.76400000213623,15.870000010375977,0.320002 +5,5.992581844329834,4.966714635314942,10.860000007629395,26.68400002319336,0.39890437907365467 +6,5.7747368812561035,4.991485814971924,10.894000001831055,26.240000041503905,0.3984229402628956 +7,5.589217662811279,4.399278737792969,16.617999997558595,37.17000005859375,0.3978544665925977 +8,5.4336628913879395,4.296678152313232,18.759999981689454,40.01199998657226,0.39719920741410103 +9,5.299465656280518,4.083352178344726,22.08400001098633,45.20599999145508,0.3964574501457378 +10,5.189188480377197,3.9577607328033446,22.953999991455078,46.52800002441406,0.39562952014676117 +11,5.083564281463623,3.7774574940490724,25.92200002319336,50.24000006225586,0.3947157805746321 +12,4.9926252365112305,3.621871866607666,28.16600000488281,53.358000048828124,0.3937166322257262 +13,4.916229724884033,3.637788556518555,28.358000010986327,53.42400001953125,0.39263251335953164 +14,4.846229553222656,3.490723572998047,30.984000014648437,56.643999991455075,0.39146389950641347 +15,4.777747631072998,3.406393626098633,31.739999978027345,57.64800006225586,0.39021130325903075 +16,4.7174835205078125,3.264599473953247,34.78400003417969,60.850000075683596,0.3888752740474963 +17,4.660357475280762,3.407398138885498,33.77200000488281,59.466000008544924,0.3874563978983783 +18,4.606664180755615,3.2775896229553223,34.291999973144534,60.66199991699219,0.3859552971776503 +19,4.558988094329834,3.048254049682617,38.80800004516602,64.95999997070312,0.38437263031770014 +20,4.514474391937256,3.2774120320129394,35.3679999609375,60.59399993041992,0.3827090915285202 +21,4.471127510070801,3.0908710106658934,38.28,64.41200012695313,0.3809654104932039 +22,4.431401252746582,2.978842988433838,39.7580000402832,65.87799994384766,0.3791423520478826 +23,4.3931779861450195,2.9496411805725096,40.76200001342774,67.08599994140624,0.37724071584624297 +24,4.3562750816345215,2.905408196182251,41.18000003540039,67.61199993652343,0.3752613360087727 +25,4.322393894195557,2.935273802947998,41.360000032958986,67.0700001171875,0.37320508075688774 +26,4.292070388793945,2.804515012817383,43.39800001464844,69.2979999609375,0.3710728520321014 +27,4.257957458496094,3.096816782989502,38.488000018310544,64.13600010253906,0.368865585100403 +28,4.228931903839111,2.851538469848633,42.77200004760742,68.72000004394532,0.3665842481420199 +29,4.19592809677124,2.7531553367614747,43.895999982910155,69.66999995849609,0.36422984182674084 +30,4.170496940612793,2.7719422341918944,43.40400004760742,69.69199993408203,0.3618033988749895 +31,4.144301891326904,2.7359241917419435,45.1140000402832,70.87799990234375,0.3593059836048393 +32,4.11723518371582,2.669409601135254,45.12799997802735,70.93600005615234,0.356738691465168 +33,4.0925445556640625,2.7508352379608154,44.46800005615234,70.12800003417969,0.3541026485551579 +34,4.070949554443359,2.7958670928955076,45.380000045166014,70.52400003173828,0.3513990111303513 +35,4.040318965911865,2.771868634567261,44.39800003417969,70.32000008789062,0.3486289650954789 +36,4.017914772033691,2.685859828109741,46.24399997070312,71.6719999975586,0.34579372548428233 +37,3.998199939727783,2.662616099700928,46.29000002197266,71.95600004150391,0.3428945359265607 +38,3.973994255065918,2.6793360710144043,46.26800003540039,71.66400002441407,0.33993266810267314 +39,3.952218770980835,2.744265415802002,46.68799997802734,71.81399997802734,0.33690942118573775 +40,3.9337358474731445,2.65460738571167,46.29000001831054,71.59400010009766,0.3338261212717717 +41,3.9083893299102783,2.611578529281616,47.43199996826172,72.42799997314454,0.3306841207980211 +42,3.8892078399658203,2.691024747314453,45.86999998046875,70.91799993164062,0.32748479794973795 +43,3.87123966217041,2.674226170654297,46.00800004638672,71.32600002685547,0.3242295560556621 +44,3.84826922416687,2.647660732269287,46.63600002685547,71.87200001953126,0.320919822972475 +45,3.8261871337890625,2.6145658060455323,47.11800001953125,72.31400001953125,0.31755705045849464 +46,3.8123514652252197,2.6160666886901853,47.55600001953125,72.21600002441406,0.3141427135368864 +47,3.785783529281616,2.638784150543213,47.57999998901367,72.33999997558594,0.31067830984866884 +48,3.7776975631713867,2.5913878131103516,47.95,72.85199988769531,0.30716535899579933 +49,3.751249313354492,2.564531795654297,48.28799996582031,72.79200001953124,0.3036054018746261 +50,3.7326128482818604,2.6708353764343262,47.49799996337891,71.69600005371093,0.30000000000000004 +51,3.7137749195098877,2.7181407327270506,45.89599995605469,70.83599998291015,0.2963507348203431 +52,3.7018232345581055,2.6203508536529543,47.4500000390625,71.93400004150391,0.29265920702397236 +53,3.6781673431396484,2.5886979321289063,48.097999975585935,72.69999996826172,0.2889270358369855 +54,3.662708282470703,2.645196710128784,47.81800001098633,71.94799997070312,0.28515585831301454 +55,3.6511409282684326,2.5733120874023436,48.33800000366211,72.62200004638672,0.28134732861516004 +56,3.630817174911499,2.6578150498962403,47.34600000366211,71.71800005371094,0.2775031172904206 +57,3.60843825340271,2.670260667419434,47.83400005004883,71.93800005371094,0.27362491053693566 +58,3.591817855834961,2.626590057678223,48.12800004638672,72.43199994140625,0.26971440946436304 +59,3.576845407485962,2.6415997918701173,47.58400006225586,71.70000015136719,0.26577332934771664 +60,3.5596461296081543,2.631229259338379,48.73400004516601,72.43400006835938,0.2618033988749895 +61,3.5420918464660645,2.6393010900115965,47.54800003051758,71.67599996826172,0.25780635938889435 +62,3.524199962615967,2.630918745880127,48.390000036621096,71.93200004638672,0.25378396412305315 +63,3.5094025135040283,2.6544775062561037,48.35200002197266,71.88199998291016,0.24973797743297094 +64,3.49117112159729,2.6086350846862794,48.104000030517575,72.21800002441407,0.24567017402213118 +65,3.472384214401245,2.6843844258880614,47.312000017089844,71.36599994628907,0.2415823381635519 +66,3.457301616668701,2.692843377304077,47.64200004882812,71.28999998046875,0.23747626291714496 +67,3.438816547393799,2.641309075088501,48.150000032958985,71.49000002441406,0.23335374934322048 +68,3.422853708267212,2.647674969558716,48.34400006835938,71.77800001953125,0.22921660571248237 +69,3.4033803939819336,2.6653580261230467,48.180000052490236,71.67600010742187,0.22506664671286086 +70,3.388082981109619,2.6814236726379392,47.88800004150391,70.95000008300781,0.22090569265353077 +71,3.3693273067474365,2.6779237631988524,47.97599998413086,71.45800007080078,0.21673556866646312 +72,3.352656841278076,2.6699887734222414,48.08200001953125,71.07399990234374,0.21255810390586272 +73,3.33681058883667,2.699146605682373,47.86599995727539,71.06000000488281,0.20837513074583996 +74,3.318044662475586,2.688109938964844,48.07200006835937,71.16999989257812,0.20418848397667141 +75,3.301718235015869,2.6730108668518064,48.09000000732422,71.4139999951172,0.2 +76,3.2853496074676514,2.716941071243286,47.68999997070313,70.39400008789063,0.1958115160233287 +77,3.2688469886779785,2.7221464459228515,47.64000003295899,70.7040000805664,0.19162486925416009 +78,3.2513880729675293,2.6659132025909424,48.6280000390625,71.5360001220703,0.1874418960941374 +79,3.2362217903137207,2.7026677975463866,47.904000025634765,70.948,0.1832644313335369 +80,3.217132568359375,2.731769286956787,47.722000056152346,70.45799994384765,0.17909430734646936 +81,3.2014822959899902,2.7431153261566164,47.332000043945314,70.024000078125,0.1749333532871392 +82,3.182328939437866,2.7286902224731446,47.66800001953125,70.66400007324219,0.17078339428751776 +83,3.16510272026062,2.735255214920044,47.88199993164063,70.50999994628906,0.16664625065677952 +84,3.1486103534698486,2.6958993996429443,48.08800000366211,71.012,0.16252373708285509 +85,3.1351351737976074,2.7697228102111815,47.500000017089846,70.03800002929688,0.15841766183644812 +86,3.1158928871154785,2.755480989990234,47.228000037841795,70.06199997558593,0.1543298259778689 +87,3.0968613624572754,2.787323206329346,47.18599994873047,69.534000078125,0.15026202256702909 +88,3.0825695991516113,2.739123907623291,47.82199998168945,70.38599997802734,0.14621603587694693 +89,3.06125545501709,2.7277521147155763,48.21400005004883,70.55200010253907,0.14219364061110565 +90,3.0457143783569336,2.690470294418335,48.64000006591797,70.844,0.13819660112501053 +91,3.0310678482055664,2.8399217945098876,46.52400000610351,68.78600005859376,0.13422667065228336 +92,3.01511287689209,2.8122422872924804,46.89799998168945,69.09199995117187,0.130285590535637 +93,3.0006134510040283,2.760848731994629,47.5140000378418,69.85599998046875,0.12637508946306447 +94,2.9764909744262695,2.74943043258667,48.09999996826172,69.9940000048828,0.12249688270957942 +95,2.96222186088562,2.7954502145385742,47.26000004638672,69.29199995605468,0.11865267138483995 +96,2.9392220973968506,2.8065069854736326,47.39400000610352,69.12599995361329,0.11484414168698548 +97,2.9246513843536377,2.848009323425293,46.597999965820314,68.6099999609375,0.11107296416301456 +98,2.9026050567626953,2.8152094342041014,47.406000046386715,69.13799998046875,0.10734079297602771 +99,2.8926589488983154,2.8350838914489747,46.96599999755859,68.64199993164063,0.10364926517965692 +100,2.878960132598877,2.815075789642334,47.227999963378906,69.18000000732422,0.09999999999999996 +101,2.859301805496216,2.797872873535156,47.44400000854492,69.16399995117187,0.09639459812537399 +102,2.8411967754364014,2.7942515280151365,47.36999999511719,69.32399997558593,0.09283464100420072 +103,2.8259472846984863,2.7782616220092775,47.880000028076175,69.43599992675782,0.0893216901513312 +104,2.8077714443206787,2.825867802658081,47.13199998413086,68.80400002929687,0.08585728646311369 +105,2.793215036392212,2.869546025238037,46.918000075683594,68.23799998046874,0.0824429495415054 +106,2.77408504486084,2.8211750849151613,47.47800004638672,68.69799995117188,0.07908017702752504 +107,2.7546238899230957,2.8228938887786867,47.18999994384765,68.83200018554687,0.07577044394433795 +108,2.737051248550415,2.8481039630126954,47.19600000366211,68.6039999560547,0.07251520205026206 +109,2.7229385375976562,2.8509527226257325,47.33400004394531,68.51199997314453,0.06931587920197897 +110,2.7042465209960938,2.8018674551391602,48.20800004150391,69.15399997558593,0.06617387872822836 +111,2.6928036212921143,2.839176903762817,47.33800001708985,68.61800002685547,0.06309057881426226 +112,2.674863338470459,2.830701964416504,47.381999997558594,68.76199995849609,0.060067331897326895 +113,2.663349151611328,2.8317042303466797,47.49199999511719,68.61199992431641,0.057105464073439374 +114,2.647904634475708,2.8493549401855467,47.16000004394531,68.50799995117187,0.05420627451571774 +115,2.629568338394165,2.854400734100342,47.35800000854492,68.52200000976562,0.051371034904521135 +116,2.6200759410858154,2.8096500191497804,47.778000046386715,69.1099999560547,0.04860098886964875 +117,2.6037285327911377,2.8714900031280517,46.960000021972654,68.08800006103516,0.04589735144484217 +118,2.5886144638061523,2.8720210273742675,47.02400002685547,68.07800006347657,0.04326130853483206 +119,2.5740151405334473,2.7944153856658938,48.117999990234374,69.14199993164063,0.04069401639516075 +120,2.5617165565490723,2.8008144371795654,48.12000002441406,69.13200000488281,0.03819660112501053 +121,2.5489015579223633,2.7953228367614744,48.18400005126953,69.25200005615234,0.035770158173259195 +122,2.5375521183013916,2.7844404615783693,48.34399996826172,69.41200009033203,0.03341575185798012 +123,2.519402027130127,2.80273702583313,48.14000003051758,69.18400000732422,0.031134414899596986 +124,2.5120277404785156,2.8034471212005614,48.05400001953125,69.00000008789063,0.02892714796789868 +125,2.4992034435272217,2.8136112892150877,47.998000090332035,68.88600005859375,0.026794919243112305 +126,2.491396903991699,2.846292889480591,47.74200001098633,68.51800003417969,0.024738663991227285 +127,2.477914571762085,2.817216893157959,48.07799999267578,68.84600002929687,0.022759284153757053 +128,2.4640984535217285,2.8377239137268067,47.77600001098633,68.51400003417969,0.020857647952117465 +129,2.4579758644104004,2.82563579246521,48.066000006103515,68.77800003417968,0.01903458950679613 +130,2.446584463119507,2.82225922996521,48.12400003051758,68.76600003173829,0.01729090847147985 +131,2.4357705116271973,2.8045418377685545,48.20799996582031,69.09200005859375,0.015627369682299875 +132,2.4299697875976562,2.827194600830078,48.002000021972655,68.85599992675782,0.014044702822349731 +133,2.4234752655029297,2.83771482421875,47.81399996826172,68.56800000732422,0.01254360210162171 +134,2.420668363571167,2.8059952908325196,48.26199996826172,69.03800005615234,0.0111247259525038 +135,2.413484573364258,2.8408592330932616,47.83000002441406,68.49800000732422,0.009788696740969294 +136,2.4040749073028564,2.814090837249756,48.142000021972656,68.98200003173828,0.008536100493586551 +137,2.4030885696411133,2.811793627471924,48.232000032958986,68.8520001611328,0.007367486640468379 +138,2.3959243297576904,2.816651168136597,48.12200000854492,68.86600010742187,0.0062833677742737855 +139,2.3886256217956543,2.8243908866882323,48.079999981689454,68.84400008300781,0.005284219425367942 +140,2.3825290203094482,2.8291669874572754,48.07199997924805,68.64000000488281,0.004370479853238885 +141,2.3747737407684326,2.8027838427734375,48.49800007080078,69.11000010742187,0.003542549854262278 +142,2.3723840713500977,2.8102378479003907,48.43999997070313,69.01600008300781,0.0028007925858990037 +143,2.371351718902588,2.802447621307373,48.55600001953125,68.97800005859375,0.0021455334074023335 +144,2.372753381729126,2.8184564363098144,48.353999979248044,68.77600008544921,0.0015770597371044472 +145,2.3675029277801514,2.818065760345459,48.32399999267578,68.81600000976563,0.001095620926345342 +146,2.3669257164001465,2.8177401666259767,48.36200001708984,68.76600003417968,0.000701428150099126 +147,2.3710074424743652,2.805688974609375,48.46000003051758,69.00600003417969,0.00039465431434568824 +148,2.3682570457458496,2.8133713523864747,48.37999997924805,68.95800000732422,0.00017543398022832336 +149,2.3659486770629883,2.8181535509490967,48.27399996826172,68.82999998291015,4.3863305030900085e-05 diff --git a/pytorch-image-models/timm/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f38cb19d0c68e34e907105c922c8f97408d126a1 Binary files /dev/null and b/pytorch-image-models/timm/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/__pycache__/version.cpython-39.pyc b/pytorch-image-models/timm/__pycache__/version.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..15b224a3e803e22d6449220a877598c139829f9a Binary files /dev/null and b/pytorch-image-models/timm/__pycache__/version.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..341636579914fd964a9a9fef7d8ad57c964b2e32 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/auto_augment.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/auto_augment.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..db228d0f1e7c3031f28d6b4e8ead427c4c5065ff Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/auto_augment.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/config.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/config.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2d2f35873d913ac13e6e4ce9ae8920103be9c67f Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/config.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/constants.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/constants.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7c842cf410132e76a9834f091f98ac63eec8476f Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/constants.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/dataset.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/dataset.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ddf7751bb6b0fc9a4c9d7e45e6aa43cf64cf223a Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/dataset.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/dataset_factory.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/dataset_factory.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4fd8aa868d973348206cc215e74fa2e9a6e0a9bd Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/dataset_factory.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/dataset_info.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/dataset_info.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bbdc29f82ce06548931d6b7c506648aed81eabb8 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/dataset_info.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/distributed_sampler.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/distributed_sampler.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b88d56c1a2d8cc0f79c2a3f0a532cd31940c76d5 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/distributed_sampler.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/imagenet_info.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/imagenet_info.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..561de8a02610eb8febd3f8ce3be00f82f2169846 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/imagenet_info.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/loader.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/loader.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7a5520e180aae9005fcf06d82e619892680fc6d6 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/loader.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/mixup.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/mixup.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f652fec988fb9842a694dbb113335e7be9064eee Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/mixup.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/random_erasing.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/random_erasing.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1ddbb04bd4b2fadf810c5ce8105a4a90496c6391 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/random_erasing.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/real_labels.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/real_labels.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..18470dbc3eca184a6e936817394ea8f4de3d1026 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/real_labels.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/transforms.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/transforms.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f9b36b7e6cfdc0d84eab0954a37470001df04906 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/transforms.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/__pycache__/transforms_factory.cpython-39.pyc b/pytorch-image-models/timm/data/__pycache__/transforms_factory.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d3fc48d31b5306355342029cf8e1461d0a5bb5e8 Binary files /dev/null and b/pytorch-image-models/timm/data/__pycache__/transforms_factory.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/readers/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/data/readers/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d6e14e0362888c6a867f1385a2336414eefb9cab Binary files /dev/null and b/pytorch-image-models/timm/data/readers/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/readers/__pycache__/class_map.cpython-39.pyc b/pytorch-image-models/timm/data/readers/__pycache__/class_map.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f9b472bd52d99ff37eefbb8ba575caeab90401b8 Binary files /dev/null and b/pytorch-image-models/timm/data/readers/__pycache__/class_map.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/readers/__pycache__/img_extensions.cpython-39.pyc b/pytorch-image-models/timm/data/readers/__pycache__/img_extensions.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ed701bf06ac86b4dec40908c83479c0f7a61f4e3 Binary files /dev/null and b/pytorch-image-models/timm/data/readers/__pycache__/img_extensions.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/readers/__pycache__/reader.cpython-39.pyc b/pytorch-image-models/timm/data/readers/__pycache__/reader.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e17c11062998a20cce6383ee338d1e70e437bce8 Binary files /dev/null and b/pytorch-image-models/timm/data/readers/__pycache__/reader.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/readers/__pycache__/reader_factory.cpython-39.pyc b/pytorch-image-models/timm/data/readers/__pycache__/reader_factory.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f81ac024c7aaac197eaae00971c436845242175a Binary files /dev/null and b/pytorch-image-models/timm/data/readers/__pycache__/reader_factory.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/readers/__pycache__/reader_hfds.cpython-39.pyc b/pytorch-image-models/timm/data/readers/__pycache__/reader_hfds.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..76f2a1e5a62940dd6085f95f151917bace398005 Binary files /dev/null and b/pytorch-image-models/timm/data/readers/__pycache__/reader_hfds.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/readers/__pycache__/reader_image_folder.cpython-39.pyc b/pytorch-image-models/timm/data/readers/__pycache__/reader_image_folder.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..729597d08bbd438cb1ee60610fd70db59f2ee849 Binary files /dev/null and b/pytorch-image-models/timm/data/readers/__pycache__/reader_image_folder.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/data/readers/__pycache__/reader_image_in_tar.cpython-39.pyc b/pytorch-image-models/timm/data/readers/__pycache__/reader_image_in_tar.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4b5d2cec44678489813aa6d642d3adbe0c4a8df8 Binary files /dev/null and b/pytorch-image-models/timm/data/readers/__pycache__/reader_image_in_tar.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dcbde50367f629ecf056369fc3a2874b5aacc455 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/activations.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/activations.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..116e5d8afb91bb6d4666f8c761b39c87001b9012 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/activations.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/activations_me.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/activations_me.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..368bd659a0a65abfa5ddb25fd90737e9b3588bfb Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/activations_me.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/adaptive_avgmax_pool.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/adaptive_avgmax_pool.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..09b8846f0402819e231c33ffa6d038515e60d357 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/adaptive_avgmax_pool.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/attention2d.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/attention2d.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..66d6928c04004f3ab783668cf92208d83287b50d Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/attention2d.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/attention_pool.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/attention_pool.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..66f4f463e134ad6970fa82f9dc9e830b95df2d90 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/attention_pool.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/attention_pool2d.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/attention_pool2d.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..addb62139b295ab5efcb4ea3ffb6e5ee688f6119 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/attention_pool2d.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/blur_pool.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/blur_pool.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8e8838c7f6a948db1f7345b402acfd1155087d02 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/blur_pool.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/bottleneck_attn.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/bottleneck_attn.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..74dcdc463e9cb3938b9046087891bba287482fa0 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/bottleneck_attn.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/cbam.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/cbam.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..96906a0739441259535ff8c5124d6cfae6d32318 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/cbam.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/classifier.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/classifier.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5c66338b0718f9518f7c8cc76e61e8619f26238e Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/classifier.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/cond_conv2d.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/cond_conv2d.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5c6da34ad78a035b5eacc0de98a5cb016dc9aed0 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/cond_conv2d.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/config.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/config.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b4fe0706d2f89007517fac9dbc529f826d920657 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/config.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/conv2d_same.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/conv2d_same.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b8e57c2446521c7390d492d08883fafda8018d33 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/conv2d_same.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/conv_bn_act.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/conv_bn_act.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9803340fbe0f89892d7eb8de1364509a3f04ff62 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/conv_bn_act.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/create_act.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/create_act.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..85814284d550b9e3039383e33b2f01dbf11cfbfb Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/create_act.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/create_attn.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/create_attn.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e26518bed7c1f7820d2ae4c73d7ff06533ca5103 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/create_attn.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/create_conv2d.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/create_conv2d.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4fa165fa6716610e34dcc6db0243c16553900507 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/create_conv2d.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/create_norm.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/create_norm.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bc1bff9d2e597545ac66e98b092e4141607c9198 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/create_norm.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/create_norm_act.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/create_norm_act.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d365410e7c79e75f8ecacad8deec05d6e2a916e7 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/create_norm_act.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/drop.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/drop.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8f46c39fae89e465efc1cae4838cd508e1d0abde Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/drop.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/eca.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/eca.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dc3d2a21c80dc2de216bf6ff9a32040bbe2f7452 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/eca.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/evo_norm.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/evo_norm.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..17005d44ad5214fd601886c65d3c378b4a20e74f Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/evo_norm.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/fast_norm.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/fast_norm.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..293f6a1541dcc520b49f33418350997d87006055 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/fast_norm.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/filter_response_norm.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/filter_response_norm.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6695456723107fde349a9e67de237adaa2373371 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/filter_response_norm.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/format.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/format.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..031668647eb4a875c6937db43fd91f38023ad9f5 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/format.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/gather_excite.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/gather_excite.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2cc00f96e8cc5046bee99ea535d2dfbffd86b390 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/gather_excite.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/global_context.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/global_context.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..411e7d46f4cda7618869449e89664dafb7cb44d4 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/global_context.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/grid.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/grid.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8c13e135f07e41c276cafce3ee557f27c577830b Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/grid.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/grn.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/grn.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..85d31edd5beb8344a61a2314f37909ba77884cc2 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/grn.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/halo_attn.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/halo_attn.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..22286a8044f8cd5bfd6e16a86f2a8bbae7a2baad Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/halo_attn.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/helpers.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/helpers.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ccc4198fd8785e6617816fe0b58b280029fc1b69 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/helpers.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/hybrid_embed.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/hybrid_embed.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..02d389d40823ee5a259d49a402696a1d209232f7 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/hybrid_embed.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/inplace_abn.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/inplace_abn.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0f0404703573ecccc6f60848a3b5f68d527fd1a4 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/inplace_abn.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/interpolate.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/interpolate.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b6758840cee417f0d42c3aae0b7398d64301de75 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/interpolate.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/lambda_layer.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/lambda_layer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c504f53e7b2dfa3eaf3729faaacfd6829966d598 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/lambda_layer.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/layer_scale.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/layer_scale.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7470bdef2750251995bc63b3a3b4a4168db2609b Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/layer_scale.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/linear.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/linear.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..302021e9c6107962e0789e96268b3b2da4492709 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/linear.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/mixed_conv2d.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/mixed_conv2d.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0cfb5638dbd4bd727041bf622c5909057614f8a1 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/mixed_conv2d.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/mlp.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/mlp.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6ebb016a39e9c51b8169dd9c2c84f566b0a723ab Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/mlp.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/non_local_attn.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/non_local_attn.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..548f052420ba7a52ed49c942af52f8d2687a9eaf Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/non_local_attn.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/norm.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/norm.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fd1c6be9db040fc3b22e9cd5db44797af4b752fe Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/norm.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/norm_act.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/norm_act.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3e3a3b20354b140d330676af454cd507507e90df Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/norm_act.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/padding.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/padding.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e418ba0a1317f909802104c3c7f3513757ffd4c1 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/padding.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/patch_dropout.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/patch_dropout.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..daefb1a391beaad72ef7609b0e19c85715e0a1fc Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/patch_dropout.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/patch_embed.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/patch_embed.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7eca7456dc80f8dcb7aa078f91f6663888ba91d9 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/patch_embed.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/pool2d_same.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/pool2d_same.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e5819423abbf9e4072a0972d4ae618a71e6c1c38 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/pool2d_same.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/pos_embed.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/pos_embed.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d141e4748a4cfa7135e05447e3773eaa811ed0af Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/pos_embed.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/pos_embed_rel.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/pos_embed_rel.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..314b013c7472dc9b03be6998caf436704938ad95 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/pos_embed_rel.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/pos_embed_sincos.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/pos_embed_sincos.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b6b196c8c6931a4c8a107aa3bf3da85439529ff3 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/pos_embed_sincos.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/selective_kernel.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/selective_kernel.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d9b83265b0f6b0953a4e4d35926bba53a2803053 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/selective_kernel.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/separable_conv.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/separable_conv.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1bfed08176272a17b759852b2c83b1eb87b41b5a Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/separable_conv.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/space_to_depth.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/space_to_depth.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5d52c7e335c54de69bac7503f493ba39fc76a30a Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/space_to_depth.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/split_attn.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/split_attn.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e64e9e9138f68a50b21b99b5df31b0d5ad9b35b3 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/split_attn.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/split_batchnorm.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/split_batchnorm.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9965d468da242143288ba01739aa744e18f2c8ee Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/split_batchnorm.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/squeeze_excite.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/squeeze_excite.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5fc6f7d9322581e35ae76c1283ecd183779bfac6 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/squeeze_excite.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/std_conv.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/std_conv.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9ab3da727741d0e4a480fde4a66ab9e02e8a632d Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/std_conv.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/test_time_pool.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/test_time_pool.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..86190c301426dda97f9853ab8aad1c01cd7d6cab Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/test_time_pool.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/trace_utils.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/trace_utils.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..297cb3ff766ed31cc81d98c4661fa68a8a22766d Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/trace_utils.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/typing.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/typing.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5ac9f886655dfe3308cf26ce8ec92c8573fbdc73 Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/typing.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/layers/__pycache__/weight_init.cpython-39.pyc b/pytorch-image-models/timm/layers/__pycache__/weight_init.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5cfd6a582923ea8996ea3094bf3b16f7cf8d129d Binary files /dev/null and b/pytorch-image-models/timm/layers/__pycache__/weight_init.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/loss/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/loss/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..464980e24fb72e00f91f0d098b465bc6172790d2 Binary files /dev/null and b/pytorch-image-models/timm/loss/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/loss/__pycache__/asymmetric_loss.cpython-39.pyc b/pytorch-image-models/timm/loss/__pycache__/asymmetric_loss.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e241ca1a3d8401d3c675db23adbe173b84bb8208 Binary files /dev/null and b/pytorch-image-models/timm/loss/__pycache__/asymmetric_loss.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/loss/__pycache__/binary_cross_entropy.cpython-39.pyc b/pytorch-image-models/timm/loss/__pycache__/binary_cross_entropy.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..50e71df2a3322d56ab28bc3c042c44a7811136bb Binary files /dev/null and b/pytorch-image-models/timm/loss/__pycache__/binary_cross_entropy.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/loss/__pycache__/cross_entropy.cpython-39.pyc b/pytorch-image-models/timm/loss/__pycache__/cross_entropy.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..99c14b8ac2fc6ba211dddb0324351a32d7fa5700 Binary files /dev/null and b/pytorch-image-models/timm/loss/__pycache__/cross_entropy.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/loss/__pycache__/jsd.cpython-39.pyc b/pytorch-image-models/timm/loss/__pycache__/jsd.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0b7cab54d62b136fb3bb960ea2bfa8a584e08f28 Binary files /dev/null and b/pytorch-image-models/timm/loss/__pycache__/jsd.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3c09b067bd12a2a15ee546b56a49633c0d5abd8b Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_builder.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_builder.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8cbd68054ef891ed3189fb659cc8e2a17faf719d Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_builder.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_efficientnet_blocks.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_efficientnet_blocks.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..daf7b29e2807ba4e14b834912f205665ec8041b5 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_efficientnet_blocks.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_efficientnet_builder.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_efficientnet_builder.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..132b701623e0a1b95fae6f467fcac4db9789be09 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_efficientnet_builder.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_factory.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_factory.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3a6b06ad4ce9180a8f1f63d0a4f4fb97fcee9e3b Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_factory.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_features.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_features.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b8ad3ca91b71881f9aa69b294723d70e29e47e2c Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_features.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_features_fx.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_features_fx.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ec91fdbd531611e79ce3492aa8faa7581aa4466e Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_features_fx.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_helpers.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_helpers.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..09045f00329ca151ce93549a2afb4dfa2a490ef4 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_helpers.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_hub.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_hub.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6ca6f45d4cfb9c27beafbf5c3f299b62187d719e Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_hub.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_manipulate.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_manipulate.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4f639762cf379d3ccf80e0edc2566977e9419566 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_manipulate.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_pretrained.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_pretrained.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b0d6b7428529426a6036f34aaa90405588c5afd1 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_pretrained.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_prune.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_prune.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d3d667c761c19539bbdaa247f7cb0e0447a95654 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_prune.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/_registry.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/_registry.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..286a7885550f5e2d7370c92124d9e026066b761e Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/_registry.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/beit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/beit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fcf1af79c4e416604117a3e1a736289334c5de9b Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/beit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/byoanet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/byoanet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4303ac2a99520e7b38902be4cb9f93522062f0d1 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/byoanet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/byobnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/byobnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f22b557ad308cf07c340a51892d9a4dc591fe16d Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/byobnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/cait.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/cait.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..91c4481ef941d670523dc8fa51c2f0d7310d95c7 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/cait.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/coat.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/coat.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f397660f9c8d7a4b9794fa92dd3f893a03340e57 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/coat.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/convit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/convit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0e73f3b79c5fd7c64940cb5d67d635af0df90f1f Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/convit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/convmixer.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/convmixer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..faddaf5c784ca13d2a7a2d27fd5eec4950b630ae Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/convmixer.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/convnext.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/convnext.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..93e13ce84f6553460961ac7b46abb565ad31b3b0 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/convnext.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/crossvit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/crossvit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..be3bededd41ee1771e88bbe9531348f47b2df86b Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/crossvit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/cspnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/cspnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..db67eae5a6a2360135193719595c467047e55271 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/cspnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/davit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/davit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..40a8c857461af305b7b6611de2497efd45c12034 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/davit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/deit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/deit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7770f3db4d39f2a63396e851bff9181b03d55a70 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/deit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/densenet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/densenet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e108beb113e27d01d22126da7f924fdcade2dd19 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/densenet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/dla.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/dla.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f6933f52b1b9bcb0692080a6568e8c51737f617c Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/dla.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/dpn.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/dpn.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7e05b5d3ba8c343229bae1ee17e1a827f5b2f0cf Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/dpn.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/edgenext.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/edgenext.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..538b6f1d516acf162c2fc50774c5f515b9bb1d45 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/edgenext.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/efficientformer.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/efficientformer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..25e094c4d9b9c9e71ae43ee0d9513aa6e388969c Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/efficientformer.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/efficientformer_v2.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/efficientformer_v2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..197a72e8dca923674009f447e9a46c37b7090682 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/efficientformer_v2.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/efficientnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/efficientnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9b50a92493f17ec6752b5eb062da371534ed5465 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/efficientnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/efficientvit_mit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/efficientvit_mit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5b3c85ced561df8c76dfc6d5a00a38cd629475bb Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/efficientvit_mit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/efficientvit_msra.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/efficientvit_msra.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6370346b31f309e69ff7d353709571923ad40b98 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/efficientvit_msra.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/eva.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/eva.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..754b5d514688ecdefebde41b253bd9d5873892d7 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/eva.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/fastvit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/fastvit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..07f528682d6e6cb72e8c38d4dd088f287d413cdd Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/fastvit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/focalnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/focalnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7d8e58955b5af239654d609037d880735f7dc4ad Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/focalnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/gcvit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/gcvit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..29bd6e7d39f333b7d4975cdb5b2e6d89360ab8a4 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/gcvit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/ghostnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/ghostnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7590158d335f802637234ec90108e1c350151b9b Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/ghostnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/hardcorenas.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/hardcorenas.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..55088c46ba3e70d59f023d1ee563ce9fee480c12 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/hardcorenas.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/hgnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/hgnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e5a5b1ef66bf97de33bb47ede801f416a53fd570 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/hgnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/hiera.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/hiera.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d981a116c9315a41b6600ceafa47919af0ea26e3 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/hiera.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/hieradet_sam2.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/hieradet_sam2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2e5c285bd3b731ab07cbdad5ff25bf9e63b1e45c Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/hieradet_sam2.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/hrnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/hrnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..be7f11ec85d3220f96c77b92a8696b46ceb8201c Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/hrnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/inception_next.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/inception_next.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..424171f6038dbd459ee5ed95e79ad9480fbbbc61 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/inception_next.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/inception_resnet_v2.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/inception_resnet_v2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8f7a3d3c3f0445607792187700a19faf683a3d56 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/inception_resnet_v2.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/inception_v3.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/inception_v3.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ab552420b47fc83961360aec96948a3e3cb62679 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/inception_v3.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/inception_v4.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/inception_v4.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cfc1ebe74a337ad6fe1ba075f4da7faf2d5c9c48 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/inception_v4.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/levit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/levit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d83773c0fd6c135b09b73f71396567bb495d516e Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/levit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/mambaout.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/mambaout.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d143bb1de7a543bfcbacd7312a440a6eaea9d5d8 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/mambaout.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/maxxvit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/maxxvit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..392f34fedd0e4aa20bd3da5a010d13a24d414543 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/maxxvit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/metaformer.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/metaformer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9a5a1b30ae0d4cf764682b24cc3200d1fd22fa46 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/metaformer.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/mlp_mixer.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/mlp_mixer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ea27f268397f72e8e2b2b6c2313eed11814a27a0 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/mlp_mixer.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/mobilenetv3.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/mobilenetv3.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..df2c766aab14b7dca1209c1e5732d04ccfb5bb37 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/mobilenetv3.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/mobilevit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/mobilevit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3325483f82ff59a64cf8ccef0924cd4728673230 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/mobilevit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/mvitv2.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/mvitv2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..82491d38287630c1d95c6e21f20926306b4589e7 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/mvitv2.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/nasnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/nasnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..92c036c18670ffbb27eafc52406aa844b189d5ff Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/nasnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/nest.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/nest.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cb2ead555d9fdcc76b387297746fe8ddaed8294d Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/nest.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/nextvit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/nextvit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d5666183d33cdddbe191c2628c421f82d0e9c78b Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/nextvit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/nfnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/nfnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..298ba8363d35b0de2d76efeeceb2bed21b4f903d Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/nfnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/pit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/pit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..703ccc9991c43ca269cea049743d8e8e197851c6 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/pit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/pnasnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/pnasnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..138e654fae1a4977e1a947a1995bfaf37e815e3f Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/pnasnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/pvt_v2.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/pvt_v2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..56f4edc60e6d8ddcd032a2c8e63b12d10793af98 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/pvt_v2.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/rdnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/rdnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..364b7fe0dfd96bede26566bf23891aeb1852391e Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/rdnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/regnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/regnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..987847daae6ce89b5c7635fdf2359b6293466c8c Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/regnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/repghost.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/repghost.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a37e9422d47a4cbb11909e15b699b18efae61362 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/repghost.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/repvit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/repvit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3b2bb33ce636bab5e7451645e2f523ff3df31afd Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/repvit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/res2net.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/res2net.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..409098e3a1b42498a30fee882138d0809cb23d23 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/res2net.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/resnest.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/resnest.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5b943df4f625ee2cd38af79435eb419aca6982a9 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/resnest.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/resnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/resnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f4d722f3b0ad90d4aa36b8a3fcf3418e638f4ec3 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/resnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/resnetv2.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/resnetv2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0b0c0972986ef1dfb541a3419af7fbe71eb3918f Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/resnetv2.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/rexnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/rexnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..eb7afe4232bf6f9f8f27e4d2a98ed2092d4d986d Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/rexnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/selecsls.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/selecsls.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ef65cfcc65e54ea28564f2c07a0cb0bdf08d3b31 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/selecsls.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/senet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/senet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..391127723baad352549d6327d0e784e5151ef945 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/senet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/sequencer.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/sequencer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b02e059e86b2880b25fbf2dc0fde964bf016ac91 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/sequencer.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/sknet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/sknet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e4bc0bd0c1080d38a983a2ce4bb8b4e30bbb8582 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/sknet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/swin_transformer.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/swin_transformer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..22d713d8599aa4bf48f2dcc6a3ba8c022e0afe0e Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/swin_transformer.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/swin_transformer_v2.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/swin_transformer_v2.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..14c930502257640a0222d0d28c2426e45eb2c2ba Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/swin_transformer_v2.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/swin_transformer_v2_cr.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/swin_transformer_v2_cr.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8e2734f3564979c36342fada0c000f51d2728ea6 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/swin_transformer_v2_cr.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/tiny_vit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/tiny_vit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..aaf45ca818deac916a32a76749026a3f6bb962e4 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/tiny_vit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/tnt.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/tnt.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e339dab550e31ade6a31398dc0da230d9ba7328b Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/tnt.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/tresnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/tresnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7b9ca65ae82010e2723fd4b0bce89ee94d5ea7cd Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/tresnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/twins.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/twins.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..630a98b1193135973cb6d0c0adb3cba2edc7ecf5 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/twins.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/vgg.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/vgg.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..946b2024f5dc251c823bc5953c92dd81826d509b Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/vgg.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/visformer.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/visformer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..853b5a0a03421227931767141de2786b171f55f1 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/visformer.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/vision_transformer.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/vision_transformer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e7e5f9e549ba6812645a1fba5bc37b24f40c206f --- /dev/null +++ b/pytorch-image-models/timm/models/__pycache__/vision_transformer.cpython-39.pyc @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5698f822756a4c7836055f2035322d8c53c532e486a31e999ec1beb539aaab2c +size 113395 diff --git a/pytorch-image-models/timm/models/__pycache__/vision_transformer_hybrid.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/vision_transformer_hybrid.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9f90012fc5f514b2e55701927f7ca1ea05b21a0c Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/vision_transformer_hybrid.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/vision_transformer_relpos.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/vision_transformer_relpos.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..de5ab77c00e898c16694abae6a393d3aeefd81b0 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/vision_transformer_relpos.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/vision_transformer_sam.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/vision_transformer_sam.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8a82c563fd53df0ed4a4c5495d95933ece295f11 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/vision_transformer_sam.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/vitamin.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/vitamin.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c96c6cb64d57f933e318061e5f2c17c90893b807 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/vitamin.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/volo.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/volo.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8c8134ec4853a208ffa7740f319270e3bff8eadc Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/volo.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/vovnet.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/vovnet.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b1c776091c8c2b9a49b58bb66f3b937a162e187c Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/vovnet.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/xception.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/xception.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6e160139f32e31e86daceca69e8d679bfb666e83 Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/xception.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/xception_aligned.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/xception_aligned.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b5db0a680605fa3ca6f0e9852a0e26ceb182b70c Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/xception_aligned.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/models/__pycache__/xcit.cpython-39.pyc b/pytorch-image-models/timm/models/__pycache__/xcit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7b9c371411eff0bbaadce3b3c4a3e396d085c70a Binary files /dev/null and b/pytorch-image-models/timm/models/__pycache__/xcit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..036df469ebe2ced3e48d88367bae63e62c7dff98 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/_optim_factory.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/_optim_factory.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3fd44b309030f20923c697c0b8dd84d5fcb5747c Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/_optim_factory.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/_param_groups.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/_param_groups.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3d97f511ffd56ff0edb31b5cdad0bf98bf514744 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/_param_groups.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/_types.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/_types.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7177a853bb4dc4f8e50e1cfa1fc5b8506529da62 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/_types.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/adabelief.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/adabelief.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3d28b6402b0a907fde7fd14b300ab9c1e051caf1 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/adabelief.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/adafactor.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/adafactor.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a27977fec4c6672e1b78df12e472197dbba17a08 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/adafactor.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/adafactor_bv.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/adafactor_bv.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..18fa5592c7efff71b9eaed79df4a59be16db0433 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/adafactor_bv.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/adahessian.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/adahessian.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..befabcf0ef8226f864f6437d554f0dc0b0ace75b Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/adahessian.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/adamp.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/adamp.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..acf9f6b461f4698fa787da74fff93ebf25e6d56e Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/adamp.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/adamw.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/adamw.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..14ef40da97d85f19ec32929940db8a602bcedf80 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/adamw.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/adan.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/adan.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..df213ad8a516354974c5f2aacd47c9d304d2dc65 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/adan.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/adopt.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/adopt.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d738451f21fa7bf834ef95637f230b7a5abd398c Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/adopt.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/kron.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/kron.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f631a8b4734a04747ad5cc09d1e6f5864d859d84 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/kron.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/lamb.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/lamb.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a6ee4d6fc21e5323a32a8578c82f0507641daff2 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/lamb.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/laprop.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/laprop.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1d73be289b2bf72e58923037825296375239094b Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/laprop.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/lars.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/lars.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dcaae0f30b921d3b4262e5874b92ac4755af5870 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/lars.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/lion.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/lion.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..65e2f5f375c4d9d3cc5020fbe516c7dc38606ec9 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/lion.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/lookahead.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/lookahead.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..caaac87dd284cfcea181e1decc8014eca2573256 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/lookahead.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/madgrad.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/madgrad.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f3bcb141ba0b72047e1687667a1fce9c5d72e9cd Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/madgrad.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/mars.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/mars.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..08e145eee408c3487ba285089f10598b25da6057 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/mars.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/nadam.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/nadam.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b8abce573102d28a695901e3107235fe872f9a0e Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/nadam.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/nadamw.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/nadamw.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5a503c9b76741052ddf63fcb38cebb4d5e9a5cb2 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/nadamw.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/nvnovograd.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/nvnovograd.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..230457db658ba254999ffdda75428ced074e7871 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/nvnovograd.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/radam.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/radam.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..79adf18c206c257f710b5a863cf11fb6d71c5cfa Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/radam.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/rmsprop_tf.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/rmsprop_tf.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6d9582602bdc115a760d7242c3d26a230aab2454 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/rmsprop_tf.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/sgdp.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/sgdp.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7b8ff6e9b7c3dd3999a8a2dedeb2044c1fbf1319 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/sgdp.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/optim/__pycache__/sgdw.cpython-39.pyc b/pytorch-image-models/timm/optim/__pycache__/sgdw.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6511975737a4800085c4dad0117c12d246b3d773 Binary files /dev/null and b/pytorch-image-models/timm/optim/__pycache__/sgdw.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ea0c18fd6367435574c3bac7568df1b222aaa779 Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/cosine_lr.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/cosine_lr.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f0d26a3092d278909b00e57ff58c3752117561dc Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/cosine_lr.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/multistep_lr.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/multistep_lr.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a576fa51ae77ede72592f46516676f38993e0148 Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/multistep_lr.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/plateau_lr.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/plateau_lr.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..53b626c63e8571c09f85742a8d2bd3dfd01a3d86 Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/plateau_lr.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/poly_lr.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/poly_lr.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4a027b0e27c9a0c634909921d0074f7b15f923dc Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/poly_lr.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/scheduler.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/scheduler.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..de44b1c383265f067f5931cbcc4b57f1e0b97a24 Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/scheduler.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/scheduler_factory.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/scheduler_factory.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b5fb919836ece14510cc1bb1e84d2455f8d25da6 Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/scheduler_factory.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/step_lr.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/step_lr.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..48759ed9ecee790d479b8f6a11fe65a74108f1be Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/step_lr.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/scheduler/__pycache__/tanh_lr.cpython-39.pyc b/pytorch-image-models/timm/scheduler/__pycache__/tanh_lr.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0159a87e08f61f7d214e74f1343a7c18d6e88d39 Binary files /dev/null and b/pytorch-image-models/timm/scheduler/__pycache__/tanh_lr.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/__init__.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2afcded53543a5e57fec55a5998cbd11beadddac Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/__init__.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/agc.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/agc.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8edda40404f0a5c206908b1b18dd17bd23442762 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/agc.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/attention_extract.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/attention_extract.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2136b5d1c3997232298d3e6f6f4d90208c182468 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/attention_extract.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/checkpoint_saver.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/checkpoint_saver.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7172f11f277b130d006187c981e25b93602960dc Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/checkpoint_saver.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/clip_grad.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/clip_grad.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c8530abf1d4d749db1ac5f6b51928b49a88b4aad Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/clip_grad.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/cuda.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/cuda.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e9d685c9b761db93c5a62c305cbcbfd145640436 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/cuda.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/decay_batch.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/decay_batch.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0bd6321e31095c1f8762117a87076579dd0032ce Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/decay_batch.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/distributed.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/distributed.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..95cc7d00902568261d8726316eed380b626ed256 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/distributed.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/jit.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/jit.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d5d616484965d241e6b3c5f4d18a80f6653be232 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/jit.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/log.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/log.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4f88ba02effa5c29ed7f7a937a2c54de86e1e81c Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/log.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/metrics.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/metrics.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0e4a245a5b6d7bb456ef2d071abc6445e732e723 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/metrics.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/misc.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/misc.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c04b8d7ab86fc97588e989d971847c65907b0b71 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/misc.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/model.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/model.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9709bc62b7d4dabbb57b941bec0dc069d707fac3 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/model.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/model_ema.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/model_ema.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0dc83b54c4553f89cee1dbdb25c7acbf974426dc Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/model_ema.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/random.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/random.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4103302fa7aa417eda625c27fa9bd800dddc99e0 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/random.cpython-39.pyc differ diff --git a/pytorch-image-models/timm/utils/__pycache__/summary.cpython-39.pyc b/pytorch-image-models/timm/utils/__pycache__/summary.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6060be608d2350c6d39f09fb1ea4439252968568 Binary files /dev/null and b/pytorch-image-models/timm/utils/__pycache__/summary.cpython-39.pyc differ diff --git a/pytorch-image-models/wandb/debug-internal.log b/pytorch-image-models/wandb/debug-internal.log new file mode 100644 index 0000000000000000000000000000000000000000..2a0011d94f7bcc8ed55f0805b551e10de01e3006 --- /dev/null +++ b/pytorch-image-models/wandb/debug-internal.log @@ -0,0 +1,9 @@ +{"time":"2025-02-24T01:13:34.721009141Z","level":"INFO","msg":"stream: starting","core version":"0.19.7","symlink path":"/app/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/logs/debug-core.log"} +{"time":"2025-02-24T01:13:34.826536368Z","level":"INFO","msg":"created new stream","id":"w1u5xl1c"} +{"time":"2025-02-24T01:13:34.826579152Z","level":"INFO","msg":"stream: started","id":"w1u5xl1c"} +{"time":"2025-02-24T01:13:34.826642277Z","level":"INFO","msg":"writer: Do: started","stream_id":"w1u5xl1c"} +{"time":"2025-02-24T01:13:34.82668172Z","level":"INFO","msg":"sender: started","stream_id":"w1u5xl1c"} +{"time":"2025-02-24T01:13:34.826767286Z","level":"INFO","msg":"handler: started","stream_id":"w1u5xl1c"} +{"time":"2025-02-24T01:13:35.017665625Z","level":"INFO","msg":"Starting system monitor"} +{"time":"2025-02-24T07:17:05.017986312Z","level":"ERROR","msg":"monitor: cpu: error sampling metrics: open /proc/144/stat: no such file or directory\nopen /proc/144/status: no such file or directory"} +{"time":"2025-02-24T07:17:05.018275432Z","level":"ERROR","msg":"monitor: memory: error sampling metrics: open /proc/144/statm: no such file or directory"} diff --git a/pytorch-image-models/wandb/debug.log b/pytorch-image-models/wandb/debug.log new file mode 100644 index 0000000000000000000000000000000000000000..d0c661847d7d864226c44b93fe43fa628cb292b7 --- /dev/null +++ b/pytorch-image-models/wandb/debug.log @@ -0,0 +1,22 @@ +2025-02-24 01:13:34,680 INFO MainThread:144 [wandb_setup.py:_flush():67] Current SDK version is 0.19.7 +2025-02-24 01:13:34,680 INFO MainThread:144 [wandb_setup.py:_flush():67] Configure stats pid to 144 +2025-02-24 01:13:34,680 INFO MainThread:144 [wandb_setup.py:_flush():67] Loading settings from /home/user/.config/wandb/settings +2025-02-24 01:13:34,680 INFO MainThread:144 [wandb_setup.py:_flush():67] Loading settings from /app/pytorch-image-models/wandb/settings +2025-02-24 01:13:34,680 INFO MainThread:144 [wandb_setup.py:_flush():67] Loading settings from environment variables +2025-02-24 01:13:34,680 INFO MainThread:144 [wandb_init.py:setup_run_log_directory():647] Logging user logs to /app/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/logs/debug.log +2025-02-24 01:13:34,680 INFO MainThread:144 [wandb_init.py:setup_run_log_directory():648] Logging internal logs to /app/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/logs/debug-internal.log +2025-02-24 01:13:34,680 INFO MainThread:144 [wandb_init.py:init():761] calling init triggers +2025-02-24 01:13:34,681 INFO MainThread:144 [wandb_init.py:init():766] wandb.init called with sweep_config: {} +config: {'data': None, 'data_dir': None, 'dataset': 'hfds/datacomp/imagenet-1k-random-20.0-frac-1over4', 'train_split': 'train', 'val_split': 'validation', 'train_num_samples': None, 'val_num_samples': None, 'dataset_download': False, 'class_map': '', 'input_img_mode': None, 'input_key': None, 'target_key': None, 'dataset_trust_remote_code': False, 'model': 'seresnet34', 'pretrained': False, 'pretrained_path': None, 'initial_checkpoint': '', 'resume': '', 'no_resume_opt': False, 'num_classes': 1000, 'gp': None, 'img_size': None, 'in_chans': None, 'input_size': None, 'crop_pct': None, 'mean': None, 'std': None, 'interpolation': '', 'batch_size': 256, 'validation_batch_size': None, 'channels_last': False, 'fuser': '', 'grad_accum_steps': 1, 'grad_checkpointing': False, 'fast_norm': False, 'model_kwargs': {}, 'head_init_scale': None, 'head_init_bias': None, 'torchcompile_mode': None, 'torchscript': False, 'torchcompile': None, 'device': 'cuda:0', 'amp': True, 'amp_dtype': 'float16', 'amp_impl': 'native', 'model_dtype': None, 'no_ddp_bb': False, 'synchronize_step': False, 'local_rank': 0, 'device_modules': None, 'opt': 'sgd', 'opt_eps': None, 'opt_betas': None, 'momentum': 0.9, 'weight_decay': 2e-05, 'clip_grad': None, 'clip_mode': 'norm', 'layer_decay': None, 'opt_kwargs': {}, 'sched': 'cosine', 'sched_on_updates': False, 'lr': 0.4, 'lr_base': 0.1, 'lr_base_size': 256, 'lr_base_scale': '', 'lr_noise': None, 'lr_noise_pct': 0.67, 'lr_noise_std': 1.0, 'lr_cycle_mul': 1.0, 'lr_cycle_decay': 0.5, 'lr_cycle_limit': 1, 'lr_k_decay': 1.0, 'warmup_lr': 1e-05, 'min_lr': 0, 'epochs': 150, 'epoch_repeats': 0.0, 'start_epoch': None, 'decay_milestones': [90, 180, 270], 'decay_epochs': 90, 'warmup_epochs': 5, 'warmup_prefix': False, 'cooldown_epochs': 0, 'patience_epochs': 10, 'decay_rate': 0.1, 'no_aug': False, 'train_crop_mode': None, 'scale': [0.08, 1.0], 'ratio': [0.75, 1.3333333333333333], 'hflip': 0.5, 'vflip': 0.0, 'color_jitter': 0.4, 'color_jitter_prob': None, 'grayscale_prob': None, 'gaussian_blur_prob': None, 'aa': None, 'aug_repeats': 0, 'aug_splits': 0, 'jsd_loss': False, 'bce_loss': False, 'bce_sum': False, 'bce_target_thresh': None, 'bce_pos_weight': None, 'reprob': 0.5, 'remode': 'pixel', 'recount': 1, 'resplit': False, 'mixup': 0.0, 'cutmix': 0.0, 'cutmix_minmax': None, 'mixup_prob': 1.0, 'mixup_switch_prob': 0.5, 'mixup_mode': 'batch', 'mixup_off_epoch': 0, 'smoothing': 0.1, 'train_interpolation': 'random', 'drop': 0.0, 'drop_connect': None, 'drop_path': None, 'drop_block': None, 'bn_momentum': None, 'bn_eps': None, 'sync_bn': False, 'dist_bn': 'reduce', 'split_bn': False, 'model_ema': False, 'model_ema_force_cpu': False, 'model_ema_decay': 0.9998, 'model_ema_warmup': False, 'seed': 42, 'worker_seeding': 'all', 'log_interval': 50, 'recovery_interval': 0, 'checkpoint_hist': 10, 'workers': 4, 'save_images': False, 'pin_mem': False, 'no_prefetcher': False, 'output': '', 'experiment': 'ImageNetTraining20.0-frac-1over4', 'eval_metric': 'top1', 'tta': 0, 'use_multi_epochs_loader': False, 'log_wandb': True, 'wandb_project': 'ImageNetTraining20.0-frac-1over4', 'wandb_tags': [], 'wandb_resume_id': '', 'prefetcher': True, 'distributed': True, 'world_size': 4, 'rank': 0, '_wandb': {}} +2025-02-24 01:13:34,681 INFO MainThread:144 [wandb_init.py:init():784] starting backend +2025-02-24 01:13:34,681 INFO MainThread:144 [wandb_init.py:init():788] sending inform_init request +2025-02-24 01:13:34,718 INFO MainThread:144 [backend.py:_multiprocessing_setup():97] multiprocessing start_methods=fork,spawn,forkserver, using: spawn +2025-02-24 01:13:34,719 INFO MainThread:144 [wandb_init.py:init():803] backend started and connected +2025-02-24 01:13:34,723 INFO MainThread:144 [wandb_init.py:init():896] updated telemetry +2025-02-24 01:13:34,764 INFO MainThread:144 [wandb_init.py:init():920] communicating run to backend with 90.0 second timeout +2025-02-24 01:13:35,013 INFO MainThread:144 [wandb_init.py:init():995] starting run threads in backend +2025-02-24 01:13:35,114 INFO MainThread:144 [wandb_run.py:_console_start():2377] atexit reg +2025-02-24 01:13:35,114 INFO MainThread:144 [wandb_run.py:_redirect():2227] redirect: wrap_raw +2025-02-24 01:13:35,114 INFO MainThread:144 [wandb_run.py:_redirect():2292] Wrapping output streams. +2025-02-24 01:13:35,114 INFO MainThread:144 [wandb_run.py:_redirect():2317] Redirects installed. +2025-02-24 01:13:35,117 INFO MainThread:144 [wandb_init.py:init():1037] run started, returning control to user process diff --git a/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/files/output.log b/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/files/output.log new file mode 100644 index 0000000000000000000000000000000000000000..31a4003c8fa4b2728bc8c71e0dcdea28473336fa --- /dev/null +++ b/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/files/output.log @@ -0,0 +1,2506 @@ +Scheduled epochs: 150 (epochs + cooldown_epochs). Warmup within epochs when warmup_prefix=False. LR stepped per epoch. +Train: 0 [ 0/312 ( 0%)] Loss: 6.95 (6.95) Time: 4.079s, 251.05/s (4.079s, 251.05/s) LR: 1.000e-05 Data: 1.481 (1.481) +Train: 0 [ 50/312 ( 16%)] Loss: 6.94 (6.94) Time: 0.391s, 2616.31/s (0.464s, 2208.95/s) LR: 1.000e-05 Data: 0.027 (0.056) +Train: 0 [ 100/312 ( 32%)] Loss: 6.94 (6.94) Time: 0.395s, 2590.44/s (0.429s, 2386.31/s) LR: 1.000e-05 Data: 0.029 (0.042) +Train: 0 [ 150/312 ( 48%)] Loss: 6.94 (6.94) Time: 0.395s, 2592.85/s (0.418s, 2448.53/s) LR: 1.000e-05 Data: 0.027 (0.037) +Train: 0 [ 200/312 ( 64%)] Loss: 6.94 (6.94) Time: 0.398s, 2570.92/s (0.413s, 2478.66/s) LR: 1.000e-05 Data: 0.027 (0.035) +Train: 0 [ 250/312 ( 80%)] Loss: 6.95 (6.94) Time: 0.400s, 2560.06/s (0.410s, 2494.97/s) LR: 1.000e-05 Data: 0.029 (0.034) +Train: 0 [ 300/312 ( 96%)] Loss: 6.94 (6.94) Time: 0.401s, 2553.32/s (0.409s, 2505.34/s) LR: 1.000e-05 Data: 0.028 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.591 (1.591) Loss: 6.945 ( 6.945) Acc@1: 0.098 ( 0.098) Acc@5: 0.391 ( 0.391) +Test: [ 48/48] Time: 0.692 (0.350) Loss: 6.940 ( 6.939) Acc@1: 0.118 ( 0.088) Acc@5: 0.354 ( 0.504) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-0.pth.tar', 0.0879999999666214) + +Train: 1 [ 0/312 ( 0%)] Loss: 6.94 (6.94) Time: 1.743s, 587.60/s (1.743s, 587.60/s) LR: 8.001e-02 Data: 1.375 (1.375) +Train: 1 [ 50/312 ( 16%)] Loss: 6.90 (6.91) Time: 0.412s, 2483.58/s (0.437s, 2343.95/s) LR: 8.001e-02 Data: 0.028 (0.054) +Train: 1 [ 100/312 ( 32%)] Loss: 6.80 (6.87) Time: 0.414s, 2471.45/s (0.424s, 2414.94/s) LR: 8.001e-02 Data: 0.027 (0.041) +Train: 1 [ 150/312 ( 48%)] Loss: 6.73 (6.84) Time: 0.411s, 2492.05/s (0.420s, 2437.43/s) LR: 8.001e-02 Data: 0.023 (0.037) +Train: 1 [ 200/312 ( 64%)] Loss: 6.72 (6.82) Time: 0.415s, 2466.90/s (0.418s, 2448.82/s) LR: 8.001e-02 Data: 0.028 (0.034) +Train: 1 [ 250/312 ( 80%)] Loss: 6.69 (6.80) Time: 0.413s, 2477.39/s (0.417s, 2456.15/s) LR: 8.001e-02 Data: 0.028 (0.033) +Train: 1 [ 300/312 ( 96%)] Loss: 6.69 (6.78) Time: 0.409s, 2501.62/s (0.416s, 2461.93/s) LR: 8.001e-02 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.420 (1.420) Loss: 6.543 ( 6.543) Acc@1: 1.270 ( 1.270) Acc@5: 4.004 ( 4.004) +Test: [ 48/48] Time: 0.090 (0.326) Loss: 6.472 ( 6.522) Acc@1: 1.297 ( 1.210) Acc@5: 4.717 ( 4.160) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-1.pth.tar', 1.2099999978637694) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-0.pth.tar', 0.0879999999666214) + +Train: 2 [ 0/312 ( 0%)] Loss: 6.69 (6.69) Time: 1.864s, 549.24/s (1.864s, 549.24/s) LR: 1.600e-01 Data: 1.124 (1.124) +Train: 2 [ 50/312 ( 16%)] Loss: 6.67 (6.68) Time: 0.418s, 2447.12/s (0.438s, 2336.64/s) LR: 1.600e-01 Data: 0.025 (0.049) +Train: 2 [ 100/312 ( 32%)] Loss: 6.67 (6.67) Time: 0.414s, 2474.64/s (0.426s, 2404.65/s) LR: 1.600e-01 Data: 0.027 (0.038) +Train: 2 [ 150/312 ( 48%)] Loss: 6.62 (6.66) Time: 0.406s, 2521.15/s (0.420s, 2435.56/s) LR: 1.600e-01 Data: 0.027 (0.035) +Train: 2 [ 200/312 ( 64%)] Loss: 6.56 (6.65) Time: 0.404s, 2536.92/s (0.417s, 2457.88/s) LR: 1.600e-01 Data: 0.028 (0.033) +Train: 2 [ 250/312 ( 80%)] Loss: 6.57 (6.63) Time: 0.404s, 2532.28/s (0.414s, 2471.09/s) LR: 1.600e-01 Data: 0.027 (0.032) +Train: 2 [ 300/312 ( 96%)] Loss: 6.52 (6.62) Time: 0.407s, 2513.62/s (0.413s, 2479.67/s) LR: 1.600e-01 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.432 (1.432) Loss: 6.168 ( 6.168) Acc@1: 1.953 ( 1.953) Acc@5: 7.031 ( 7.031) +Test: [ 48/48] Time: 0.091 (0.320) Loss: 6.080 ( 6.129) Acc@1: 2.830 ( 2.332) Acc@5: 9.552 ( 7.886) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-2.pth.tar', 2.331999997177124) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-1.pth.tar', 1.2099999978637694) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-0.pth.tar', 0.0879999999666214) + +Train: 3 [ 0/312 ( 0%)] Loss: 6.51 (6.51) Time: 1.626s, 629.64/s (1.626s, 629.64/s) LR: 2.400e-01 Data: 1.254 (1.254) +Train: 3 [ 50/312 ( 16%)] Loss: 6.51 (6.51) Time: 0.417s, 2456.95/s (0.437s, 2345.17/s) LR: 2.400e-01 Data: 0.033 (0.055) +Train: 3 [ 100/312 ( 32%)] Loss: 6.48 (6.50) Time: 0.417s, 2453.47/s (0.426s, 2406.14/s) LR: 2.400e-01 Data: 0.028 (0.042) +Train: 3 [ 150/312 ( 48%)] Loss: 6.41 (6.48) Time: 0.413s, 2479.22/s (0.422s, 2426.23/s) LR: 2.400e-01 Data: 0.028 (0.037) +Train: 3 [ 200/312 ( 64%)] Loss: 6.39 (6.46) Time: 0.414s, 2475.62/s (0.421s, 2434.90/s) LR: 2.400e-01 Data: 0.027 (0.035) +Train: 3 [ 250/312 ( 80%)] Loss: 6.38 (6.44) Time: 0.412s, 2486.54/s (0.419s, 2445.46/s) LR: 2.400e-01 Data: 0.027 (0.033) +Train: 3 [ 300/312 ( 96%)] Loss: 6.39 (6.43) Time: 0.408s, 2511.55/s (0.417s, 2455.04/s) LR: 2.400e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.428 (1.428) Loss: 5.748 ( 5.748) Acc@1: 4.492 ( 4.492) Acc@5: 14.355 ( 14.355) +Test: [ 48/48] Time: 0.090 (0.322) Loss: 5.695 ( 5.742) Acc@1: 5.542 ( 4.724) Acc@5: 15.330 ( 14.202) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-3.pth.tar', 4.723999999694824) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-2.pth.tar', 2.331999997177124) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-1.pth.tar', 1.2099999978637694) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-0.pth.tar', 0.0879999999666214) + +Train: 4 [ 0/312 ( 0%)] Loss: 6.29 (6.29) Time: 1.858s, 551.01/s (1.858s, 551.01/s) LR: 3.200e-01 Data: 1.484 (1.484) +Train: 4 [ 50/312 ( 16%)] Loss: 6.27 (6.30) Time: 0.416s, 2462.13/s (0.440s, 2329.00/s) LR: 3.200e-01 Data: 0.032 (0.056) +Train: 4 [ 100/312 ( 32%)] Loss: 6.23 (6.28) Time: 0.415s, 2467.43/s (0.427s, 2395.81/s) LR: 3.200e-01 Data: 0.027 (0.042) +Train: 4 [ 150/312 ( 48%)] Loss: 6.21 (6.26) Time: 0.416s, 2462.90/s (0.424s, 2417.18/s) LR: 3.200e-01 Data: 0.028 (0.037) +Train: 4 [ 200/312 ( 64%)] Loss: 6.18 (6.25) Time: 0.410s, 2500.49/s (0.421s, 2430.87/s) LR: 3.200e-01 Data: 0.027 (0.035) +Train: 4 [ 250/312 ( 80%)] Loss: 6.09 (6.23) Time: 0.409s, 2506.51/s (0.419s, 2443.88/s) LR: 3.200e-01 Data: 0.028 (0.034) +Train: 4 [ 300/312 ( 96%)] Loss: 6.16 (6.21) Time: 0.409s, 2500.68/s (0.417s, 2454.32/s) LR: 3.200e-01 Data: 0.028 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.413 (1.413) Loss: 5.680 ( 5.680) Acc@1: 5.371 ( 5.371) Acc@5: 14.258 ( 14.258) +Test: [ 48/48] Time: 0.091 (0.318) Loss: 5.528 ( 5.608) Acc@1: 4.953 ( 5.764) Acc@5: 17.807 ( 15.870) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-4.pth.tar', 5.76400000213623) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-3.pth.tar', 4.723999999694824) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-2.pth.tar', 2.331999997177124) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-1.pth.tar', 1.2099999978637694) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-0.pth.tar', 0.0879999999666214) + +Train: 5 [ 0/312 ( 0%)] Loss: 6.08 (6.08) Time: 1.555s, 658.59/s (1.555s, 658.59/s) LR: 3.989e-01 Data: 1.181 (1.181) +Train: 5 [ 50/312 ( 16%)] Loss: 5.97 (6.09) Time: 0.414s, 2475.95/s (0.434s, 2359.19/s) LR: 3.989e-01 Data: 0.026 (0.050) +Train: 5 [ 100/312 ( 32%)] Loss: 5.95 (6.07) Time: 0.415s, 2468.27/s (0.424s, 2412.66/s) LR: 3.989e-01 Data: 0.028 (0.039) +Train: 5 [ 150/312 ( 48%)] Loss: 5.94 (6.05) Time: 0.409s, 2502.53/s (0.420s, 2438.08/s) LR: 3.989e-01 Data: 0.029 (0.035) +Train: 5 [ 200/312 ( 64%)] Loss: 5.94 (6.03) Time: 0.413s, 2482.03/s (0.418s, 2451.65/s) LR: 3.989e-01 Data: 0.029 (0.033) +Train: 5 [ 250/312 ( 80%)] Loss: 5.89 (6.01) Time: 0.414s, 2474.83/s (0.417s, 2458.04/s) LR: 3.989e-01 Data: 0.027 (0.032) +Train: 5 [ 300/312 ( 96%)] Loss: 5.95 (6.00) Time: 0.412s, 2484.91/s (0.416s, 2459.84/s) LR: 3.989e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.433 (1.433) Loss: 4.997 ( 4.997) Acc@1: 10.449 ( 10.449) Acc@5: 25.488 ( 25.488) +Test: [ 48/48] Time: 0.090 (0.319) Loss: 4.894 ( 4.967) Acc@1: 11.439 ( 10.860) Acc@5: 28.774 ( 26.684) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-5.pth.tar', 10.860000007629395) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-4.pth.tar', 5.76400000213623) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-3.pth.tar', 4.723999999694824) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-2.pth.tar', 2.331999997177124) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-1.pth.tar', 1.2099999978637694) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-0.pth.tar', 0.0879999999666214) + +Train: 6 [ 0/312 ( 0%)] Loss: 5.85 (5.85) Time: 1.792s, 571.28/s (1.792s, 571.28/s) LR: 3.984e-01 Data: 1.369 (1.369) +Train: 6 [ 50/312 ( 16%)] Loss: 5.82 (5.85) Time: 0.412s, 2486.59/s (0.437s, 2340.98/s) LR: 3.984e-01 Data: 0.030 (0.054) +Train: 6 [ 100/312 ( 32%)] Loss: 5.75 (5.83) Time: 0.414s, 2474.43/s (0.426s, 2406.35/s) LR: 3.984e-01 Data: 0.027 (0.041) +Train: 6 [ 150/312 ( 48%)] Loss: 5.76 (5.82) Time: 0.410s, 2497.24/s (0.421s, 2429.86/s) LR: 3.984e-01 Data: 0.026 (0.036) +Train: 6 [ 200/312 ( 64%)] Loss: 5.85 (5.80) Time: 0.415s, 2468.75/s (0.419s, 2441.69/s) LR: 3.984e-01 Data: 0.027 (0.034) +Train: 6 [ 250/312 ( 80%)] Loss: 5.73 (5.79) Time: 0.418s, 2450.04/s (0.418s, 2447.00/s) LR: 3.984e-01 Data: 0.027 (0.033) +Train: 6 [ 300/312 ( 96%)] Loss: 5.70 (5.78) Time: 0.414s, 2472.19/s (0.418s, 2450.68/s) LR: 3.984e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.440 (1.440) Loss: 4.962 ( 4.962) Acc@1: 10.156 ( 10.156) Acc@5: 25.684 ( 25.684) +Test: [ 48/48] Time: 0.091 (0.321) Loss: 4.890 ( 4.991) Acc@1: 10.495 ( 10.894) Acc@5: 27.476 ( 26.240) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-6.pth.tar', 10.894000001831055) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-5.pth.tar', 10.860000007629395) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-4.pth.tar', 5.76400000213623) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-3.pth.tar', 4.723999999694824) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-2.pth.tar', 2.331999997177124) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-1.pth.tar', 1.2099999978637694) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-0.pth.tar', 0.0879999999666214) + +Train: 7 [ 0/312 ( 0%)] Loss: 5.69 (5.69) Time: 1.801s, 568.48/s (1.801s, 568.48/s) LR: 3.979e-01 Data: 1.253 (1.253) +Train: 7 [ 50/312 ( 16%)] Loss: 5.65 (5.64) Time: 0.411s, 2489.95/s (0.441s, 2321.38/s) LR: 3.979e-01 Data: 0.028 (0.051) +Train: 7 [ 100/312 ( 32%)] Loss: 5.61 (5.64) Time: 0.415s, 2470.09/s (0.428s, 2394.27/s) LR: 3.979e-01 Data: 0.024 (0.040) +Train: 7 [ 150/312 ( 48%)] Loss: 5.73 (5.62) Time: 0.414s, 2475.78/s (0.423s, 2420.08/s) LR: 3.979e-01 Data: 0.028 (0.036) +Train: 7 [ 200/312 ( 64%)] Loss: 5.65 (5.61) Time: 0.415s, 2465.10/s (0.421s, 2434.38/s) LR: 3.979e-01 Data: 0.028 (0.033) +Train: 7 [ 250/312 ( 80%)] Loss: 5.56 (5.60) Time: 0.412s, 2483.38/s (0.419s, 2443.36/s) LR: 3.979e-01 Data: 0.027 (0.032) +Train: 7 [ 300/312 ( 96%)] Loss: 5.52 (5.59) Time: 0.417s, 2457.97/s (0.418s, 2449.54/s) LR: 3.979e-01 Data: 0.033 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.442 (1.442) Loss: 4.422 ( 4.422) Acc@1: 16.113 ( 16.113) Acc@5: 37.305 ( 37.305) +Test: [ 48/48] Time: 0.092 (0.321) Loss: 4.218 ( 4.399) Acc@1: 19.340 ( 16.618) Acc@5: 42.099 ( 37.170) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-7.pth.tar', 16.617999997558595) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-6.pth.tar', 10.894000001831055) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-5.pth.tar', 10.860000007629395) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-4.pth.tar', 5.76400000213623) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-3.pth.tar', 4.723999999694824) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-2.pth.tar', 2.331999997177124) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-1.pth.tar', 1.2099999978637694) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-0.pth.tar', 0.0879999999666214) + +Train: 8 [ 0/312 ( 0%)] Loss: 5.47 (5.47) Time: 1.544s, 663.10/s (1.544s, 663.10/s) LR: 3.972e-01 Data: 1.167 (1.167) +Train: 8 [ 50/312 ( 16%)] Loss: 5.49 (5.45) Time: 0.413s, 2479.61/s (0.435s, 2352.27/s) LR: 3.972e-01 Data: 0.029 (0.050) +Train: 8 [ 100/312 ( 32%)] Loss: 5.47 (5.46) Time: 0.412s, 2485.08/s (0.424s, 2416.66/s) LR: 3.972e-01 Data: 0.027 (0.039) +Train: 8 [ 150/312 ( 48%)] Loss: 5.43 (5.45) Time: 0.411s, 2492.49/s (0.420s, 2437.93/s) LR: 3.972e-01 Data: 0.028 (0.035) +Train: 8 [ 200/312 ( 64%)] Loss: 5.50 (5.45) Time: 0.414s, 2475.92/s (0.418s, 2447.84/s) LR: 3.972e-01 Data: 0.027 (0.034) +Train: 8 [ 250/312 ( 80%)] Loss: 5.37 (5.44) Time: 0.413s, 2480.33/s (0.417s, 2453.79/s) LR: 3.972e-01 Data: 0.029 (0.032) +Train: 8 [ 300/312 ( 96%)] Loss: 5.50 (5.44) Time: 0.412s, 2486.87/s (0.417s, 2457.18/s) LR: 3.972e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.432 (1.432) Loss: 4.332 ( 4.332) Acc@1: 18.262 ( 18.262) Acc@5: 38.672 ( 38.672) +Test: [ 48/48] Time: 0.091 (0.322) Loss: 4.163 ( 4.297) Acc@1: 20.047 ( 18.760) Acc@5: 43.868 ( 40.012) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-8.pth.tar', 18.759999981689454) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-7.pth.tar', 16.617999997558595) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-6.pth.tar', 10.894000001831055) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-5.pth.tar', 10.860000007629395) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-4.pth.tar', 5.76400000213623) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-3.pth.tar', 4.723999999694824) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-2.pth.tar', 2.331999997177124) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-1.pth.tar', 1.2099999978637694) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-0.pth.tar', 0.0879999999666214) + +Train: 9 [ 0/312 ( 0%)] Loss: 5.21 (5.21) Time: 1.709s, 599.11/s (1.709s, 599.11/s) LR: 3.965e-01 Data: 1.334 (1.334) +Train: 9 [ 50/312 ( 16%)] Loss: 5.21 (5.33) Time: 0.413s, 2480.42/s (0.443s, 2311.78/s) LR: 3.965e-01 Data: 0.025 (0.053) +Train: 9 [ 100/312 ( 32%)] Loss: 5.40 (5.32) Time: 0.413s, 2481.57/s (0.427s, 2395.70/s) LR: 3.965e-01 Data: 0.028 (0.040) +Train: 9 [ 150/312 ( 48%)] Loss: 5.37 (5.32) Time: 0.414s, 2471.20/s (0.422s, 2424.77/s) LR: 3.965e-01 Data: 0.032 (0.036) +Train: 9 [ 200/312 ( 64%)] Loss: 5.31 (5.32) Time: 0.412s, 2488.27/s (0.420s, 2439.40/s) LR: 3.965e-01 Data: 0.027 (0.034) +Train: 9 [ 250/312 ( 80%)] Loss: 5.27 (5.31) Time: 0.409s, 2505.31/s (0.418s, 2449.20/s) LR: 3.965e-01 Data: 0.028 (0.033) +Train: 9 [ 300/312 ( 96%)] Loss: 5.19 (5.30) Time: 0.406s, 2521.01/s (0.416s, 2459.20/s) LR: 3.965e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.424 (1.424) Loss: 4.056 ( 4.056) Acc@1: 22.656 ( 22.656) Acc@5: 44.922 ( 44.922) +Test: [ 48/48] Time: 0.090 (0.320) Loss: 3.951 ( 4.083) Acc@1: 25.472 ( 22.084) Acc@5: 48.939 ( 45.206) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-9.pth.tar', 22.08400001098633) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-8.pth.tar', 18.759999981689454) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-7.pth.tar', 16.617999997558595) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-6.pth.tar', 10.894000001831055) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-5.pth.tar', 10.860000007629395) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-4.pth.tar', 5.76400000213623) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-3.pth.tar', 4.723999999694824) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-2.pth.tar', 2.331999997177124) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-1.pth.tar', 1.2099999978637694) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-0.pth.tar', 0.0879999999666214) + +Train: 10 [ 0/312 ( 0%)] Loss: 5.25 (5.25) Time: 1.581s, 647.77/s (1.581s, 647.77/s) LR: 3.956e-01 Data: 1.047 (1.047) +Train: 10 [ 50/312 ( 16%)] Loss: 5.13 (5.20) Time: 0.407s, 2513.17/s (0.430s, 2383.41/s) LR: 3.956e-01 Data: 0.028 (0.047) +Train: 10 [ 100/312 ( 32%)] Loss: 5.14 (5.20) Time: 0.412s, 2486.61/s (0.420s, 2437.13/s) LR: 3.956e-01 Data: 0.030 (0.037) +Train: 10 [ 150/312 ( 48%)] Loss: 5.16 (5.20) Time: 0.414s, 2473.33/s (0.418s, 2451.70/s) LR: 3.956e-01 Data: 0.028 (0.034) +Train: 10 [ 200/312 ( 64%)] Loss: 5.19 (5.20) Time: 0.409s, 2501.62/s (0.415s, 2464.80/s) LR: 3.956e-01 Data: 0.028 (0.033) +Train: 10 [ 250/312 ( 80%)] Loss: 5.18 (5.20) Time: 0.414s, 2472.33/s (0.414s, 2473.03/s) LR: 3.956e-01 Data: 0.028 (0.032) +Train: 10 [ 300/312 ( 96%)] Loss: 5.20 (5.19) Time: 0.412s, 2484.39/s (0.413s, 2477.47/s) LR: 3.956e-01 Data: 0.026 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.427 (1.427) Loss: 3.989 ( 3.989) Acc@1: 21.484 ( 21.484) Acc@5: 44.922 ( 44.922) +Test: [ 48/48] Time: 0.091 (0.320) Loss: 3.786 ( 3.958) Acc@1: 23.939 ( 22.954) Acc@5: 50.354 ( 46.528) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-10.pth.tar', 22.953999991455078) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-9.pth.tar', 22.08400001098633) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-8.pth.tar', 18.759999981689454) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-7.pth.tar', 16.617999997558595) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-6.pth.tar', 10.894000001831055) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-5.pth.tar', 10.860000007629395) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-4.pth.tar', 5.76400000213623) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-3.pth.tar', 4.723999999694824) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-2.pth.tar', 2.331999997177124) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-1.pth.tar', 1.2099999978637694) + +Train: 11 [ 0/312 ( 0%)] Loss: 5.10 (5.10) Time: 1.816s, 563.86/s (1.816s, 563.86/s) LR: 3.947e-01 Data: 1.439 (1.439) +Train: 11 [ 50/312 ( 16%)] Loss: 5.20 (5.09) Time: 0.409s, 2506.58/s (0.439s, 2330.27/s) LR: 3.947e-01 Data: 0.027 (0.055) +Train: 11 [ 100/312 ( 32%)] Loss: 5.03 (5.10) Time: 0.408s, 2510.86/s (0.424s, 2412.54/s) LR: 3.947e-01 Data: 0.028 (0.041) +Train: 11 [ 150/312 ( 48%)] Loss: 5.10 (5.09) Time: 0.409s, 2501.06/s (0.419s, 2441.17/s) LR: 3.947e-01 Data: 0.028 (0.037) +Train: 11 [ 200/312 ( 64%)] Loss: 5.03 (5.09) Time: 0.414s, 2471.71/s (0.418s, 2452.01/s) LR: 3.947e-01 Data: 0.026 (0.034) +Train: 11 [ 250/312 ( 80%)] Loss: 5.12 (5.09) Time: 0.413s, 2477.71/s (0.417s, 2456.75/s) LR: 3.947e-01 Data: 0.028 (0.033) +Train: 11 [ 300/312 ( 96%)] Loss: 5.02 (5.08) Time: 0.411s, 2488.99/s (0.416s, 2460.66/s) LR: 3.947e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.411 (1.411) Loss: 3.796 ( 3.796) Acc@1: 26.660 ( 26.660) Acc@5: 51.074 ( 51.074) +Test: [ 48/48] Time: 0.090 (0.320) Loss: 3.564 ( 3.777) Acc@1: 28.774 ( 25.922) Acc@5: 56.840 ( 50.240) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-11.pth.tar', 25.92200002319336) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-10.pth.tar', 22.953999991455078) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-9.pth.tar', 22.08400001098633) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-8.pth.tar', 18.759999981689454) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-7.pth.tar', 16.617999997558595) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-6.pth.tar', 10.894000001831055) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-5.pth.tar', 10.860000007629395) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-4.pth.tar', 5.76400000213623) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-3.pth.tar', 4.723999999694824) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-2.pth.tar', 2.331999997177124) + +Train: 12 [ 0/312 ( 0%)] Loss: 4.95 (4.95) Time: 1.668s, 613.74/s (1.668s, 613.74/s) LR: 3.937e-01 Data: 1.294 (1.294) +Train: 12 [ 50/312 ( 16%)] Loss: 5.08 (5.00) Time: 0.410s, 2497.22/s (0.434s, 2361.64/s) LR: 3.937e-01 Data: 0.027 (0.052) +Train: 12 [ 100/312 ( 32%)] Loss: 5.02 (5.00) Time: 0.414s, 2474.02/s (0.422s, 2426.47/s) LR: 3.937e-01 Data: 0.028 (0.040) +Train: 12 [ 150/312 ( 48%)] Loss: 5.12 (4.99) Time: 0.411s, 2491.63/s (0.419s, 2446.15/s) LR: 3.937e-01 Data: 0.027 (0.036) +Train: 12 [ 200/312 ( 64%)] Loss: 4.97 (4.99) Time: 0.412s, 2484.86/s (0.417s, 2454.76/s) LR: 3.937e-01 Data: 0.026 (0.034) +Train: 12 [ 250/312 ( 80%)] Loss: 4.99 (4.99) Time: 0.410s, 2496.03/s (0.416s, 2460.57/s) LR: 3.937e-01 Data: 0.027 (0.033) +Train: 12 [ 300/312 ( 96%)] Loss: 4.86 (4.99) Time: 0.413s, 2479.00/s (0.416s, 2464.14/s) LR: 3.937e-01 Data: 0.029 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.425 (1.425) Loss: 3.660 ( 3.660) Acc@1: 27.832 ( 27.832) Acc@5: 52.148 ( 52.148) +Test: [ 48/48] Time: 0.090 (0.321) Loss: 3.500 ( 3.622) Acc@1: 30.071 ( 28.166) Acc@5: 56.958 ( 53.358) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-12.pth.tar', 28.16600000488281) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-11.pth.tar', 25.92200002319336) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-10.pth.tar', 22.953999991455078) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-9.pth.tar', 22.08400001098633) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-8.pth.tar', 18.759999981689454) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-7.pth.tar', 16.617999997558595) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-6.pth.tar', 10.894000001831055) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-5.pth.tar', 10.860000007629395) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-4.pth.tar', 5.76400000213623) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-3.pth.tar', 4.723999999694824) + +Train: 13 [ 0/312 ( 0%)] Loss: 4.84 (4.84) Time: 2.338s, 437.89/s (2.338s, 437.89/s) LR: 3.926e-01 Data: 1.239 (1.239) +Train: 13 [ 50/312 ( 16%)] Loss: 4.90 (4.91) Time: 0.409s, 2501.27/s (0.447s, 2291.61/s) LR: 3.926e-01 Data: 0.027 (0.052) +Train: 13 [ 100/312 ( 32%)] Loss: 4.84 (4.91) Time: 0.410s, 2494.79/s (0.430s, 2383.59/s) LR: 3.926e-01 Data: 0.027 (0.040) +Train: 13 [ 150/312 ( 48%)] Loss: 4.94 (4.91) Time: 0.411s, 2494.07/s (0.424s, 2416.87/s) LR: 3.926e-01 Data: 0.028 (0.036) +Train: 13 [ 200/312 ( 64%)] Loss: 4.94 (4.92) Time: 0.409s, 2506.43/s (0.420s, 2436.37/s) LR: 3.926e-01 Data: 0.027 (0.034) +Train: 13 [ 250/312 ( 80%)] Loss: 4.97 (4.92) Time: 0.409s, 2501.89/s (0.419s, 2446.58/s) LR: 3.926e-01 Data: 0.028 (0.033) +Train: 13 [ 300/312 ( 96%)] Loss: 4.92 (4.92) Time: 0.408s, 2511.07/s (0.417s, 2453.95/s) LR: 3.926e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.395 (1.395) Loss: 3.656 ( 3.656) Acc@1: 27.637 ( 27.637) Acc@5: 52.246 ( 52.246) +Test: [ 48/48] Time: 0.091 (0.318) Loss: 3.443 ( 3.638) Acc@1: 31.722 ( 28.358) Acc@5: 57.783 ( 53.424) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-13.pth.tar', 28.358000010986327) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-12.pth.tar', 28.16600000488281) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-11.pth.tar', 25.92200002319336) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-10.pth.tar', 22.953999991455078) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-9.pth.tar', 22.08400001098633) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-8.pth.tar', 18.759999981689454) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-7.pth.tar', 16.617999997558595) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-6.pth.tar', 10.894000001831055) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-5.pth.tar', 10.860000007629395) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-4.pth.tar', 5.76400000213623) + +Train: 14 [ 0/312 ( 0%)] Loss: 4.89 (4.89) Time: 1.711s, 598.56/s (1.711s, 598.56/s) LR: 3.915e-01 Data: 1.337 (1.337) +Train: 14 [ 50/312 ( 16%)] Loss: 4.90 (4.81) Time: 0.411s, 2490.27/s (0.437s, 2345.12/s) LR: 3.915e-01 Data: 0.026 (0.053) +Train: 14 [ 100/312 ( 32%)] Loss: 4.84 (4.83) Time: 0.409s, 2501.85/s (0.424s, 2413.39/s) LR: 3.915e-01 Data: 0.026 (0.040) +Train: 14 [ 150/312 ( 48%)] Loss: 4.83 (4.83) Time: 0.410s, 2499.70/s (0.420s, 2440.50/s) LR: 3.915e-01 Data: 0.028 (0.036) +Train: 14 [ 200/312 ( 64%)] Loss: 4.86 (4.84) Time: 0.410s, 2496.05/s (0.417s, 2452.84/s) LR: 3.915e-01 Data: 0.025 (0.034) +Train: 14 [ 250/312 ( 80%)] Loss: 4.94 (4.85) Time: 0.416s, 2462.81/s (0.416s, 2460.00/s) LR: 3.915e-01 Data: 0.026 (0.033) +Train: 14 [ 300/312 ( 96%)] Loss: 4.80 (4.85) Time: 0.411s, 2494.42/s (0.415s, 2464.90/s) LR: 3.915e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.447 (1.447) Loss: 3.467 ( 3.467) Acc@1: 31.934 ( 31.934) Acc@5: 56.738 ( 56.738) +Test: [ 48/48] Time: 0.091 (0.319) Loss: 3.319 ( 3.491) Acc@1: 33.962 ( 30.984) Acc@5: 61.439 ( 56.644) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-14.pth.tar', 30.984000014648437) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-13.pth.tar', 28.358000010986327) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-12.pth.tar', 28.16600000488281) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-11.pth.tar', 25.92200002319336) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-10.pth.tar', 22.953999991455078) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-9.pth.tar', 22.08400001098633) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-8.pth.tar', 18.759999981689454) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-7.pth.tar', 16.617999997558595) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-6.pth.tar', 10.894000001831055) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-5.pth.tar', 10.860000007629395) + +Train: 15 [ 0/312 ( 0%)] Loss: 4.74 (4.74) Time: 1.483s, 690.44/s (1.483s, 690.44/s) LR: 3.902e-01 Data: 1.109 (1.109) +Train: 15 [ 50/312 ( 16%)] Loss: 4.85 (4.77) Time: 0.411s, 2491.67/s (0.432s, 2368.88/s) LR: 3.902e-01 Data: 0.027 (0.049) +Train: 15 [ 100/312 ( 32%)] Loss: 4.80 (4.78) Time: 0.410s, 2499.80/s (0.422s, 2425.30/s) LR: 3.902e-01 Data: 0.027 (0.039) +Train: 15 [ 150/312 ( 48%)] Loss: 4.78 (4.78) Time: 0.410s, 2500.39/s (0.419s, 2445.99/s) LR: 3.902e-01 Data: 0.027 (0.035) +Train: 15 [ 200/312 ( 64%)] Loss: 4.61 (4.77) Time: 0.409s, 2505.59/s (0.417s, 2457.58/s) LR: 3.902e-01 Data: 0.027 (0.033) +Train: 15 [ 250/312 ( 80%)] Loss: 4.87 (4.78) Time: 0.411s, 2488.76/s (0.416s, 2464.18/s) LR: 3.902e-01 Data: 0.027 (0.032) +Train: 15 [ 300/312 ( 96%)] Loss: 4.78 (4.78) Time: 0.415s, 2468.54/s (0.415s, 2468.27/s) LR: 3.902e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.412 (1.412) Loss: 3.346 ( 3.346) Acc@1: 33.008 ( 33.008) Acc@5: 57.715 ( 57.715) +Test: [ 48/48] Time: 0.091 (0.321) Loss: 3.167 ( 3.406) Acc@1: 36.557 ( 31.740) Acc@5: 63.090 ( 57.648) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-15.pth.tar', 31.739999978027345) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-14.pth.tar', 30.984000014648437) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-13.pth.tar', 28.358000010986327) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-12.pth.tar', 28.16600000488281) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-11.pth.tar', 25.92200002319336) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-10.pth.tar', 22.953999991455078) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-9.pth.tar', 22.08400001098633) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-8.pth.tar', 18.759999981689454) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-7.pth.tar', 16.617999997558595) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-6.pth.tar', 10.894000001831055) + +Train: 16 [ 0/312 ( 0%)] Loss: 4.67 (4.67) Time: 1.670s, 613.14/s (1.670s, 613.14/s) LR: 3.889e-01 Data: 1.295 (1.295) +Train: 16 [ 50/312 ( 16%)] Loss: 4.75 (4.70) Time: 0.410s, 2498.53/s (0.435s, 2352.08/s) LR: 3.889e-01 Data: 0.027 (0.052) +Train: 16 [ 100/312 ( 32%)] Loss: 4.87 (4.70) Time: 0.413s, 2479.88/s (0.423s, 2419.53/s) LR: 3.889e-01 Data: 0.030 (0.040) +Train: 16 [ 150/312 ( 48%)] Loss: 4.86 (4.71) Time: 0.412s, 2482.82/s (0.419s, 2441.45/s) LR: 3.889e-01 Data: 0.029 (0.036) +Train: 16 [ 200/312 ( 64%)] Loss: 4.79 (4.71) Time: 0.412s, 2482.70/s (0.417s, 2453.19/s) LR: 3.889e-01 Data: 0.028 (0.034) +Train: 16 [ 250/312 ( 80%)] Loss: 4.75 (4.71) Time: 0.412s, 2486.28/s (0.416s, 2460.36/s) LR: 3.889e-01 Data: 0.027 (0.033) +Train: 16 [ 300/312 ( 96%)] Loss: 4.88 (4.72) Time: 0.414s, 2474.63/s (0.415s, 2465.43/s) LR: 3.889e-01 Data: 0.032 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.695 (1.695) Loss: 3.259 ( 3.259) Acc@1: 34.375 ( 34.375) Acc@5: 60.449 ( 60.449) +Test: [ 48/48] Time: 0.091 (0.320) Loss: 3.095 ( 3.265) Acc@1: 35.495 ( 34.784) Acc@5: 62.972 ( 60.850) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-16.pth.tar', 34.78400003417969) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-15.pth.tar', 31.739999978027345) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-14.pth.tar', 30.984000014648437) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-13.pth.tar', 28.358000010986327) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-12.pth.tar', 28.16600000488281) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-11.pth.tar', 25.92200002319336) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-10.pth.tar', 22.953999991455078) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-9.pth.tar', 22.08400001098633) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-8.pth.tar', 18.759999981689454) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-7.pth.tar', 16.617999997558595) + +Train: 17 [ 0/312 ( 0%)] Loss: 4.62 (4.62) Time: 1.512s, 677.21/s (1.512s, 677.21/s) LR: 3.875e-01 Data: 1.091 (1.091) +Train: 17 [ 50/312 ( 16%)] Loss: 4.68 (4.65) Time: 0.414s, 2472.79/s (0.432s, 2370.12/s) LR: 3.875e-01 Data: 0.028 (0.048) +Train: 17 [ 100/312 ( 32%)] Loss: 4.65 (4.65) Time: 0.409s, 2500.93/s (0.422s, 2427.02/s) LR: 3.875e-01 Data: 0.027 (0.039) +Train: 17 [ 150/312 ( 48%)] Loss: 4.54 (4.65) Time: 0.409s, 2502.67/s (0.418s, 2447.69/s) LR: 3.875e-01 Data: 0.026 (0.035) +Train: 17 [ 200/312 ( 64%)] Loss: 4.66 (4.66) Time: 0.409s, 2502.94/s (0.417s, 2457.51/s) LR: 3.875e-01 Data: 0.026 (0.033) +Train: 17 [ 250/312 ( 80%)] Loss: 4.65 (4.66) Time: 0.409s, 2503.51/s (0.415s, 2465.78/s) LR: 3.875e-01 Data: 0.027 (0.032) +Train: 17 [ 300/312 ( 96%)] Loss: 4.62 (4.66) Time: 0.408s, 2508.10/s (0.414s, 2471.19/s) LR: 3.875e-01 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.420 (1.420) Loss: 3.389 ( 3.389) Acc@1: 34.766 ( 34.766) Acc@5: 60.254 ( 60.254) +Test: [ 48/48] Time: 0.092 (0.322) Loss: 3.221 ( 3.407) Acc@1: 36.321 ( 33.772) Acc@5: 63.561 ( 59.466) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-16.pth.tar', 34.78400003417969) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-17.pth.tar', 33.77200000488281) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-15.pth.tar', 31.739999978027345) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-14.pth.tar', 30.984000014648437) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-13.pth.tar', 28.358000010986327) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-12.pth.tar', 28.16600000488281) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-11.pth.tar', 25.92200002319336) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-10.pth.tar', 22.953999991455078) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-9.pth.tar', 22.08400001098633) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-8.pth.tar', 18.759999981689454) + +Train: 18 [ 0/312 ( 0%)] Loss: 4.51 (4.51) Time: 1.591s, 643.61/s (1.591s, 643.61/s) LR: 3.860e-01 Data: 1.216 (1.216) +Train: 18 [ 50/312 ( 16%)] Loss: 4.64 (4.59) Time: 0.408s, 2508.36/s (0.433s, 2363.25/s) LR: 3.860e-01 Data: 0.026 (0.050) +Train: 18 [ 100/312 ( 32%)] Loss: 4.51 (4.60) Time: 0.411s, 2491.98/s (0.422s, 2425.00/s) LR: 3.860e-01 Data: 0.028 (0.039) +Train: 18 [ 150/312 ( 48%)] Loss: 4.63 (4.60) Time: 0.411s, 2491.94/s (0.419s, 2445.43/s) LR: 3.860e-01 Data: 0.028 (0.036) +Train: 18 [ 200/312 ( 64%)] Loss: 4.58 (4.60) Time: 0.411s, 2488.72/s (0.417s, 2456.33/s) LR: 3.860e-01 Data: 0.028 (0.034) +Train: 18 [ 250/312 ( 80%)] Loss: 4.54 (4.61) Time: 0.409s, 2500.84/s (0.416s, 2464.02/s) LR: 3.860e-01 Data: 0.027 (0.032) +Train: 18 [ 300/312 ( 96%)] Loss: 4.66 (4.61) Time: 0.410s, 2494.88/s (0.415s, 2470.23/s) LR: 3.860e-01 Data: 0.026 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.444 (1.444) Loss: 3.298 ( 3.298) Acc@1: 33.398 ( 33.398) Acc@5: 59.570 ( 59.570) +Test: [ 48/48] Time: 0.090 (0.321) Loss: 3.095 ( 3.278) Acc@1: 37.736 ( 34.292) Acc@5: 63.797 ( 60.662) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-16.pth.tar', 34.78400003417969) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-18.pth.tar', 34.291999973144534) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-17.pth.tar', 33.77200000488281) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-15.pth.tar', 31.739999978027345) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-14.pth.tar', 30.984000014648437) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-13.pth.tar', 28.358000010986327) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-12.pth.tar', 28.16600000488281) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-11.pth.tar', 25.92200002319336) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-10.pth.tar', 22.953999991455078) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-9.pth.tar', 22.08400001098633) + +Train: 19 [ 0/312 ( 0%)] Loss: 4.52 (4.52) Time: 2.163s, 473.45/s (2.163s, 473.45/s) LR: 3.844e-01 Data: 1.788 (1.788) +Train: 19 [ 50/312 ( 16%)] Loss: 4.47 (4.52) Time: 0.409s, 2502.34/s (0.445s, 2301.48/s) LR: 3.844e-01 Data: 0.027 (0.062) +Train: 19 [ 100/312 ( 32%)] Loss: 4.47 (4.53) Time: 0.410s, 2497.16/s (0.428s, 2392.40/s) LR: 3.844e-01 Data: 0.027 (0.045) +Train: 19 [ 150/312 ( 48%)] Loss: 4.50 (4.54) Time: 0.416s, 2464.32/s (0.422s, 2423.72/s) LR: 3.844e-01 Data: 0.028 (0.039) +Train: 19 [ 200/312 ( 64%)] Loss: 4.59 (4.55) Time: 0.409s, 2505.17/s (0.420s, 2440.20/s) LR: 3.844e-01 Data: 0.027 (0.036) +Train: 19 [ 250/312 ( 80%)] Loss: 4.72 (4.55) Time: 0.411s, 2494.23/s (0.418s, 2451.78/s) LR: 3.844e-01 Data: 0.028 (0.035) +Train: 19 [ 300/312 ( 96%)] Loss: 4.60 (4.56) Time: 0.410s, 2494.92/s (0.416s, 2458.82/s) LR: 3.844e-01 Data: 0.028 (0.034) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.418 (1.418) Loss: 3.060 ( 3.060) Acc@1: 37.793 ( 37.793) Acc@5: 63.477 ( 63.477) +Test: [ 48/48] Time: 0.091 (0.320) Loss: 2.837 ( 3.048) Acc@1: 42.217 ( 38.808) Acc@5: 69.575 ( 64.960) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-19.pth.tar', 38.80800004516602) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-16.pth.tar', 34.78400003417969) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-18.pth.tar', 34.291999973144534) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-17.pth.tar', 33.77200000488281) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-15.pth.tar', 31.739999978027345) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-14.pth.tar', 30.984000014648437) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-13.pth.tar', 28.358000010986327) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-12.pth.tar', 28.16600000488281) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-11.pth.tar', 25.92200002319336) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-10.pth.tar', 22.953999991455078) + +Train: 20 [ 0/312 ( 0%)] Loss: 4.54 (4.54) Time: 1.464s, 699.62/s (1.464s, 699.62/s) LR: 3.827e-01 Data: 1.064 (1.064) +Train: 20 [ 50/312 ( 16%)] Loss: 4.42 (4.48) Time: 0.410s, 2498.86/s (0.431s, 2373.44/s) LR: 3.827e-01 Data: 0.029 (0.049) +Train: 20 [ 100/312 ( 32%)] Loss: 4.58 (4.49) Time: 0.413s, 2481.75/s (0.421s, 2432.01/s) LR: 3.827e-01 Data: 0.031 (0.039) +Train: 20 [ 150/312 ( 48%)] Loss: 4.54 (4.49) Time: 0.410s, 2497.19/s (0.418s, 2451.74/s) LR: 3.827e-01 Data: 0.028 (0.035) +Train: 20 [ 200/312 ( 64%)] Loss: 4.54 (4.50) Time: 0.410s, 2494.74/s (0.416s, 2462.13/s) LR: 3.827e-01 Data: 0.028 (0.033) +Train: 20 [ 250/312 ( 80%)] Loss: 4.53 (4.51) Time: 0.412s, 2483.40/s (0.415s, 2468.10/s) LR: 3.827e-01 Data: 0.030 (0.032) +Train: 20 [ 300/312 ( 96%)] Loss: 4.40 (4.51) Time: 0.410s, 2495.53/s (0.414s, 2471.82/s) LR: 3.827e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.406 (1.406) Loss: 3.292 ( 3.292) Acc@1: 35.156 ( 35.156) Acc@5: 60.547 ( 60.547) +Test: [ 48/48] Time: 0.091 (0.321) Loss: 3.070 ( 3.277) Acc@1: 40.684 ( 35.368) Acc@5: 63.679 ( 60.594) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-19.pth.tar', 38.80800004516602) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-20.pth.tar', 35.3679999609375) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-16.pth.tar', 34.78400003417969) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-18.pth.tar', 34.291999973144534) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-17.pth.tar', 33.77200000488281) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-15.pth.tar', 31.739999978027345) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-14.pth.tar', 30.984000014648437) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-13.pth.tar', 28.358000010986327) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-12.pth.tar', 28.16600000488281) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-11.pth.tar', 25.92200002319336) + +Train: 21 [ 0/312 ( 0%)] Loss: 4.37 (4.37) Time: 1.726s, 593.20/s (1.726s, 593.20/s) LR: 3.810e-01 Data: 1.352 (1.352) +Train: 21 [ 50/312 ( 16%)] Loss: 4.49 (4.44) Time: 0.411s, 2490.42/s (0.437s, 2345.69/s) LR: 3.810e-01 Data: 0.028 (0.054) +Train: 21 [ 100/312 ( 32%)] Loss: 4.47 (4.44) Time: 0.411s, 2490.19/s (0.424s, 2415.85/s) LR: 3.810e-01 Data: 0.029 (0.041) +Train: 21 [ 150/312 ( 48%)] Loss: 4.45 (4.46) Time: 0.410s, 2496.51/s (0.420s, 2440.03/s) LR: 3.810e-01 Data: 0.026 (0.037) +Train: 21 [ 200/312 ( 64%)] Loss: 4.47 (4.46) Time: 0.410s, 2495.02/s (0.417s, 2453.06/s) LR: 3.810e-01 Data: 0.027 (0.034) +Train: 21 [ 250/312 ( 80%)] Loss: 4.55 (4.47) Time: 0.412s, 2485.59/s (0.416s, 2460.51/s) LR: 3.810e-01 Data: 0.027 (0.033) +Train: 21 [ 300/312 ( 96%)] Loss: 4.50 (4.47) Time: 0.412s, 2484.73/s (0.415s, 2465.26/s) LR: 3.810e-01 Data: 0.026 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.434 (1.434) Loss: 3.072 ( 3.072) Acc@1: 39.551 ( 39.551) Acc@5: 64.746 ( 64.746) +Test: [ 48/48] Time: 0.090 (0.318) Loss: 2.854 ( 3.091) Acc@1: 43.750 ( 38.280) Acc@5: 69.340 ( 64.412) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-19.pth.tar', 38.80800004516602) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-21.pth.tar', 38.28) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-20.pth.tar', 35.3679999609375) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-16.pth.tar', 34.78400003417969) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-18.pth.tar', 34.291999973144534) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-17.pth.tar', 33.77200000488281) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-15.pth.tar', 31.739999978027345) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-14.pth.tar', 30.984000014648437) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-13.pth.tar', 28.358000010986327) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-12.pth.tar', 28.16600000488281) + +Train: 22 [ 0/312 ( 0%)] Loss: 4.59 (4.59) Time: 1.737s, 589.64/s (1.737s, 589.64/s) LR: 3.791e-01 Data: 1.108 (1.108) +Train: 22 [ 50/312 ( 16%)] Loss: 4.37 (4.40) Time: 0.412s, 2484.14/s (0.438s, 2335.96/s) LR: 3.791e-01 Data: 0.029 (0.050) +Train: 22 [ 100/312 ( 32%)] Loss: 4.34 (4.41) Time: 0.412s, 2483.45/s (0.426s, 2406.12/s) LR: 3.791e-01 Data: 0.027 (0.039) +Train: 22 [ 150/312 ( 48%)] Loss: 4.38 (4.41) Time: 0.412s, 2487.71/s (0.421s, 2431.02/s) LR: 3.791e-01 Data: 0.027 (0.035) +Train: 22 [ 200/312 ( 64%)] Loss: 4.41 (4.42) Time: 0.409s, 2502.44/s (0.419s, 2443.52/s) LR: 3.791e-01 Data: 0.028 (0.033) +Train: 22 [ 250/312 ( 80%)] Loss: 4.57 (4.42) Time: 0.411s, 2494.24/s (0.418s, 2451.05/s) LR: 3.791e-01 Data: 0.027 (0.032) +Train: 22 [ 300/312 ( 96%)] Loss: 4.42 (4.43) Time: 0.413s, 2480.11/s (0.417s, 2456.55/s) LR: 3.791e-01 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.445 (1.445) Loss: 2.926 ( 2.926) Acc@1: 40.234 ( 40.234) Acc@5: 66.504 ( 66.504) +Test: [ 48/48] Time: 0.091 (0.322) Loss: 2.764 ( 2.979) Acc@1: 43.396 ( 39.758) Acc@5: 69.811 ( 65.878) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-22.pth.tar', 39.7580000402832) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-19.pth.tar', 38.80800004516602) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-21.pth.tar', 38.28) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-20.pth.tar', 35.3679999609375) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-16.pth.tar', 34.78400003417969) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-18.pth.tar', 34.291999973144534) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-17.pth.tar', 33.77200000488281) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-15.pth.tar', 31.739999978027345) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-14.pth.tar', 30.984000014648437) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-13.pth.tar', 28.358000010986327) + +Train: 23 [ 0/312 ( 0%)] Loss: 4.27 (4.27) Time: 1.792s, 571.58/s (1.792s, 571.58/s) LR: 3.772e-01 Data: 1.115 (1.115) +Train: 23 [ 50/312 ( 16%)] Loss: 4.38 (4.36) Time: 0.413s, 2481.03/s (0.439s, 2333.47/s) LR: 3.772e-01 Data: 0.029 (0.049) +Train: 23 [ 100/312 ( 32%)] Loss: 4.34 (4.37) Time: 0.410s, 2499.95/s (0.425s, 2406.94/s) LR: 3.772e-01 Data: 0.027 (0.038) +Train: 23 [ 150/312 ( 48%)] Loss: 4.42 (4.38) Time: 0.412s, 2486.95/s (0.421s, 2430.62/s) LR: 3.772e-01 Data: 0.028 (0.035) +Train: 23 [ 200/312 ( 64%)] Loss: 4.40 (4.39) Time: 0.409s, 2504.71/s (0.419s, 2446.30/s) LR: 3.772e-01 Data: 0.027 (0.033) +Train: 23 [ 250/312 ( 80%)] Loss: 4.31 (4.39) Time: 0.411s, 2490.20/s (0.417s, 2455.52/s) LR: 3.772e-01 Data: 0.027 (0.032) +Train: 23 [ 300/312 ( 96%)] Loss: 4.47 (4.39) Time: 0.412s, 2485.10/s (0.416s, 2460.30/s) LR: 3.772e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.443 (1.443) Loss: 2.922 ( 2.922) Acc@1: 40.332 ( 40.332) Acc@5: 66.797 ( 66.797) +Test: [ 48/48] Time: 0.091 (0.319) Loss: 2.795 ( 2.950) Acc@1: 43.632 ( 40.762) Acc@5: 70.401 ( 67.086) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-23.pth.tar', 40.76200001342774) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-22.pth.tar', 39.7580000402832) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-19.pth.tar', 38.80800004516602) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-21.pth.tar', 38.28) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-20.pth.tar', 35.3679999609375) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-16.pth.tar', 34.78400003417969) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-18.pth.tar', 34.291999973144534) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-17.pth.tar', 33.77200000488281) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-15.pth.tar', 31.739999978027345) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-14.pth.tar', 30.984000014648437) + +Train: 24 [ 0/312 ( 0%)] Loss: 4.23 (4.23) Time: 1.560s, 656.50/s (1.560s, 656.50/s) LR: 3.753e-01 Data: 1.097 (1.097) +Train: 24 [ 50/312 ( 16%)] Loss: 4.16 (4.32) Time: 0.417s, 2457.99/s (0.435s, 2356.59/s) LR: 3.753e-01 Data: 0.028 (0.049) +Train: 24 [ 100/312 ( 32%)] Loss: 4.35 (4.33) Time: 0.413s, 2482.13/s (0.424s, 2417.80/s) LR: 3.753e-01 Data: 0.029 (0.039) +Train: 24 [ 150/312 ( 48%)] Loss: 4.38 (4.34) Time: 0.417s, 2457.55/s (0.420s, 2438.62/s) LR: 3.753e-01 Data: 0.028 (0.035) +Train: 24 [ 200/312 ( 64%)] Loss: 4.32 (4.34) Time: 0.410s, 2498.02/s (0.418s, 2448.95/s) LR: 3.753e-01 Data: 0.026 (0.033) +Train: 24 [ 250/312 ( 80%)] Loss: 4.35 (4.35) Time: 0.416s, 2462.11/s (0.417s, 2455.52/s) LR: 3.753e-01 Data: 0.029 (0.032) +Train: 24 [ 300/312 ( 96%)] Loss: 4.37 (4.36) Time: 0.412s, 2488.04/s (0.416s, 2460.13/s) LR: 3.753e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.575 (1.575) Loss: 2.917 ( 2.917) Acc@1: 41.113 ( 41.113) Acc@5: 66.699 ( 66.699) +Test: [ 48/48] Time: 0.090 (0.322) Loss: 2.679 ( 2.905) Acc@1: 44.575 ( 41.180) Acc@5: 71.580 ( 67.612) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-24.pth.tar', 41.18000003540039) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-23.pth.tar', 40.76200001342774) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-22.pth.tar', 39.7580000402832) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-19.pth.tar', 38.80800004516602) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-21.pth.tar', 38.28) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-20.pth.tar', 35.3679999609375) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-16.pth.tar', 34.78400003417969) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-18.pth.tar', 34.291999973144534) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-17.pth.tar', 33.77200000488281) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-15.pth.tar', 31.739999978027345) + +Train: 25 [ 0/312 ( 0%)] Loss: 4.29 (4.29) Time: 1.673s, 611.96/s (1.673s, 611.96/s) LR: 3.732e-01 Data: 1.298 (1.298) +Train: 25 [ 50/312 ( 16%)] Loss: 4.29 (4.28) Time: 0.413s, 2482.18/s (0.434s, 2361.61/s) LR: 3.732e-01 Data: 0.029 (0.055) +Train: 25 [ 100/312 ( 32%)] Loss: 4.25 (4.29) Time: 0.408s, 2510.99/s (0.420s, 2436.26/s) LR: 3.732e-01 Data: 0.027 (0.042) +Train: 25 [ 150/312 ( 48%)] Loss: 4.34 (4.30) Time: 0.415s, 2468.57/s (0.417s, 2458.31/s) LR: 3.732e-01 Data: 0.027 (0.037) +Train: 25 [ 200/312 ( 64%)] Loss: 4.21 (4.31) Time: 0.417s, 2457.93/s (0.416s, 2463.58/s) LR: 3.732e-01 Data: 0.033 (0.035) +Train: 25 [ 250/312 ( 80%)] Loss: 4.24 (4.32) Time: 0.409s, 2503.77/s (0.415s, 2469.44/s) LR: 3.732e-01 Data: 0.030 (0.033) +Train: 25 [ 300/312 ( 96%)] Loss: 4.32 (4.32) Time: 0.409s, 2501.35/s (0.414s, 2474.35/s) LR: 3.732e-01 Data: 0.027 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.414 (1.414) Loss: 2.920 ( 2.920) Acc@1: 42.773 ( 42.773) Acc@5: 66.797 ( 66.797) +Test: [ 48/48] Time: 0.090 (0.320) Loss: 2.714 ( 2.935) Acc@1: 45.165 ( 41.360) Acc@5: 71.698 ( 67.070) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-25.pth.tar', 41.360000032958986) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-24.pth.tar', 41.18000003540039) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-23.pth.tar', 40.76200001342774) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-22.pth.tar', 39.7580000402832) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-19.pth.tar', 38.80800004516602) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-21.pth.tar', 38.28) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-20.pth.tar', 35.3679999609375) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-16.pth.tar', 34.78400003417969) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-18.pth.tar', 34.291999973144534) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-17.pth.tar', 33.77200000488281) + +Train: 26 [ 0/312 ( 0%)] Loss: 4.26 (4.26) Time: 1.583s, 646.93/s (1.583s, 646.93/s) LR: 3.711e-01 Data: 1.092 (1.092) +Train: 26 [ 50/312 ( 16%)] Loss: 4.22 (4.25) Time: 0.413s, 2477.69/s (0.437s, 2344.28/s) LR: 3.711e-01 Data: 0.027 (0.049) +Train: 26 [ 100/312 ( 32%)] Loss: 4.30 (4.26) Time: 0.412s, 2483.09/s (0.425s, 2408.46/s) LR: 3.711e-01 Data: 0.033 (0.039) +Train: 26 [ 150/312 ( 48%)] Loss: 4.20 (4.27) Time: 0.411s, 2494.36/s (0.420s, 2439.63/s) LR: 3.711e-01 Data: 0.028 (0.035) +Train: 26 [ 200/312 ( 64%)] Loss: 4.24 (4.28) Time: 0.408s, 2510.81/s (0.417s, 2455.87/s) LR: 3.711e-01 Data: 0.026 (0.033) +Train: 26 [ 250/312 ( 80%)] Loss: 4.35 (4.28) Time: 0.410s, 2498.27/s (0.416s, 2464.14/s) LR: 3.711e-01 Data: 0.027 (0.032) +Train: 26 [ 300/312 ( 96%)] Loss: 4.25 (4.29) Time: 0.411s, 2489.58/s (0.415s, 2467.21/s) LR: 3.711e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.424 (1.424) Loss: 2.802 ( 2.802) Acc@1: 43.359 ( 43.359) Acc@5: 69.336 ( 69.336) +Test: [ 48/48] Time: 0.090 (0.320) Loss: 2.614 ( 2.805) Acc@1: 46.462 ( 43.398) Acc@5: 71.934 ( 69.298) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-26.pth.tar', 43.39800001464844) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-25.pth.tar', 41.360000032958986) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-24.pth.tar', 41.18000003540039) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-23.pth.tar', 40.76200001342774) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-22.pth.tar', 39.7580000402832) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-19.pth.tar', 38.80800004516602) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-21.pth.tar', 38.28) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-20.pth.tar', 35.3679999609375) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-16.pth.tar', 34.78400003417969) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-18.pth.tar', 34.291999973144534) + +Train: 27 [ 0/312 ( 0%)] Loss: 4.18 (4.18) Time: 1.773s, 577.67/s (1.773s, 577.67/s) LR: 3.689e-01 Data: 1.182 (1.182) +Train: 27 [ 50/312 ( 16%)] Loss: 4.22 (4.22) Time: 0.412s, 2486.55/s (0.439s, 2332.57/s) LR: 3.689e-01 Data: 0.026 (0.051) +Train: 27 [ 100/312 ( 32%)] Loss: 4.20 (4.24) Time: 0.410s, 2495.36/s (0.426s, 2406.15/s) LR: 3.689e-01 Data: 0.027 (0.039) +Train: 27 [ 150/312 ( 48%)] Loss: 4.26 (4.25) Time: 0.411s, 2488.98/s (0.421s, 2432.04/s) LR: 3.689e-01 Data: 0.027 (0.036) +Train: 27 [ 200/312 ( 64%)] Loss: 4.38 (4.25) Time: 0.410s, 2495.78/s (0.419s, 2443.24/s) LR: 3.689e-01 Data: 0.028 (0.034) +Train: 27 [ 250/312 ( 80%)] Loss: 4.30 (4.26) Time: 0.409s, 2503.96/s (0.417s, 2454.38/s) LR: 3.689e-01 Data: 0.029 (0.033) +Train: 27 [ 300/312 ( 96%)] Loss: 4.28 (4.26) Time: 0.410s, 2496.35/s (0.416s, 2461.73/s) LR: 3.689e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.414 (1.414) Loss: 3.092 ( 3.092) Acc@1: 40.625 ( 40.625) Acc@5: 63.477 ( 63.477) +Test: [ 48/48] Time: 0.090 (0.322) Loss: 2.839 ( 3.097) Acc@1: 42.453 ( 38.488) Acc@5: 68.986 ( 64.136) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-26.pth.tar', 43.39800001464844) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-25.pth.tar', 41.360000032958986) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-24.pth.tar', 41.18000003540039) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-23.pth.tar', 40.76200001342774) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-22.pth.tar', 39.7580000402832) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-19.pth.tar', 38.80800004516602) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-27.pth.tar', 38.488000018310544) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-21.pth.tar', 38.28) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-20.pth.tar', 35.3679999609375) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-16.pth.tar', 34.78400003417969) + +Train: 28 [ 0/312 ( 0%)] Loss: 4.26 (4.26) Time: 1.600s, 640.04/s (1.600s, 640.04/s) LR: 3.666e-01 Data: 1.224 (1.224) +Train: 28 [ 50/312 ( 16%)] Loss: 4.06 (4.17) Time: 0.408s, 2510.96/s (0.435s, 2352.44/s) LR: 3.666e-01 Data: 0.028 (0.051) +Train: 28 [ 100/312 ( 32%)] Loss: 4.19 (4.19) Time: 0.409s, 2504.32/s (0.422s, 2425.73/s) LR: 3.666e-01 Data: 0.025 (0.040) +Train: 28 [ 150/312 ( 48%)] Loss: 4.28 (4.20) Time: 0.412s, 2487.27/s (0.418s, 2452.41/s) LR: 3.666e-01 Data: 0.027 (0.036) +Train: 28 [ 200/312 ( 64%)] Loss: 4.28 (4.21) Time: 0.412s, 2486.42/s (0.416s, 2463.07/s) LR: 3.666e-01 Data: 0.028 (0.034) +Train: 28 [ 250/312 ( 80%)] Loss: 4.13 (4.22) Time: 0.412s, 2486.09/s (0.415s, 2467.66/s) LR: 3.666e-01 Data: 0.028 (0.033) +Train: 28 [ 300/312 ( 96%)] Loss: 4.24 (4.23) Time: 0.411s, 2489.34/s (0.414s, 2471.40/s) LR: 3.666e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.427 (1.427) Loss: 2.852 ( 2.852) Acc@1: 43.848 ( 43.848) Acc@5: 67.188 ( 67.188) +Test: [ 48/48] Time: 0.090 (0.323) Loss: 2.700 ( 2.852) Acc@1: 47.877 ( 42.772) Acc@5: 70.637 ( 68.720) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-26.pth.tar', 43.39800001464844) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-28.pth.tar', 42.77200004760742) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-25.pth.tar', 41.360000032958986) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-24.pth.tar', 41.18000003540039) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-23.pth.tar', 40.76200001342774) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-22.pth.tar', 39.7580000402832) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-19.pth.tar', 38.80800004516602) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-27.pth.tar', 38.488000018310544) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-21.pth.tar', 38.28) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-20.pth.tar', 35.3679999609375) + +Train: 29 [ 0/312 ( 0%)] Loss: 4.17 (4.17) Time: 1.764s, 580.42/s (1.764s, 580.42/s) LR: 3.642e-01 Data: 1.392 (1.392) +Train: 29 [ 50/312 ( 16%)] Loss: 4.12 (4.16) Time: 0.406s, 2519.13/s (0.433s, 2362.89/s) LR: 3.642e-01 Data: 0.027 (0.055) +Train: 29 [ 100/312 ( 32%)] Loss: 4.19 (4.16) Time: 0.409s, 2504.68/s (0.421s, 2431.57/s) LR: 3.642e-01 Data: 0.029 (0.041) +Train: 29 [ 150/312 ( 48%)] Loss: 4.17 (4.17) Time: 0.412s, 2488.35/s (0.418s, 2449.38/s) LR: 3.642e-01 Data: 0.028 (0.037) +Train: 29 [ 200/312 ( 64%)] Loss: 4.30 (4.18) Time: 0.407s, 2516.14/s (0.416s, 2460.33/s) LR: 3.642e-01 Data: 0.027 (0.035) +Train: 29 [ 250/312 ( 80%)] Loss: 4.26 (4.19) Time: 0.407s, 2517.57/s (0.415s, 2470.33/s) LR: 3.642e-01 Data: 0.025 (0.033) +Train: 29 [ 300/312 ( 96%)] Loss: 4.24 (4.20) Time: 0.408s, 2507.39/s (0.413s, 2476.59/s) LR: 3.642e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.411 (1.411) Loss: 2.748 ( 2.748) Acc@1: 45.410 ( 45.410) Acc@5: 69.727 ( 69.727) +Test: [ 48/48] Time: 0.091 (0.321) Loss: 2.591 ( 2.753) Acc@1: 47.877 ( 43.896) Acc@5: 72.524 ( 69.670) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-29.pth.tar', 43.895999982910155) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-26.pth.tar', 43.39800001464844) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-28.pth.tar', 42.77200004760742) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-25.pth.tar', 41.360000032958986) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-24.pth.tar', 41.18000003540039) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-23.pth.tar', 40.76200001342774) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-22.pth.tar', 39.7580000402832) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-19.pth.tar', 38.80800004516602) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-27.pth.tar', 38.488000018310544) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-21.pth.tar', 38.28) + +Train: 30 [ 0/312 ( 0%)] Loss: 4.15 (4.15) Time: 1.756s, 583.05/s (1.756s, 583.05/s) LR: 3.618e-01 Data: 1.076 (1.076) +Train: 30 [ 50/312 ( 16%)] Loss: 4.08 (4.11) Time: 0.410s, 2499.98/s (0.440s, 2329.22/s) LR: 3.618e-01 Data: 0.027 (0.048) +Train: 30 [ 100/312 ( 32%)] Loss: 4.25 (4.14) Time: 0.409s, 2505.21/s (0.425s, 2409.58/s) LR: 3.618e-01 Data: 0.028 (0.038) +Train: 30 [ 150/312 ( 48%)] Loss: 4.26 (4.14) Time: 0.412s, 2484.40/s (0.420s, 2439.20/s) LR: 3.618e-01 Data: 0.033 (0.035) +Train: 30 [ 200/312 ( 64%)] Loss: 4.08 (4.15) Time: 0.413s, 2479.47/s (0.418s, 2451.14/s) LR: 3.618e-01 Data: 0.027 (0.033) +Train: 30 [ 250/312 ( 80%)] Loss: 4.30 (4.16) Time: 0.413s, 2481.12/s (0.417s, 2455.06/s) LR: 3.618e-01 Data: 0.028 (0.032) +Train: 30 [ 300/312 ( 96%)] Loss: 4.29 (4.17) Time: 0.410s, 2497.91/s (0.416s, 2460.71/s) LR: 3.618e-01 Data: 0.029 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.449 (1.449) Loss: 2.762 ( 2.762) Acc@1: 43.652 ( 43.652) Acc@5: 69.336 ( 69.336) +Test: [ 48/48] Time: 0.090 (0.323) Loss: 2.542 ( 2.772) Acc@1: 47.877 ( 43.404) Acc@5: 72.170 ( 69.692) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-29.pth.tar', 43.895999982910155) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-30.pth.tar', 43.40400004760742) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-26.pth.tar', 43.39800001464844) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-28.pth.tar', 42.77200004760742) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-25.pth.tar', 41.360000032958986) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-24.pth.tar', 41.18000003540039) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-23.pth.tar', 40.76200001342774) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-22.pth.tar', 39.7580000402832) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-19.pth.tar', 38.80800004516602) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-27.pth.tar', 38.488000018310544) + +Train: 31 [ 0/312 ( 0%)] Loss: 4.24 (4.24) Time: 1.581s, 647.80/s (1.581s, 647.80/s) LR: 3.593e-01 Data: 1.088 (1.088) +Train: 31 [ 50/312 ( 16%)] Loss: 4.13 (4.09) Time: 0.409s, 2504.56/s (0.432s, 2371.01/s) LR: 3.593e-01 Data: 0.027 (0.049) +Train: 31 [ 100/312 ( 32%)] Loss: 4.26 (4.11) Time: 0.415s, 2466.92/s (0.421s, 2429.74/s) LR: 3.593e-01 Data: 0.029 (0.038) +Train: 31 [ 150/312 ( 48%)] Loss: 4.01 (4.12) Time: 0.411s, 2489.81/s (0.418s, 2447.61/s) LR: 3.593e-01 Data: 0.032 (0.035) +Train: 31 [ 200/312 ( 64%)] Loss: 4.19 (4.13) Time: 0.405s, 2525.93/s (0.416s, 2463.18/s) LR: 3.593e-01 Data: 0.028 (0.033) +Train: 31 [ 250/312 ( 80%)] Loss: 3.98 (4.13) Time: 0.406s, 2520.35/s (0.414s, 2473.71/s) LR: 3.593e-01 Data: 0.028 (0.032) +Train: 31 [ 300/312 ( 96%)] Loss: 4.12 (4.14) Time: 0.410s, 2497.70/s (0.413s, 2479.77/s) LR: 3.593e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.426 (1.426) Loss: 2.728 ( 2.728) Acc@1: 44.141 ( 44.141) Acc@5: 69.531 ( 69.531) +Test: [ 48/48] Time: 0.090 (0.321) Loss: 2.527 ( 2.736) Acc@1: 49.646 ( 45.114) Acc@5: 73.585 ( 70.878) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-31.pth.tar', 45.1140000402832) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-29.pth.tar', 43.895999982910155) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-30.pth.tar', 43.40400004760742) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-26.pth.tar', 43.39800001464844) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-28.pth.tar', 42.77200004760742) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-25.pth.tar', 41.360000032958986) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-24.pth.tar', 41.18000003540039) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-23.pth.tar', 40.76200001342774) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-22.pth.tar', 39.7580000402832) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-19.pth.tar', 38.80800004516602) + +Train: 32 [ 0/312 ( 0%)] Loss: 4.07 (4.07) Time: 1.639s, 624.68/s (1.639s, 624.68/s) LR: 3.567e-01 Data: 1.098 (1.098) +Train: 32 [ 50/312 ( 16%)] Loss: 4.03 (4.06) Time: 0.410s, 2494.59/s (0.437s, 2344.72/s) LR: 3.567e-01 Data: 0.027 (0.049) +Train: 32 [ 100/312 ( 32%)] Loss: 4.08 (4.08) Time: 0.406s, 2519.11/s (0.423s, 2421.00/s) LR: 3.567e-01 Data: 0.028 (0.038) +Train: 32 [ 150/312 ( 48%)] Loss: 4.02 (4.08) Time: 0.406s, 2523.22/s (0.418s, 2451.87/s) LR: 3.567e-01 Data: 0.027 (0.035) +Train: 32 [ 200/312 ( 64%)] Loss: 4.06 (4.09) Time: 0.409s, 2505.92/s (0.415s, 2466.65/s) LR: 3.567e-01 Data: 0.030 (0.033) +Train: 32 [ 250/312 ( 80%)] Loss: 4.09 (4.11) Time: 0.411s, 2489.68/s (0.414s, 2473.24/s) LR: 3.567e-01 Data: 0.028 (0.032) +Train: 32 [ 300/312 ( 96%)] Loss: 4.15 (4.12) Time: 0.413s, 2481.24/s (0.414s, 2474.35/s) LR: 3.567e-01 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.439 (1.439) Loss: 2.638 ( 2.638) Acc@1: 45.996 ( 45.996) Acc@5: 70.312 ( 70.312) +Test: [ 48/48] Time: 0.090 (0.321) Loss: 2.481 ( 2.669) Acc@1: 49.057 ( 45.128) Acc@5: 73.939 ( 70.936) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-32.pth.tar', 45.12799997802735) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-31.pth.tar', 45.1140000402832) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-29.pth.tar', 43.895999982910155) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-30.pth.tar', 43.40400004760742) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-26.pth.tar', 43.39800001464844) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-28.pth.tar', 42.77200004760742) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-25.pth.tar', 41.360000032958986) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-24.pth.tar', 41.18000003540039) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-23.pth.tar', 40.76200001342774) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-22.pth.tar', 39.7580000402832) + +Train: 33 [ 0/312 ( 0%)] Loss: 4.00 (4.00) Time: 1.576s, 649.94/s (1.576s, 649.94/s) LR: 3.541e-01 Data: 1.182 (1.182) +Train: 33 [ 50/312 ( 16%)] Loss: 4.06 (4.05) Time: 0.407s, 2518.33/s (0.430s, 2381.81/s) LR: 3.541e-01 Data: 0.027 (0.051) +Train: 33 [ 100/312 ( 32%)] Loss: 3.97 (4.06) Time: 0.408s, 2512.20/s (0.419s, 2445.83/s) LR: 3.541e-01 Data: 0.028 (0.040) +Train: 33 [ 150/312 ( 48%)] Loss: 4.23 (4.07) Time: 0.412s, 2486.45/s (0.416s, 2463.97/s) LR: 3.541e-01 Data: 0.027 (0.036) +Train: 33 [ 200/312 ( 64%)] Loss: 4.04 (4.08) Time: 0.411s, 2492.24/s (0.414s, 2470.60/s) LR: 3.541e-01 Data: 0.028 (0.034) +Train: 33 [ 250/312 ( 80%)] Loss: 4.07 (4.09) Time: 0.414s, 2471.83/s (0.414s, 2475.24/s) LR: 3.541e-01 Data: 0.028 (0.033) +Train: 33 [ 300/312 ( 96%)] Loss: 4.12 (4.09) Time: 0.415s, 2468.37/s (0.413s, 2478.74/s) LR: 3.541e-01 Data: 0.029 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.429 (1.429) Loss: 2.753 ( 2.753) Acc@1: 45.117 ( 45.117) Acc@5: 69.629 ( 69.629) +Test: [ 48/48] Time: 0.089 (0.323) Loss: 2.569 ( 2.751) Acc@1: 48.939 ( 44.468) Acc@5: 72.995 ( 70.128) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-32.pth.tar', 45.12799997802735) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-31.pth.tar', 45.1140000402832) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-33.pth.tar', 44.46800005615234) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-29.pth.tar', 43.895999982910155) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-30.pth.tar', 43.40400004760742) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-26.pth.tar', 43.39800001464844) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-28.pth.tar', 42.77200004760742) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-25.pth.tar', 41.360000032958986) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-24.pth.tar', 41.18000003540039) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-23.pth.tar', 40.76200001342774) + +Train: 34 [ 0/312 ( 0%)] Loss: 4.01 (4.01) Time: 1.650s, 620.64/s (1.650s, 620.64/s) LR: 3.514e-01 Data: 1.275 (1.275) +Train: 34 [ 50/312 ( 16%)] Loss: 3.89 (3.99) Time: 0.412s, 2484.91/s (0.437s, 2345.13/s) LR: 3.514e-01 Data: 0.028 (0.052) +Train: 34 [ 100/312 ( 32%)] Loss: 4.07 (4.02) Time: 0.414s, 2473.32/s (0.425s, 2411.73/s) LR: 3.514e-01 Data: 0.028 (0.040) +Train: 34 [ 150/312 ( 48%)] Loss: 4.01 (4.04) Time: 0.410s, 2496.49/s (0.421s, 2434.89/s) LR: 3.514e-01 Data: 0.027 (0.036) +Train: 34 [ 200/312 ( 64%)] Loss: 4.05 (4.05) Time: 0.413s, 2482.22/s (0.419s, 2445.53/s) LR: 3.514e-01 Data: 0.026 (0.034) +Train: 34 [ 250/312 ( 80%)] Loss: 4.25 (4.06) Time: 0.408s, 2509.79/s (0.417s, 2454.89/s) LR: 3.514e-01 Data: 0.028 (0.033) +Train: 34 [ 300/312 ( 96%)] Loss: 4.12 (4.07) Time: 0.408s, 2509.05/s (0.416s, 2464.22/s) LR: 3.514e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.423 (1.423) Loss: 2.729 ( 2.729) Acc@1: 46.191 ( 46.191) Acc@5: 71.289 ( 71.289) +Test: [ 48/48] Time: 0.090 (0.320) Loss: 2.619 ( 2.796) Acc@1: 48.467 ( 45.380) Acc@5: 73.585 ( 70.524) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-34.pth.tar', 45.380000045166014) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-32.pth.tar', 45.12799997802735) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-31.pth.tar', 45.1140000402832) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-33.pth.tar', 44.46800005615234) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-29.pth.tar', 43.895999982910155) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-30.pth.tar', 43.40400004760742) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-26.pth.tar', 43.39800001464844) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-28.pth.tar', 42.77200004760742) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-25.pth.tar', 41.360000032958986) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-24.pth.tar', 41.18000003540039) + +Train: 35 [ 0/312 ( 0%)] Loss: 4.02 (4.02) Time: 1.814s, 564.56/s (1.814s, 564.56/s) LR: 3.486e-01 Data: 1.091 (1.091) +Train: 35 [ 50/312 ( 16%)] Loss: 3.97 (3.99) Time: 0.411s, 2491.45/s (0.436s, 2348.63/s) LR: 3.486e-01 Data: 0.025 (0.048) +Train: 35 [ 100/312 ( 32%)] Loss: 4.10 (3.99) Time: 0.413s, 2477.35/s (0.424s, 2413.75/s) LR: 3.486e-01 Data: 0.029 (0.038) +Train: 35 [ 150/312 ( 48%)] Loss: 4.04 (4.01) Time: 0.412s, 2486.22/s (0.420s, 2436.01/s) LR: 3.486e-01 Data: 0.029 (0.035) +Train: 35 [ 200/312 ( 64%)] Loss: 4.05 (4.01) Time: 0.413s, 2476.79/s (0.418s, 2447.36/s) LR: 3.486e-01 Data: 0.027 (0.033) +Train: 35 [ 250/312 ( 80%)] Loss: 4.07 (4.03) Time: 0.411s, 2490.25/s (0.417s, 2453.99/s) LR: 3.486e-01 Data: 0.028 (0.032) +Train: 35 [ 300/312 ( 96%)] Loss: 4.02 (4.04) Time: 0.415s, 2470.32/s (0.417s, 2458.28/s) LR: 3.486e-01 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.431 (1.431) Loss: 2.711 ( 2.711) Acc@1: 44.043 ( 44.043) Acc@5: 70.996 ( 70.996) +Test: [ 48/48] Time: 0.090 (0.323) Loss: 2.615 ( 2.772) Acc@1: 47.995 ( 44.398) Acc@5: 72.524 ( 70.320) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-34.pth.tar', 45.380000045166014) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-32.pth.tar', 45.12799997802735) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-31.pth.tar', 45.1140000402832) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-33.pth.tar', 44.46800005615234) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-35.pth.tar', 44.39800003417969) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-29.pth.tar', 43.895999982910155) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-30.pth.tar', 43.40400004760742) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-26.pth.tar', 43.39800001464844) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-28.pth.tar', 42.77200004760742) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-25.pth.tar', 41.360000032958986) + +Train: 36 [ 0/312 ( 0%)] Loss: 4.08 (4.08) Time: 1.823s, 561.72/s (1.823s, 561.72/s) LR: 3.458e-01 Data: 1.448 (1.448) +Train: 36 [ 50/312 ( 16%)] Loss: 4.07 (3.98) Time: 0.413s, 2476.46/s (0.440s, 2325.32/s) LR: 3.458e-01 Data: 0.032 (0.056) +Train: 36 [ 100/312 ( 32%)] Loss: 4.04 (3.98) Time: 0.411s, 2492.73/s (0.426s, 2404.54/s) LR: 3.458e-01 Data: 0.029 (0.042) +Train: 36 [ 150/312 ( 48%)] Loss: 4.07 (3.98) Time: 0.411s, 2494.15/s (0.421s, 2433.18/s) LR: 3.458e-01 Data: 0.028 (0.037) +Train: 36 [ 200/312 ( 64%)] Loss: 4.06 (3.99) Time: 0.413s, 2481.70/s (0.419s, 2445.56/s) LR: 3.458e-01 Data: 0.028 (0.035) +Train: 36 [ 250/312 ( 80%)] Loss: 4.03 (4.00) Time: 0.413s, 2480.20/s (0.417s, 2453.66/s) LR: 3.458e-01 Data: 0.029 (0.034) +Train: 36 [ 300/312 ( 96%)] Loss: 4.12 (4.02) Time: 0.410s, 2496.43/s (0.416s, 2459.56/s) LR: 3.458e-01 Data: 0.027 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.410 (1.410) Loss: 2.669 ( 2.669) Acc@1: 48.535 ( 48.535) Acc@5: 70.508 ( 70.508) +Test: [ 48/48] Time: 0.090 (0.321) Loss: 2.492 ( 2.686) Acc@1: 50.825 ( 46.244) Acc@5: 75.590 ( 71.672) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-36.pth.tar', 46.24399997070312) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-34.pth.tar', 45.380000045166014) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-32.pth.tar', 45.12799997802735) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-31.pth.tar', 45.1140000402832) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-33.pth.tar', 44.46800005615234) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-35.pth.tar', 44.39800003417969) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-29.pth.tar', 43.895999982910155) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-30.pth.tar', 43.40400004760742) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-26.pth.tar', 43.39800001464844) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-28.pth.tar', 42.77200004760742) + +Train: 37 [ 0/312 ( 0%)] Loss: 3.97 (3.97) Time: 1.967s, 520.52/s (1.967s, 520.52/s) LR: 3.429e-01 Data: 1.592 (1.592) +Train: 37 [ 50/312 ( 16%)] Loss: 3.85 (3.94) Time: 0.411s, 2491.72/s (0.441s, 2323.67/s) LR: 3.429e-01 Data: 0.028 (0.058) +Train: 37 [ 100/312 ( 32%)] Loss: 3.99 (3.96) Time: 0.409s, 2502.94/s (0.425s, 2407.57/s) LR: 3.429e-01 Data: 0.027 (0.043) +Train: 37 [ 150/312 ( 48%)] Loss: 4.00 (3.97) Time: 0.409s, 2501.95/s (0.420s, 2436.90/s) LR: 3.429e-01 Data: 0.026 (0.038) +Train: 37 [ 200/312 ( 64%)] Loss: 3.99 (3.98) Time: 0.407s, 2513.59/s (0.418s, 2450.79/s) LR: 3.429e-01 Data: 0.027 (0.036) +Train: 37 [ 250/312 ( 80%)] Loss: 4.09 (3.99) Time: 0.410s, 2495.48/s (0.416s, 2459.07/s) LR: 3.429e-01 Data: 0.029 (0.034) +Train: 37 [ 300/312 ( 96%)] Loss: 4.07 (4.00) Time: 0.411s, 2488.60/s (0.416s, 2464.47/s) LR: 3.429e-01 Data: 0.028 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.430 (1.430) Loss: 2.662 ( 2.662) Acc@1: 47.070 ( 47.070) Acc@5: 71.191 ( 71.191) +Test: [ 48/48] Time: 0.090 (0.320) Loss: 2.422 ( 2.663) Acc@1: 50.943 ( 46.290) Acc@5: 77.476 ( 71.956) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-37.pth.tar', 46.29000002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-36.pth.tar', 46.24399997070312) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-34.pth.tar', 45.380000045166014) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-32.pth.tar', 45.12799997802735) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-31.pth.tar', 45.1140000402832) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-33.pth.tar', 44.46800005615234) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-35.pth.tar', 44.39800003417969) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-29.pth.tar', 43.895999982910155) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-30.pth.tar', 43.40400004760742) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-26.pth.tar', 43.39800001464844) + +Train: 38 [ 0/312 ( 0%)] Loss: 3.86 (3.86) Time: 1.688s, 606.56/s (1.688s, 606.56/s) LR: 3.399e-01 Data: 1.314 (1.314) +Train: 38 [ 50/312 ( 16%)] Loss: 3.81 (3.90) Time: 0.410s, 2497.82/s (0.433s, 2364.16/s) LR: 3.399e-01 Data: 0.028 (0.053) +Train: 38 [ 100/312 ( 32%)] Loss: 4.01 (3.92) Time: 0.410s, 2499.82/s (0.422s, 2429.31/s) LR: 3.399e-01 Data: 0.027 (0.041) +Train: 38 [ 150/312 ( 48%)] Loss: 4.07 (3.94) Time: 0.410s, 2497.53/s (0.418s, 2449.14/s) LR: 3.399e-01 Data: 0.028 (0.037) +Train: 38 [ 200/312 ( 64%)] Loss: 4.03 (3.95) Time: 0.412s, 2485.38/s (0.416s, 2459.89/s) LR: 3.399e-01 Data: 0.029 (0.034) +Train: 38 [ 250/312 ( 80%)] Loss: 4.01 (3.97) Time: 0.411s, 2493.47/s (0.415s, 2468.05/s) LR: 3.399e-01 Data: 0.028 (0.033) +Train: 38 [ 300/312 ( 96%)] Loss: 4.01 (3.97) Time: 0.412s, 2487.89/s (0.414s, 2471.32/s) LR: 3.399e-01 Data: 0.026 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.423 (1.423) Loss: 2.660 ( 2.660) Acc@1: 47.266 ( 47.266) Acc@5: 71.777 ( 71.777) +Test: [ 48/48] Time: 0.090 (0.321) Loss: 2.496 ( 2.679) Acc@1: 50.825 ( 46.268) Acc@5: 75.354 ( 71.664) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-37.pth.tar', 46.29000002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-38.pth.tar', 46.26800003540039) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-36.pth.tar', 46.24399997070312) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-34.pth.tar', 45.380000045166014) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-32.pth.tar', 45.12799997802735) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-31.pth.tar', 45.1140000402832) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-33.pth.tar', 44.46800005615234) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-35.pth.tar', 44.39800003417969) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-29.pth.tar', 43.895999982910155) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-30.pth.tar', 43.40400004760742) + +Train: 39 [ 0/312 ( 0%)] Loss: 3.85 (3.85) Time: 1.564s, 654.55/s (1.564s, 654.55/s) LR: 3.369e-01 Data: 1.189 (1.189) +Train: 39 [ 50/312 ( 16%)] Loss: 3.95 (3.87) Time: 0.412s, 2485.17/s (0.438s, 2337.02/s) LR: 3.369e-01 Data: 0.029 (0.051) +Train: 39 [ 100/312 ( 32%)] Loss: 3.91 (3.90) Time: 0.411s, 2494.50/s (0.424s, 2413.76/s) LR: 3.369e-01 Data: 0.028 (0.040) +Train: 39 [ 150/312 ( 48%)] Loss: 3.90 (3.92) Time: 0.407s, 2518.38/s (0.419s, 2445.01/s) LR: 3.369e-01 Data: 0.027 (0.036) +Train: 39 [ 200/312 ( 64%)] Loss: 3.93 (3.93) Time: 0.411s, 2488.79/s (0.416s, 2459.83/s) LR: 3.369e-01 Data: 0.028 (0.034) +Train: 39 [ 250/312 ( 80%)] Loss: 3.99 (3.94) Time: 0.411s, 2489.85/s (0.415s, 2466.57/s) LR: 3.369e-01 Data: 0.027 (0.032) +Train: 39 [ 300/312 ( 96%)] Loss: 3.95 (3.95) Time: 0.413s, 2476.72/s (0.415s, 2468.56/s) LR: 3.369e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.421 (1.421) Loss: 2.735 ( 2.735) Acc@1: 47.852 ( 47.852) Acc@5: 72.461 ( 72.461) +Test: [ 48/48] Time: 0.090 (0.322) Loss: 2.579 ( 2.744) Acc@1: 49.057 ( 46.688) Acc@5: 74.057 ( 71.814) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-39.pth.tar', 46.68799997802734) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-37.pth.tar', 46.29000002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-38.pth.tar', 46.26800003540039) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-36.pth.tar', 46.24399997070312) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-34.pth.tar', 45.380000045166014) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-32.pth.tar', 45.12799997802735) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-31.pth.tar', 45.1140000402832) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-33.pth.tar', 44.46800005615234) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-35.pth.tar', 44.39800003417969) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-29.pth.tar', 43.895999982910155) + +Train: 40 [ 0/312 ( 0%)] Loss: 3.96 (3.96) Time: 1.676s, 610.98/s (1.676s, 610.98/s) LR: 3.338e-01 Data: 1.073 (1.073) +Train: 40 [ 50/312 ( 16%)] Loss: 3.93 (3.86) Time: 0.412s, 2487.34/s (0.436s, 2349.60/s) LR: 3.338e-01 Data: 0.027 (0.049) +Train: 40 [ 100/312 ( 32%)] Loss: 3.81 (3.88) Time: 0.411s, 2488.78/s (0.423s, 2418.85/s) LR: 3.338e-01 Data: 0.027 (0.039) +Train: 40 [ 150/312 ( 48%)] Loss: 4.00 (3.90) Time: 0.409s, 2503.62/s (0.419s, 2442.65/s) LR: 3.338e-01 Data: 0.027 (0.035) +Train: 40 [ 200/312 ( 64%)] Loss: 3.98 (3.91) Time: 0.412s, 2488.11/s (0.417s, 2454.47/s) LR: 3.338e-01 Data: 0.029 (0.033) +Train: 40 [ 250/312 ( 80%)] Loss: 4.00 (3.92) Time: 0.412s, 2486.21/s (0.416s, 2462.03/s) LR: 3.338e-01 Data: 0.027 (0.032) +Train: 40 [ 300/312 ( 96%)] Loss: 4.05 (3.93) Time: 0.417s, 2455.26/s (0.415s, 2466.41/s) LR: 3.338e-01 Data: 0.029 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.404 (1.404) Loss: 2.640 ( 2.640) Acc@1: 47.266 ( 47.266) Acc@5: 72.070 ( 72.070) +Test: [ 48/48] Time: 0.090 (0.321) Loss: 2.451 ( 2.655) Acc@1: 48.703 ( 46.290) Acc@5: 75.825 ( 71.594) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-39.pth.tar', 46.68799997802734) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-37.pth.tar', 46.29000002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-40.pth.tar', 46.29000001831054) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-38.pth.tar', 46.26800003540039) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-36.pth.tar', 46.24399997070312) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-34.pth.tar', 45.380000045166014) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-32.pth.tar', 45.12799997802735) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-31.pth.tar', 45.1140000402832) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-33.pth.tar', 44.46800005615234) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-35.pth.tar', 44.39800003417969) + +Train: 41 [ 0/312 ( 0%)] Loss: 3.74 (3.74) Time: 1.532s, 668.45/s (1.532s, 668.45/s) LR: 3.307e-01 Data: 1.149 (1.149) +Train: 41 [ 50/312 ( 16%)] Loss: 3.87 (3.84) Time: 0.408s, 2508.13/s (0.434s, 2361.86/s) LR: 3.307e-01 Data: 0.028 (0.050) +Train: 41 [ 100/312 ( 32%)] Loss: 3.88 (3.86) Time: 0.409s, 2503.81/s (0.422s, 2424.22/s) LR: 3.307e-01 Data: 0.027 (0.039) +Train: 41 [ 150/312 ( 48%)] Loss: 3.88 (3.87) Time: 0.416s, 2464.22/s (0.418s, 2448.03/s) LR: 3.307e-01 Data: 0.027 (0.035) +Train: 41 [ 200/312 ( 64%)] Loss: 3.87 (3.89) Time: 0.413s, 2479.05/s (0.417s, 2458.21/s) LR: 3.307e-01 Data: 0.033 (0.034) +Train: 41 [ 250/312 ( 80%)] Loss: 4.02 (3.90) Time: 0.408s, 2508.87/s (0.415s, 2466.01/s) LR: 3.307e-01 Data: 0.029 (0.033) +Train: 41 [ 300/312 ( 96%)] Loss: 3.99 (3.91) Time: 0.411s, 2490.86/s (0.414s, 2471.57/s) LR: 3.307e-01 Data: 0.029 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.424 (1.424) Loss: 2.597 ( 2.597) Acc@1: 47.070 ( 47.070) Acc@5: 71.777 ( 71.777) +Test: [ 48/48] Time: 0.091 (0.320) Loss: 2.414 ( 2.612) Acc@1: 51.415 ( 47.432) Acc@5: 75.236 ( 72.428) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-41.pth.tar', 47.43199996826172) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-39.pth.tar', 46.68799997802734) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-37.pth.tar', 46.29000002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-40.pth.tar', 46.29000001831054) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-38.pth.tar', 46.26800003540039) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-36.pth.tar', 46.24399997070312) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-34.pth.tar', 45.380000045166014) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-32.pth.tar', 45.12799997802735) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-31.pth.tar', 45.1140000402832) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-33.pth.tar', 44.46800005615234) + +Train: 42 [ 0/312 ( 0%)] Loss: 3.77 (3.77) Time: 1.830s, 559.43/s (1.830s, 559.43/s) LR: 3.275e-01 Data: 1.455 (1.455) +Train: 42 [ 50/312 ( 16%)] Loss: 3.87 (3.83) Time: 0.410s, 2495.34/s (0.439s, 2333.17/s) LR: 3.275e-01 Data: 0.028 (0.056) +Train: 42 [ 100/312 ( 32%)] Loss: 4.03 (3.84) Time: 0.407s, 2513.62/s (0.424s, 2413.28/s) LR: 3.275e-01 Data: 0.028 (0.042) +Train: 42 [ 150/312 ( 48%)] Loss: 3.97 (3.86) Time: 0.407s, 2518.25/s (0.419s, 2446.60/s) LR: 3.275e-01 Data: 0.029 (0.037) +Train: 42 [ 200/312 ( 64%)] Loss: 3.88 (3.86) Time: 0.408s, 2507.65/s (0.416s, 2462.91/s) LR: 3.275e-01 Data: 0.030 (0.035) +Train: 42 [ 250/312 ( 80%)] Loss: 4.04 (3.88) Time: 0.408s, 2507.28/s (0.414s, 2470.81/s) LR: 3.275e-01 Data: 0.027 (0.034) +Train: 42 [ 300/312 ( 96%)] Loss: 4.00 (3.89) Time: 0.412s, 2483.51/s (0.414s, 2474.46/s) LR: 3.275e-01 Data: 0.029 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.435 (1.435) Loss: 2.631 ( 2.631) Acc@1: 46.973 ( 46.973) Acc@5: 71.094 ( 71.094) +Test: [ 48/48] Time: 0.090 (0.322) Loss: 2.499 ( 2.691) Acc@1: 48.467 ( 45.870) Acc@5: 72.759 ( 70.918) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-41.pth.tar', 47.43199996826172) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-39.pth.tar', 46.68799997802734) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-37.pth.tar', 46.29000002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-40.pth.tar', 46.29000001831054) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-38.pth.tar', 46.26800003540039) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-36.pth.tar', 46.24399997070312) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-42.pth.tar', 45.86999998046875) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-34.pth.tar', 45.380000045166014) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-32.pth.tar', 45.12799997802735) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-31.pth.tar', 45.1140000402832) + +Train: 43 [ 0/312 ( 0%)] Loss: 3.78 (3.78) Time: 1.413s, 724.63/s (1.413s, 724.63/s) LR: 3.242e-01 Data: 1.042 (1.042) +Train: 43 [ 50/312 ( 16%)] Loss: 3.80 (3.79) Time: 0.406s, 2523.42/s (0.426s, 2401.12/s) LR: 3.242e-01 Data: 0.029 (0.048) +Train: 43 [ 100/312 ( 32%)] Loss: 3.76 (3.82) Time: 0.410s, 2498.38/s (0.417s, 2454.34/s) LR: 3.242e-01 Data: 0.027 (0.038) +Train: 43 [ 150/312 ( 48%)] Loss: 3.88 (3.83) Time: 0.410s, 2496.57/s (0.415s, 2466.42/s) LR: 3.242e-01 Data: 0.027 (0.035) +Train: 43 [ 200/312 ( 64%)] Loss: 3.92 (3.85) Time: 0.411s, 2488.93/s (0.414s, 2472.29/s) LR: 3.242e-01 Data: 0.027 (0.033) +Train: 43 [ 250/312 ( 80%)] Loss: 3.91 (3.86) Time: 0.411s, 2492.53/s (0.413s, 2476.44/s) LR: 3.242e-01 Data: 0.028 (0.032) +Train: 43 [ 300/312 ( 96%)] Loss: 3.97 (3.87) Time: 0.409s, 2501.26/s (0.413s, 2478.71/s) LR: 3.242e-01 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.409 (1.409) Loss: 2.657 ( 2.657) Acc@1: 45.215 ( 45.215) Acc@5: 72.070 ( 72.070) +Test: [ 48/48] Time: 0.090 (0.322) Loss: 2.446 ( 2.674) Acc@1: 51.297 ( 46.008) Acc@5: 74.764 ( 71.326) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-41.pth.tar', 47.43199996826172) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-39.pth.tar', 46.68799997802734) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-37.pth.tar', 46.29000002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-40.pth.tar', 46.29000001831054) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-38.pth.tar', 46.26800003540039) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-36.pth.tar', 46.24399997070312) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-43.pth.tar', 46.00800004638672) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-42.pth.tar', 45.86999998046875) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-34.pth.tar', 45.380000045166014) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-32.pth.tar', 45.12799997802735) + +Train: 44 [ 0/312 ( 0%)] Loss: 3.73 (3.73) Time: 1.519s, 674.24/s (1.519s, 674.24/s) LR: 3.209e-01 Data: 1.111 (1.111) +Train: 44 [ 50/312 ( 16%)] Loss: 3.80 (3.78) Time: 0.411s, 2494.29/s (0.432s, 2372.10/s) LR: 3.209e-01 Data: 0.025 (0.049) +Train: 44 [ 100/312 ( 32%)] Loss: 3.75 (3.79) Time: 0.408s, 2510.93/s (0.421s, 2432.99/s) LR: 3.209e-01 Data: 0.028 (0.038) +Train: 44 [ 150/312 ( 48%)] Loss: 3.90 (3.82) Time: 0.408s, 2512.71/s (0.417s, 2457.46/s) LR: 3.209e-01 Data: 0.027 (0.035) +Train: 44 [ 200/312 ( 64%)] Loss: 3.97 (3.83) Time: 0.410s, 2500.27/s (0.415s, 2469.14/s) LR: 3.209e-01 Data: 0.024 (0.033) +Train: 44 [ 250/312 ( 80%)] Loss: 3.95 (3.84) Time: 0.411s, 2489.78/s (0.414s, 2473.62/s) LR: 3.209e-01 Data: 0.028 (0.032) +Train: 44 [ 300/312 ( 96%)] Loss: 3.97 (3.85) Time: 0.415s, 2467.87/s (0.414s, 2476.09/s) LR: 3.209e-01 Data: 0.030 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.438 (1.438) Loss: 2.602 ( 2.602) Acc@1: 47.949 ( 47.949) Acc@5: 71.387 ( 71.387) +Test: [ 48/48] Time: 0.090 (0.324) Loss: 2.433 ( 2.648) Acc@1: 49.764 ( 46.636) Acc@5: 76.533 ( 71.872) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-41.pth.tar', 47.43199996826172) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-39.pth.tar', 46.68799997802734) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-44.pth.tar', 46.63600002685547) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-37.pth.tar', 46.29000002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-40.pth.tar', 46.29000001831054) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-38.pth.tar', 46.26800003540039) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-36.pth.tar', 46.24399997070312) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-43.pth.tar', 46.00800004638672) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-42.pth.tar', 45.86999998046875) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-34.pth.tar', 45.380000045166014) + +Train: 45 [ 0/312 ( 0%)] Loss: 3.74 (3.74) Time: 1.631s, 627.75/s (1.631s, 627.75/s) LR: 3.176e-01 Data: 1.257 (1.257) +Train: 45 [ 50/312 ( 16%)] Loss: 3.72 (3.76) Time: 0.411s, 2489.21/s (0.435s, 2355.87/s) LR: 3.176e-01 Data: 0.027 (0.051) +Train: 45 [ 100/312 ( 32%)] Loss: 3.75 (3.77) Time: 0.410s, 2499.95/s (0.423s, 2422.13/s) LR: 3.176e-01 Data: 0.028 (0.040) +Train: 45 [ 150/312 ( 48%)] Loss: 3.82 (3.79) Time: 0.410s, 2499.26/s (0.418s, 2447.66/s) LR: 3.176e-01 Data: 0.028 (0.036) +Train: 45 [ 200/312 ( 64%)] Loss: 3.87 (3.80) Time: 0.408s, 2508.18/s (0.416s, 2459.72/s) LR: 3.176e-01 Data: 0.028 (0.034) +Train: 45 [ 250/312 ( 80%)] Loss: 3.93 (3.81) Time: 0.408s, 2509.16/s (0.415s, 2469.43/s) LR: 3.176e-01 Data: 0.028 (0.033) +Train: 45 [ 300/312 ( 96%)] Loss: 3.86 (3.83) Time: 0.412s, 2484.80/s (0.413s, 2477.29/s) LR: 3.176e-01 Data: 0.029 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.462 (1.462) Loss: 2.596 ( 2.596) Acc@1: 46.680 ( 46.680) Acc@5: 72.168 ( 72.168) +Test: [ 48/48] Time: 0.089 (0.324) Loss: 2.381 ( 2.615) Acc@1: 51.533 ( 47.118) Acc@5: 76.533 ( 72.314) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-41.pth.tar', 47.43199996826172) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-45.pth.tar', 47.11800001953125) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-39.pth.tar', 46.68799997802734) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-44.pth.tar', 46.63600002685547) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-37.pth.tar', 46.29000002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-40.pth.tar', 46.29000001831054) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-38.pth.tar', 46.26800003540039) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-36.pth.tar', 46.24399997070312) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-43.pth.tar', 46.00800004638672) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-42.pth.tar', 45.86999998046875) + +Train: 46 [ 0/312 ( 0%)] Loss: 3.69 (3.69) Time: 1.631s, 627.80/s (1.631s, 627.80/s) LR: 3.141e-01 Data: 1.089 (1.089) +Train: 46 [ 50/312 ( 16%)] Loss: 3.80 (3.73) Time: 0.408s, 2512.51/s (0.432s, 2370.95/s) LR: 3.141e-01 Data: 0.026 (0.048) +Train: 46 [ 100/312 ( 32%)] Loss: 3.85 (3.75) Time: 0.409s, 2502.00/s (0.422s, 2429.11/s) LR: 3.141e-01 Data: 0.028 (0.038) +Train: 46 [ 150/312 ( 48%)] Loss: 3.82 (3.77) Time: 0.416s, 2458.88/s (0.418s, 2447.34/s) LR: 3.141e-01 Data: 0.030 (0.035) +Train: 46 [ 200/312 ( 64%)] Loss: 3.88 (3.79) Time: 0.405s, 2528.28/s (0.416s, 2459.35/s) LR: 3.141e-01 Data: 0.028 (0.033) +Train: 46 [ 250/312 ( 80%)] Loss: 3.90 (3.80) Time: 0.405s, 2526.24/s (0.414s, 2470.72/s) LR: 3.141e-01 Data: 0.027 (0.032) +Train: 46 [ 300/312 ( 96%)] Loss: 3.73 (3.81) Time: 0.411s, 2493.91/s (0.413s, 2478.40/s) LR: 3.141e-01 Data: 0.029 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.411 (1.411) Loss: 2.510 ( 2.510) Acc@1: 49.219 ( 49.219) Acc@5: 74.902 ( 74.902) +Test: [ 48/48] Time: 0.090 (0.320) Loss: 2.418 ( 2.616) Acc@1: 51.533 ( 47.556) Acc@5: 75.354 ( 72.216) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-46.pth.tar', 47.55600001953125) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-41.pth.tar', 47.43199996826172) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-45.pth.tar', 47.11800001953125) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-39.pth.tar', 46.68799997802734) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-44.pth.tar', 46.63600002685547) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-37.pth.tar', 46.29000002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-40.pth.tar', 46.29000001831054) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-38.pth.tar', 46.26800003540039) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-36.pth.tar', 46.24399997070312) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-43.pth.tar', 46.00800004638672) + +Train: 47 [ 0/312 ( 0%)] Loss: 3.60 (3.60) Time: 1.559s, 656.91/s (1.559s, 656.91/s) LR: 3.107e-01 Data: 1.185 (1.185) +Train: 47 [ 50/312 ( 16%)] Loss: 3.79 (3.71) Time: 0.412s, 2488.05/s (0.432s, 2371.76/s) LR: 3.107e-01 Data: 0.028 (0.050) +Train: 47 [ 100/312 ( 32%)] Loss: 3.73 (3.73) Time: 0.411s, 2489.61/s (0.421s, 2432.34/s) LR: 3.107e-01 Data: 0.032 (0.039) +Train: 47 [ 150/312 ( 48%)] Loss: 3.81 (3.75) Time: 0.411s, 2493.10/s (0.417s, 2454.98/s) LR: 3.107e-01 Data: 0.028 (0.035) +Train: 47 [ 200/312 ( 64%)] Loss: 3.82 (3.76) Time: 0.409s, 2505.32/s (0.416s, 2462.46/s) LR: 3.107e-01 Data: 0.027 (0.033) +Train: 47 [ 250/312 ( 80%)] Loss: 3.79 (3.77) Time: 0.407s, 2514.07/s (0.414s, 2470.81/s) LR: 3.107e-01 Data: 0.027 (0.032) +Train: 47 [ 300/312 ( 96%)] Loss: 3.93 (3.78) Time: 0.407s, 2514.90/s (0.413s, 2477.25/s) LR: 3.107e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.471 (1.471) Loss: 2.584 ( 2.584) Acc@1: 50.098 ( 50.098) Acc@5: 73.730 ( 73.730) +Test: [ 48/48] Time: 0.091 (0.321) Loss: 2.492 ( 2.639) Acc@1: 49.528 ( 47.580) Acc@5: 74.646 ( 72.340) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-47.pth.tar', 47.57999998901367) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-46.pth.tar', 47.55600001953125) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-41.pth.tar', 47.43199996826172) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-45.pth.tar', 47.11800001953125) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-39.pth.tar', 46.68799997802734) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-44.pth.tar', 46.63600002685547) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-37.pth.tar', 46.29000002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-40.pth.tar', 46.29000001831054) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-38.pth.tar', 46.26800003540039) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-36.pth.tar', 46.24399997070312) + +Train: 48 [ 0/312 ( 0%)] Loss: 3.78 (3.78) Time: 1.492s, 686.32/s (1.492s, 686.32/s) LR: 3.072e-01 Data: 1.067 (1.067) +Train: 48 [ 50/312 ( 16%)] Loss: 3.61 (3.71) Time: 0.412s, 2482.46/s (0.432s, 2370.71/s) LR: 3.072e-01 Data: 0.026 (0.048) +Train: 48 [ 100/312 ( 32%)] Loss: 3.76 (3.73) Time: 0.407s, 2516.87/s (0.421s, 2431.58/s) LR: 3.072e-01 Data: 0.026 (0.038) +Train: 48 [ 150/312 ( 48%)] Loss: 3.71 (3.74) Time: 0.410s, 2499.57/s (0.417s, 2457.28/s) LR: 3.072e-01 Data: 0.026 (0.035) +Train: 48 [ 200/312 ( 64%)] Loss: 3.88 (3.76) Time: 0.409s, 2504.95/s (0.415s, 2469.47/s) LR: 3.072e-01 Data: 0.027 (0.033) +Train: 48 [ 250/312 ( 80%)] Loss: 3.82 (3.77) Time: 0.411s, 2492.62/s (0.414s, 2474.42/s) LR: 3.072e-01 Data: 0.028 (0.032) +Train: 48 [ 300/312 ( 96%)] Loss: 3.92 (3.78) Time: 0.411s, 2491.22/s (0.414s, 2476.07/s) LR: 3.072e-01 Data: 0.026 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.419 (1.419) Loss: 2.541 ( 2.541) Acc@1: 49.121 ( 49.121) Acc@5: 73.242 ( 73.242) +Test: [ 48/48] Time: 0.090 (0.320) Loss: 2.382 ( 2.591) Acc@1: 50.000 ( 47.950) Acc@5: 77.123 ( 72.852) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-48.pth.tar', 47.95) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-47.pth.tar', 47.57999998901367) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-46.pth.tar', 47.55600001953125) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-41.pth.tar', 47.43199996826172) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-45.pth.tar', 47.11800001953125) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-39.pth.tar', 46.68799997802734) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-44.pth.tar', 46.63600002685547) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-37.pth.tar', 46.29000002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-40.pth.tar', 46.29000001831054) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-38.pth.tar', 46.26800003540039) + +Train: 49 [ 0/312 ( 0%)] Loss: 3.64 (3.64) Time: 1.670s, 613.12/s (1.670s, 613.12/s) LR: 3.036e-01 Data: 1.298 (1.298) +Train: 49 [ 50/312 ( 16%)] Loss: 3.71 (3.67) Time: 0.407s, 2516.16/s (0.431s, 2374.52/s) LR: 3.036e-01 Data: 0.028 (0.053) +Train: 49 [ 100/312 ( 32%)] Loss: 3.71 (3.70) Time: 0.413s, 2479.19/s (0.420s, 2440.71/s) LR: 3.036e-01 Data: 0.027 (0.041) +Train: 49 [ 150/312 ( 48%)] Loss: 3.83 (3.71) Time: 0.409s, 2505.23/s (0.416s, 2461.56/s) LR: 3.036e-01 Data: 0.026 (0.036) +Train: 49 [ 200/312 ( 64%)] Loss: 3.79 (3.73) Time: 0.414s, 2474.46/s (0.415s, 2466.80/s) LR: 3.036e-01 Data: 0.029 (0.034) +Train: 49 [ 250/312 ( 80%)] Loss: 3.83 (3.74) Time: 0.410s, 2494.68/s (0.415s, 2469.81/s) LR: 3.036e-01 Data: 0.028 (0.033) +Train: 49 [ 300/312 ( 96%)] Loss: 3.67 (3.75) Time: 0.407s, 2514.33/s (0.414s, 2475.01/s) LR: 3.036e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.432 (1.432) Loss: 2.512 ( 2.512) Acc@1: 49.219 ( 49.219) Acc@5: 72.754 ( 72.754) +Test: [ 48/48] Time: 0.090 (0.318) Loss: 2.335 ( 2.565) Acc@1: 52.005 ( 48.288) Acc@5: 76.533 ( 72.792) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-49.pth.tar', 48.28799996582031) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-48.pth.tar', 47.95) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-47.pth.tar', 47.57999998901367) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-46.pth.tar', 47.55600001953125) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-41.pth.tar', 47.43199996826172) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-45.pth.tar', 47.11800001953125) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-39.pth.tar', 46.68799997802734) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-44.pth.tar', 46.63600002685547) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-37.pth.tar', 46.29000002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-40.pth.tar', 46.29000001831054) + +Train: 50 [ 0/312 ( 0%)] Loss: 3.59 (3.59) Time: 1.603s, 638.78/s (1.603s, 638.78/s) LR: 3.000e-01 Data: 1.231 (1.231) +Train: 50 [ 50/312 ( 16%)] Loss: 3.73 (3.66) Time: 0.411s, 2491.60/s (0.432s, 2370.01/s) LR: 3.000e-01 Data: 0.026 (0.052) +Train: 50 [ 100/312 ( 32%)] Loss: 3.60 (3.69) Time: 0.416s, 2463.44/s (0.423s, 2423.33/s) LR: 3.000e-01 Data: 0.028 (0.040) +Train: 50 [ 150/312 ( 48%)] Loss: 3.70 (3.69) Time: 0.409s, 2505.93/s (0.419s, 2444.21/s) LR: 3.000e-01 Data: 0.027 (0.036) +Train: 50 [ 200/312 ( 64%)] Loss: 3.75 (3.70) Time: 0.415s, 2469.54/s (0.417s, 2453.37/s) LR: 3.000e-01 Data: 0.027 (0.034) +Train: 50 [ 250/312 ( 80%)] Loss: 3.87 (3.72) Time: 0.413s, 2479.73/s (0.416s, 2459.69/s) LR: 3.000e-01 Data: 0.026 (0.033) +Train: 50 [ 300/312 ( 96%)] Loss: 3.75 (3.73) Time: 0.407s, 2514.98/s (0.415s, 2466.71/s) LR: 3.000e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.431 (1.431) Loss: 2.628 ( 2.628) Acc@1: 47.949 ( 47.949) Acc@5: 71.582 ( 71.582) +Test: [ 48/48] Time: 0.090 (0.320) Loss: 2.462 ( 2.671) Acc@1: 52.594 ( 47.498) Acc@5: 74.528 ( 71.696) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-49.pth.tar', 48.28799996582031) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-48.pth.tar', 47.95) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-47.pth.tar', 47.57999998901367) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-46.pth.tar', 47.55600001953125) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-50.pth.tar', 47.49799996337891) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-41.pth.tar', 47.43199996826172) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-45.pth.tar', 47.11800001953125) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-39.pth.tar', 46.68799997802734) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-44.pth.tar', 46.63600002685547) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-37.pth.tar', 46.29000002197266) + +Train: 51 [ 0/312 ( 0%)] Loss: 3.73 (3.73) Time: 1.560s, 656.55/s (1.560s, 656.55/s) LR: 2.964e-01 Data: 1.181 (1.181) +Train: 51 [ 50/312 ( 16%)] Loss: 3.51 (3.64) Time: 0.411s, 2489.40/s (0.439s, 2334.71/s) LR: 2.964e-01 Data: 0.030 (0.050) +Train: 51 [ 100/312 ( 32%)] Loss: 3.61 (3.66) Time: 0.412s, 2485.20/s (0.426s, 2403.08/s) LR: 2.964e-01 Data: 0.026 (0.039) +Train: 51 [ 150/312 ( 48%)] Loss: 3.75 (3.68) Time: 0.412s, 2484.11/s (0.421s, 2431.01/s) LR: 2.964e-01 Data: 0.032 (0.036) +Train: 51 [ 200/312 ( 64%)] Loss: 3.85 (3.69) Time: 0.405s, 2526.36/s (0.418s, 2450.59/s) LR: 2.964e-01 Data: 0.028 (0.033) +Train: 51 [ 250/312 ( 80%)] Loss: 3.75 (3.70) Time: 0.409s, 2501.83/s (0.416s, 2461.04/s) LR: 2.964e-01 Data: 0.028 (0.032) +Train: 51 [ 300/312 ( 96%)] Loss: 3.76 (3.71) Time: 0.414s, 2473.91/s (0.415s, 2465.16/s) LR: 2.964e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.436 (1.436) Loss: 2.646 ( 2.646) Acc@1: 48.340 ( 48.340) Acc@5: 71.582 ( 71.582) +Test: [ 48/48] Time: 0.090 (0.320) Loss: 2.605 ( 2.718) Acc@1: 48.113 ( 45.896) Acc@5: 72.877 ( 70.836) +Train: 52 [ 0/312 ( 0%)] Loss: 3.64 (3.64) Time: 1.535s, 666.89/s (1.535s, 666.89/s) LR: 2.927e-01 Data: 1.162 (1.162) +Train: 52 [ 50/312 ( 16%)] Loss: 3.66 (3.63) Time: 0.407s, 2515.27/s (0.430s, 2381.99/s) LR: 2.927e-01 Data: 0.027 (0.050) +Train: 52 [ 100/312 ( 32%)] Loss: 3.59 (3.65) Time: 0.408s, 2509.55/s (0.419s, 2441.78/s) LR: 2.927e-01 Data: 0.027 (0.039) +Train: 52 [ 150/312 ( 48%)] Loss: 3.61 (3.66) Time: 0.412s, 2487.08/s (0.417s, 2457.31/s) LR: 2.927e-01 Data: 0.028 (0.035) +Train: 52 [ 200/312 ( 64%)] Loss: 3.66 (3.67) Time: 0.412s, 2484.25/s (0.416s, 2462.38/s) LR: 2.927e-01 Data: 0.029 (0.033) +Train: 52 [ 250/312 ( 80%)] Loss: 3.62 (3.69) Time: 0.409s, 2506.20/s (0.415s, 2468.98/s) LR: 2.927e-01 Data: 0.028 (0.032) +Train: 52 [ 300/312 ( 96%)] Loss: 3.69 (3.70) Time: 0.408s, 2511.84/s (0.414s, 2474.86/s) LR: 2.927e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.436 (1.436) Loss: 2.596 ( 2.596) Acc@1: 48.828 ( 48.828) Acc@5: 72.266 ( 72.266) +Test: [ 48/48] Time: 0.090 (0.319) Loss: 2.330 ( 2.620) Acc@1: 53.066 ( 47.450) Acc@5: 77.476 ( 71.934) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-49.pth.tar', 48.28799996582031) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-48.pth.tar', 47.95) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-47.pth.tar', 47.57999998901367) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-46.pth.tar', 47.55600001953125) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-50.pth.tar', 47.49799996337891) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-52.pth.tar', 47.4500000390625) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-41.pth.tar', 47.43199996826172) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-45.pth.tar', 47.11800001953125) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-39.pth.tar', 46.68799997802734) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-44.pth.tar', 46.63600002685547) + +Train: 53 [ 0/312 ( 0%)] Loss: 3.57 (3.57) Time: 1.683s, 608.58/s (1.683s, 608.58/s) LR: 2.889e-01 Data: 1.310 (1.310) +Train: 53 [ 50/312 ( 16%)] Loss: 3.57 (3.59) Time: 0.410s, 2496.53/s (0.435s, 2351.70/s) LR: 2.889e-01 Data: 0.028 (0.053) +Train: 53 [ 100/312 ( 32%)] Loss: 3.72 (3.63) Time: 0.409s, 2502.36/s (0.424s, 2414.10/s) LR: 2.889e-01 Data: 0.029 (0.041) +Train: 53 [ 150/312 ( 48%)] Loss: 3.93 (3.64) Time: 0.407s, 2514.95/s (0.419s, 2442.18/s) LR: 2.889e-01 Data: 0.026 (0.036) +Train: 53 [ 200/312 ( 64%)] Loss: 3.68 (3.65) Time: 0.411s, 2494.35/s (0.417s, 2456.05/s) LR: 2.889e-01 Data: 0.029 (0.034) +Train: 53 [ 250/312 ( 80%)] Loss: 3.84 (3.67) Time: 0.413s, 2476.83/s (0.416s, 2462.13/s) LR: 2.889e-01 Data: 0.029 (0.033) +Train: 53 [ 300/312 ( 96%)] Loss: 3.81 (3.68) Time: 0.410s, 2499.85/s (0.415s, 2466.22/s) LR: 2.889e-01 Data: 0.029 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.440 (1.440) Loss: 2.546 ( 2.546) Acc@1: 49.512 ( 49.512) Acc@5: 72.363 ( 72.363) +Test: [ 48/48] Time: 0.090 (0.320) Loss: 2.394 ( 2.589) Acc@1: 49.646 ( 48.098) Acc@5: 76.415 ( 72.700) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-49.pth.tar', 48.28799996582031) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-53.pth.tar', 48.097999975585935) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-48.pth.tar', 47.95) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-47.pth.tar', 47.57999998901367) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-46.pth.tar', 47.55600001953125) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-50.pth.tar', 47.49799996337891) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-52.pth.tar', 47.4500000390625) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-41.pth.tar', 47.43199996826172) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-45.pth.tar', 47.11800001953125) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-39.pth.tar', 46.68799997802734) + +Train: 54 [ 0/312 ( 0%)] Loss: 3.54 (3.54) Time: 1.668s, 613.75/s (1.668s, 613.75/s) LR: 2.852e-01 Data: 1.040 (1.040) +Train: 54 [ 50/312 ( 16%)] Loss: 3.63 (3.60) Time: 0.411s, 2490.69/s (0.435s, 2355.41/s) LR: 2.852e-01 Data: 0.028 (0.048) +Train: 54 [ 100/312 ( 32%)] Loss: 3.70 (3.62) Time: 0.414s, 2472.68/s (0.424s, 2417.73/s) LR: 2.852e-01 Data: 0.032 (0.038) +Train: 54 [ 150/312 ( 48%)] Loss: 3.71 (3.63) Time: 0.408s, 2512.39/s (0.419s, 2441.49/s) LR: 2.852e-01 Data: 0.027 (0.035) +Train: 54 [ 200/312 ( 64%)] Loss: 3.65 (3.64) Time: 0.409s, 2505.92/s (0.417s, 2456.86/s) LR: 2.852e-01 Data: 0.028 (0.033) +Train: 54 [ 250/312 ( 80%)] Loss: 3.80 (3.65) Time: 0.413s, 2478.60/s (0.416s, 2463.24/s) LR: 2.852e-01 Data: 0.027 (0.032) +Train: 54 [ 300/312 ( 96%)] Loss: 3.77 (3.66) Time: 0.415s, 2465.62/s (0.415s, 2465.72/s) LR: 2.852e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.495 (1.495) Loss: 2.627 ( 2.627) Acc@1: 47.656 ( 47.656) Acc@5: 71.777 ( 71.777) +Test: [ 48/48] Time: 0.090 (0.321) Loss: 2.426 ( 2.645) Acc@1: 50.472 ( 47.818) Acc@5: 75.825 ( 71.948) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-49.pth.tar', 48.28799996582031) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-53.pth.tar', 48.097999975585935) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-48.pth.tar', 47.95) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-54.pth.tar', 47.81800001098633) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-47.pth.tar', 47.57999998901367) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-46.pth.tar', 47.55600001953125) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-50.pth.tar', 47.49799996337891) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-52.pth.tar', 47.4500000390625) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-41.pth.tar', 47.43199996826172) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-45.pth.tar', 47.11800001953125) + +Train: 55 [ 0/312 ( 0%)] Loss: 3.48 (3.48) Time: 1.685s, 607.76/s (1.685s, 607.76/s) LR: 2.813e-01 Data: 1.309 (1.309) +Train: 55 [ 50/312 ( 16%)] Loss: 3.52 (3.59) Time: 0.411s, 2492.78/s (0.437s, 2343.78/s) LR: 2.813e-01 Data: 0.027 (0.053) +Train: 55 [ 100/312 ( 32%)] Loss: 3.62 (3.60) Time: 0.409s, 2501.76/s (0.425s, 2411.18/s) LR: 2.813e-01 Data: 0.027 (0.041) +Train: 55 [ 150/312 ( 48%)] Loss: 3.63 (3.61) Time: 0.412s, 2486.26/s (0.421s, 2433.50/s) LR: 2.813e-01 Data: 0.026 (0.036) +Train: 55 [ 200/312 ( 64%)] Loss: 3.82 (3.63) Time: 0.410s, 2498.00/s (0.418s, 2447.33/s) LR: 2.813e-01 Data: 0.027 (0.034) +Train: 55 [ 250/312 ( 80%)] Loss: 3.63 (3.64) Time: 0.412s, 2485.32/s (0.417s, 2454.48/s) LR: 2.813e-01 Data: 0.026 (0.033) +Train: 55 [ 300/312 ( 96%)] Loss: 3.89 (3.65) Time: 0.414s, 2471.36/s (0.416s, 2459.22/s) LR: 2.813e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.441 (1.441) Loss: 2.553 ( 2.553) Acc@1: 47.266 ( 47.266) Acc@5: 72.656 ( 72.656) +Test: [ 48/48] Time: 0.091 (0.322) Loss: 2.363 ( 2.573) Acc@1: 52.241 ( 48.338) Acc@5: 76.297 ( 72.622) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-55.pth.tar', 48.33800000366211) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-49.pth.tar', 48.28799996582031) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-53.pth.tar', 48.097999975585935) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-48.pth.tar', 47.95) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-54.pth.tar', 47.81800001098633) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-47.pth.tar', 47.57999998901367) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-46.pth.tar', 47.55600001953125) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-50.pth.tar', 47.49799996337891) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-52.pth.tar', 47.4500000390625) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-41.pth.tar', 47.43199996826172) + +Train: 56 [ 0/312 ( 0%)] Loss: 3.48 (3.48) Time: 1.624s, 630.63/s (1.624s, 630.63/s) LR: 2.775e-01 Data: 1.251 (1.251) +Train: 56 [ 50/312 ( 16%)] Loss: 3.69 (3.56) Time: 0.414s, 2475.74/s (0.435s, 2355.25/s) LR: 2.775e-01 Data: 0.027 (0.052) +Train: 56 [ 100/312 ( 32%)] Loss: 3.61 (3.58) Time: 0.410s, 2499.62/s (0.423s, 2422.55/s) LR: 2.775e-01 Data: 0.028 (0.040) +Train: 56 [ 150/312 ( 48%)] Loss: 3.69 (3.59) Time: 0.410s, 2495.92/s (0.419s, 2444.92/s) LR: 2.775e-01 Data: 0.028 (0.036) +Train: 56 [ 200/312 ( 64%)] Loss: 3.76 (3.61) Time: 0.410s, 2497.18/s (0.417s, 2456.71/s) LR: 2.775e-01 Data: 0.027 (0.034) +Train: 56 [ 250/312 ( 80%)] Loss: 3.60 (3.62) Time: 0.408s, 2508.93/s (0.416s, 2464.14/s) LR: 2.775e-01 Data: 0.028 (0.033) +Train: 56 [ 300/312 ( 96%)] Loss: 3.71 (3.63) Time: 0.412s, 2486.52/s (0.415s, 2470.32/s) LR: 2.775e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.404 (1.404) Loss: 2.653 ( 2.653) Acc@1: 46.191 ( 46.191) Acc@5: 70.312 ( 70.312) +Test: [ 48/48] Time: 0.091 (0.325) Loss: 2.448 ( 2.658) Acc@1: 52.241 ( 47.346) Acc@5: 74.528 ( 71.718) +Train: 57 [ 0/312 ( 0%)] Loss: 3.49 (3.49) Time: 1.428s, 717.09/s (1.428s, 717.09/s) LR: 2.736e-01 Data: 1.046 (1.046) +Train: 57 [ 50/312 ( 16%)] Loss: 3.45 (3.54) Time: 0.411s, 2491.96/s (0.430s, 2383.61/s) LR: 2.736e-01 Data: 0.028 (0.047) +Train: 57 [ 100/312 ( 32%)] Loss: 3.54 (3.56) Time: 0.409s, 2504.97/s (0.420s, 2437.55/s) LR: 2.736e-01 Data: 0.028 (0.038) +Train: 57 [ 150/312 ( 48%)] Loss: 3.67 (3.57) Time: 0.409s, 2502.78/s (0.417s, 2456.09/s) LR: 2.736e-01 Data: 0.025 (0.034) +Train: 57 [ 200/312 ( 64%)] Loss: 3.53 (3.59) Time: 0.409s, 2502.63/s (0.415s, 2466.10/s) LR: 2.736e-01 Data: 0.027 (0.033) +Train: 57 [ 250/312 ( 80%)] Loss: 3.67 (3.60) Time: 0.410s, 2497.76/s (0.414s, 2471.56/s) LR: 2.736e-01 Data: 0.029 (0.032) +Train: 57 [ 300/312 ( 96%)] Loss: 3.52 (3.61) Time: 0.418s, 2450.97/s (0.414s, 2475.13/s) LR: 2.736e-01 Data: 0.037 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.405 (1.405) Loss: 2.733 ( 2.733) Acc@1: 45.312 ( 45.312) Acc@5: 70.410 ( 70.410) +Test: [ 48/48] Time: 0.091 (0.320) Loss: 2.489 ( 2.670) Acc@1: 53.538 ( 47.834) Acc@5: 74.528 ( 71.938) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-55.pth.tar', 48.33800000366211) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-49.pth.tar', 48.28799996582031) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-53.pth.tar', 48.097999975585935) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-48.pth.tar', 47.95) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-57.pth.tar', 47.83400005004883) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-54.pth.tar', 47.81800001098633) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-47.pth.tar', 47.57999998901367) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-46.pth.tar', 47.55600001953125) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-50.pth.tar', 47.49799996337891) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-52.pth.tar', 47.4500000390625) + +Train: 58 [ 0/312 ( 0%)] Loss: 3.49 (3.49) Time: 1.919s, 533.65/s (1.919s, 533.65/s) LR: 2.697e-01 Data: 1.371 (1.371) +Train: 58 [ 50/312 ( 16%)] Loss: 3.55 (3.51) Time: 0.412s, 2482.90/s (0.441s, 2321.01/s) LR: 2.697e-01 Data: 0.029 (0.054) +Train: 58 [ 100/312 ( 32%)] Loss: 3.64 (3.53) Time: 0.411s, 2489.36/s (0.427s, 2400.00/s) LR: 2.697e-01 Data: 0.028 (0.041) +Train: 58 [ 150/312 ( 48%)] Loss: 3.73 (3.55) Time: 0.409s, 2502.65/s (0.422s, 2428.64/s) LR: 2.697e-01 Data: 0.028 (0.037) +Train: 58 [ 200/312 ( 64%)] Loss: 3.61 (3.57) Time: 0.411s, 2493.27/s (0.419s, 2442.68/s) LR: 2.697e-01 Data: 0.029 (0.034) +Train: 58 [ 250/312 ( 80%)] Loss: 3.69 (3.58) Time: 0.412s, 2487.16/s (0.418s, 2450.36/s) LR: 2.697e-01 Data: 0.028 (0.033) +Train: 58 [ 300/312 ( 96%)] Loss: 3.61 (3.59) Time: 0.411s, 2494.08/s (0.417s, 2455.86/s) LR: 2.697e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.425 (1.425) Loss: 2.633 ( 2.633) Acc@1: 49.121 ( 49.121) Acc@5: 72.461 ( 72.461) +Test: [ 48/48] Time: 0.089 (0.320) Loss: 2.433 ( 2.627) Acc@1: 51.297 ( 48.128) Acc@5: 76.651 ( 72.432) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-55.pth.tar', 48.33800000366211) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-49.pth.tar', 48.28799996582031) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-58.pth.tar', 48.12800004638672) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-53.pth.tar', 48.097999975585935) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-48.pth.tar', 47.95) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-57.pth.tar', 47.83400005004883) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-54.pth.tar', 47.81800001098633) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-47.pth.tar', 47.57999998901367) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-46.pth.tar', 47.55600001953125) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-50.pth.tar', 47.49799996337891) + +Train: 59 [ 0/312 ( 0%)] Loss: 3.54 (3.54) Time: 1.554s, 658.84/s (1.554s, 658.84/s) LR: 2.658e-01 Data: 1.104 (1.104) +Train: 59 [ 50/312 ( 16%)] Loss: 3.44 (3.53) Time: 0.409s, 2503.34/s (0.432s, 2372.82/s) LR: 2.658e-01 Data: 0.028 (0.049) +Train: 59 [ 100/312 ( 32%)] Loss: 3.52 (3.53) Time: 0.410s, 2496.42/s (0.421s, 2429.84/s) LR: 2.658e-01 Data: 0.028 (0.038) +Train: 59 [ 150/312 ( 48%)] Loss: 3.52 (3.54) Time: 0.412s, 2486.38/s (0.418s, 2450.71/s) LR: 2.658e-01 Data: 0.027 (0.035) +Train: 59 [ 200/312 ( 64%)] Loss: 3.63 (3.55) Time: 0.411s, 2491.68/s (0.416s, 2460.43/s) LR: 2.658e-01 Data: 0.028 (0.033) +Train: 59 [ 250/312 ( 80%)] Loss: 3.58 (3.56) Time: 0.413s, 2481.44/s (0.415s, 2464.72/s) LR: 2.658e-01 Data: 0.030 (0.032) +Train: 59 [ 300/312 ( 96%)] Loss: 3.78 (3.58) Time: 0.411s, 2490.09/s (0.415s, 2467.34/s) LR: 2.658e-01 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.424 (1.424) Loss: 2.625 ( 2.625) Acc@1: 47.656 ( 47.656) Acc@5: 71.777 ( 71.777) +Test: [ 48/48] Time: 0.090 (0.319) Loss: 2.422 ( 2.642) Acc@1: 50.590 ( 47.584) Acc@5: 75.943 ( 71.700) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-55.pth.tar', 48.33800000366211) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-49.pth.tar', 48.28799996582031) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-58.pth.tar', 48.12800004638672) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-53.pth.tar', 48.097999975585935) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-48.pth.tar', 47.95) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-57.pth.tar', 47.83400005004883) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-54.pth.tar', 47.81800001098633) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-59.pth.tar', 47.58400006225586) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-47.pth.tar', 47.57999998901367) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-46.pth.tar', 47.55600001953125) + +Train: 60 [ 0/312 ( 0%)] Loss: 3.51 (3.51) Time: 2.171s, 471.70/s (2.171s, 471.70/s) LR: 2.618e-01 Data: 1.797 (1.797) +Train: 60 [ 50/312 ( 16%)] Loss: 3.47 (3.50) Time: 0.410s, 2497.62/s (0.444s, 2305.24/s) LR: 2.618e-01 Data: 0.027 (0.063) +Train: 60 [ 100/312 ( 32%)] Loss: 3.60 (3.51) Time: 0.409s, 2504.70/s (0.428s, 2394.71/s) LR: 2.618e-01 Data: 0.028 (0.046) +Train: 60 [ 150/312 ( 48%)] Loss: 3.64 (3.53) Time: 0.411s, 2494.47/s (0.421s, 2432.17/s) LR: 2.618e-01 Data: 0.031 (0.040) +Train: 60 [ 200/312 ( 64%)] Loss: 3.66 (3.54) Time: 0.409s, 2503.78/s (0.418s, 2451.14/s) LR: 2.618e-01 Data: 0.027 (0.037) +Train: 60 [ 250/312 ( 80%)] Loss: 3.62 (3.55) Time: 0.411s, 2490.47/s (0.416s, 2459.35/s) LR: 2.618e-01 Data: 0.027 (0.035) +Train: 60 [ 300/312 ( 96%)] Loss: 3.54 (3.56) Time: 0.410s, 2500.43/s (0.415s, 2464.89/s) LR: 2.618e-01 Data: 0.028 (0.034) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.415 (1.415) Loss: 2.575 ( 2.575) Acc@1: 52.051 ( 52.051) Acc@5: 73.242 ( 73.242) +Test: [ 48/48] Time: 0.089 (0.321) Loss: 2.375 ( 2.631) Acc@1: 54.717 ( 48.734) Acc@5: 77.241 ( 72.434) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-60.pth.tar', 48.73400004516601) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-55.pth.tar', 48.33800000366211) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-49.pth.tar', 48.28799996582031) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-58.pth.tar', 48.12800004638672) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-53.pth.tar', 48.097999975585935) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-48.pth.tar', 47.95) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-57.pth.tar', 47.83400005004883) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-54.pth.tar', 47.81800001098633) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-59.pth.tar', 47.58400006225586) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-47.pth.tar', 47.57999998901367) + +Train: 61 [ 0/312 ( 0%)] Loss: 3.55 (3.55) Time: 1.725s, 593.56/s (1.725s, 593.56/s) LR: 2.578e-01 Data: 1.131 (1.131) +Train: 61 [ 50/312 ( 16%)] Loss: 3.47 (3.46) Time: 0.405s, 2528.33/s (0.432s, 2372.26/s) LR: 2.578e-01 Data: 0.028 (0.050) +Train: 61 [ 100/312 ( 32%)] Loss: 3.52 (3.48) Time: 0.409s, 2506.29/s (0.420s, 2438.01/s) LR: 2.578e-01 Data: 0.028 (0.039) +Train: 61 [ 150/312 ( 48%)] Loss: 3.46 (3.50) Time: 0.411s, 2489.78/s (0.417s, 2456.44/s) LR: 2.578e-01 Data: 0.028 (0.035) +Train: 61 [ 200/312 ( 64%)] Loss: 3.60 (3.51) Time: 0.411s, 2492.36/s (0.416s, 2463.50/s) LR: 2.578e-01 Data: 0.027 (0.033) +Train: 61 [ 250/312 ( 80%)] Loss: 3.71 (3.53) Time: 0.407s, 2517.55/s (0.414s, 2471.48/s) LR: 2.578e-01 Data: 0.028 (0.032) +Train: 61 [ 300/312 ( 96%)] Loss: 3.71 (3.54) Time: 0.405s, 2527.35/s (0.413s, 2478.40/s) LR: 2.578e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.426 (1.426) Loss: 2.635 ( 2.635) Acc@1: 48.438 ( 48.438) Acc@5: 71.582 ( 71.582) +Test: [ 48/48] Time: 0.090 (0.321) Loss: 2.394 ( 2.639) Acc@1: 52.005 ( 47.548) Acc@5: 76.415 ( 71.676) +Train: 62 [ 0/312 ( 0%)] Loss: 3.57 (3.57) Time: 1.769s, 578.90/s (1.769s, 578.90/s) LR: 2.538e-01 Data: 1.395 (1.395) +Train: 62 [ 50/312 ( 16%)] Loss: 3.47 (3.45) Time: 0.411s, 2494.41/s (0.436s, 2350.38/s) LR: 2.538e-01 Data: 0.025 (0.055) +Train: 62 [ 100/312 ( 32%)] Loss: 3.41 (3.47) Time: 0.410s, 2495.47/s (0.424s, 2417.37/s) LR: 2.538e-01 Data: 0.028 (0.041) +Train: 62 [ 150/312 ( 48%)] Loss: 3.53 (3.48) Time: 0.408s, 2506.93/s (0.418s, 2446.84/s) LR: 2.538e-01 Data: 0.029 (0.037) +Train: 62 [ 200/312 ( 64%)] Loss: 3.51 (3.50) Time: 0.407s, 2517.62/s (0.416s, 2462.66/s) LR: 2.538e-01 Data: 0.028 (0.035) +Train: 62 [ 250/312 ( 80%)] Loss: 3.55 (3.51) Time: 0.410s, 2494.66/s (0.415s, 2470.11/s) LR: 2.538e-01 Data: 0.029 (0.033) +Train: 62 [ 300/312 ( 96%)] Loss: 3.64 (3.52) Time: 0.410s, 2496.21/s (0.414s, 2473.34/s) LR: 2.538e-01 Data: 0.025 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.412 (1.412) Loss: 2.589 ( 2.589) Acc@1: 49.023 ( 49.023) Acc@5: 72.656 ( 72.656) +Test: [ 48/48] Time: 0.090 (0.320) Loss: 2.402 ( 2.631) Acc@1: 53.656 ( 48.390) Acc@5: 76.297 ( 71.932) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-60.pth.tar', 48.73400004516601) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-62.pth.tar', 48.390000036621096) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-55.pth.tar', 48.33800000366211) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-49.pth.tar', 48.28799996582031) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-58.pth.tar', 48.12800004638672) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-53.pth.tar', 48.097999975585935) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-48.pth.tar', 47.95) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-57.pth.tar', 47.83400005004883) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-54.pth.tar', 47.81800001098633) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-59.pth.tar', 47.58400006225586) + +Train: 63 [ 0/312 ( 0%)] Loss: 3.50 (3.50) Time: 1.765s, 580.27/s (1.765s, 580.27/s) LR: 2.497e-01 Data: 1.392 (1.392) +Train: 63 [ 50/312 ( 16%)] Loss: 3.41 (3.42) Time: 0.408s, 2509.91/s (0.435s, 2355.89/s) LR: 2.497e-01 Data: 0.027 (0.055) +Train: 63 [ 100/312 ( 32%)] Loss: 3.50 (3.45) Time: 0.409s, 2506.29/s (0.422s, 2423.92/s) LR: 2.497e-01 Data: 0.027 (0.041) +Train: 63 [ 150/312 ( 48%)] Loss: 3.56 (3.47) Time: 0.411s, 2493.61/s (0.418s, 2447.68/s) LR: 2.497e-01 Data: 0.028 (0.037) +Train: 63 [ 200/312 ( 64%)] Loss: 3.54 (3.48) Time: 0.411s, 2494.43/s (0.417s, 2458.41/s) LR: 2.497e-01 Data: 0.028 (0.035) +Train: 63 [ 250/312 ( 80%)] Loss: 3.51 (3.50) Time: 0.408s, 2507.62/s (0.415s, 2466.63/s) LR: 2.497e-01 Data: 0.027 (0.033) +Train: 63 [ 300/312 ( 96%)] Loss: 3.65 (3.51) Time: 0.407s, 2517.30/s (0.414s, 2474.10/s) LR: 2.497e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.415 (1.415) Loss: 2.613 ( 2.613) Acc@1: 48.828 ( 48.828) Acc@5: 72.363 ( 72.363) +Test: [ 48/48] Time: 0.090 (0.319) Loss: 2.513 ( 2.654) Acc@1: 50.943 ( 48.352) Acc@5: 72.877 ( 71.882) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-60.pth.tar', 48.73400004516601) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-62.pth.tar', 48.390000036621096) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-63.pth.tar', 48.35200002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-55.pth.tar', 48.33800000366211) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-49.pth.tar', 48.28799996582031) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-58.pth.tar', 48.12800004638672) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-53.pth.tar', 48.097999975585935) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-48.pth.tar', 47.95) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-57.pth.tar', 47.83400005004883) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-54.pth.tar', 47.81800001098633) + +Train: 64 [ 0/312 ( 0%)] Loss: 3.43 (3.43) Time: 1.859s, 550.70/s (1.859s, 550.70/s) LR: 2.457e-01 Data: 1.485 (1.485) +Train: 64 [ 50/312 ( 16%)] Loss: 3.47 (3.42) Time: 0.410s, 2496.29/s (0.439s, 2332.45/s) LR: 2.457e-01 Data: 0.028 (0.057) +Train: 64 [ 100/312 ( 32%)] Loss: 3.45 (3.43) Time: 0.413s, 2480.67/s (0.425s, 2406.69/s) LR: 2.457e-01 Data: 0.034 (0.043) +Train: 64 [ 150/312 ( 48%)] Loss: 3.49 (3.45) Time: 0.406s, 2519.55/s (0.420s, 2439.59/s) LR: 2.457e-01 Data: 0.028 (0.038) +Train: 64 [ 200/312 ( 64%)] Loss: 3.49 (3.46) Time: 0.409s, 2503.08/s (0.417s, 2456.94/s) LR: 2.457e-01 Data: 0.027 (0.035) +Train: 64 [ 250/312 ( 80%)] Loss: 3.49 (3.48) Time: 0.409s, 2502.55/s (0.415s, 2465.97/s) LR: 2.457e-01 Data: 0.027 (0.034) +Train: 64 [ 300/312 ( 96%)] Loss: 3.52 (3.49) Time: 0.409s, 2506.62/s (0.415s, 2470.08/s) LR: 2.457e-01 Data: 0.027 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.425 (1.425) Loss: 2.533 ( 2.533) Acc@1: 49.512 ( 49.512) Acc@5: 74.219 ( 74.219) +Test: [ 48/48] Time: 0.090 (0.320) Loss: 2.369 ( 2.609) Acc@1: 52.005 ( 48.104) Acc@5: 75.354 ( 72.218) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-60.pth.tar', 48.73400004516601) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-62.pth.tar', 48.390000036621096) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-63.pth.tar', 48.35200002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-55.pth.tar', 48.33800000366211) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-49.pth.tar', 48.28799996582031) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-58.pth.tar', 48.12800004638672) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-64.pth.tar', 48.104000030517575) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-53.pth.tar', 48.097999975585935) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-48.pth.tar', 47.95) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-57.pth.tar', 47.83400005004883) + +Train: 65 [ 0/312 ( 0%)] Loss: 3.38 (3.38) Time: 1.706s, 600.18/s (1.706s, 600.18/s) LR: 2.416e-01 Data: 1.332 (1.332) +Train: 65 [ 50/312 ( 16%)] Loss: 3.34 (3.40) Time: 0.412s, 2482.74/s (0.436s, 2348.74/s) LR: 2.416e-01 Data: 0.028 (0.053) +Train: 65 [ 100/312 ( 32%)] Loss: 3.55 (3.43) Time: 0.408s, 2510.87/s (0.424s, 2417.17/s) LR: 2.416e-01 Data: 0.028 (0.041) +Train: 65 [ 150/312 ( 48%)] Loss: 3.49 (3.43) Time: 0.415s, 2469.98/s (0.419s, 2446.13/s) LR: 2.416e-01 Data: 0.031 (0.037) +Train: 65 [ 200/312 ( 64%)] Loss: 3.49 (3.45) Time: 0.409s, 2500.87/s (0.416s, 2461.35/s) LR: 2.416e-01 Data: 0.027 (0.034) +Train: 65 [ 250/312 ( 80%)] Loss: 3.43 (3.46) Time: 0.411s, 2493.42/s (0.415s, 2467.39/s) LR: 2.416e-01 Data: 0.027 (0.033) +Train: 65 [ 300/312 ( 96%)] Loss: 3.53 (3.47) Time: 0.409s, 2503.06/s (0.414s, 2470.96/s) LR: 2.416e-01 Data: 0.025 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.404 (1.404) Loss: 2.718 ( 2.718) Acc@1: 46.973 ( 46.973) Acc@5: 71.582 ( 71.582) +Test: [ 48/48] Time: 0.091 (0.320) Loss: 2.499 ( 2.684) Acc@1: 52.123 ( 47.312) Acc@5: 75.472 ( 71.366) +Train: 66 [ 0/312 ( 0%)] Loss: 3.40 (3.40) Time: 1.671s, 612.70/s (1.671s, 612.70/s) LR: 2.375e-01 Data: 1.297 (1.297) +Train: 66 [ 50/312 ( 16%)] Loss: 3.39 (3.38) Time: 0.411s, 2492.49/s (0.435s, 2351.40/s) LR: 2.375e-01 Data: 0.028 (0.053) +Train: 66 [ 100/312 ( 32%)] Loss: 3.33 (3.40) Time: 0.407s, 2515.09/s (0.423s, 2423.37/s) LR: 2.375e-01 Data: 0.028 (0.040) +Train: 66 [ 150/312 ( 48%)] Loss: 3.37 (3.42) Time: 0.409s, 2506.25/s (0.418s, 2452.27/s) LR: 2.375e-01 Data: 0.030 (0.036) +Train: 66 [ 200/312 ( 64%)] Loss: 3.41 (3.43) Time: 0.409s, 2504.32/s (0.415s, 2466.21/s) LR: 2.375e-01 Data: 0.028 (0.034) +Train: 66 [ 250/312 ( 80%)] Loss: 3.48 (3.44) Time: 0.412s, 2483.56/s (0.414s, 2471.23/s) LR: 2.375e-01 Data: 0.028 (0.033) +Train: 66 [ 300/312 ( 96%)] Loss: 3.54 (3.46) Time: 0.415s, 2468.65/s (0.414s, 2473.74/s) LR: 2.375e-01 Data: 0.033 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.438 (1.438) Loss: 2.658 ( 2.658) Acc@1: 47.949 ( 47.949) Acc@5: 73.047 ( 73.047) +Test: [ 48/48] Time: 0.089 (0.319) Loss: 2.485 ( 2.693) Acc@1: 50.708 ( 47.642) Acc@5: 73.467 ( 71.290) +Train: 67 [ 0/312 ( 0%)] Loss: 3.35 (3.35) Time: 1.586s, 645.85/s (1.586s, 645.85/s) LR: 2.334e-01 Data: 1.213 (1.213) +Train: 67 [ 50/312 ( 16%)] Loss: 3.20 (3.37) Time: 0.407s, 2514.95/s (0.429s, 2386.24/s) LR: 2.334e-01 Data: 0.026 (0.051) +Train: 67 [ 100/312 ( 32%)] Loss: 3.54 (3.38) Time: 0.407s, 2517.81/s (0.418s, 2448.24/s) LR: 2.334e-01 Data: 0.028 (0.040) +Train: 67 [ 150/312 ( 48%)] Loss: 3.52 (3.40) Time: 0.409s, 2505.14/s (0.415s, 2466.01/s) LR: 2.334e-01 Data: 0.025 (0.036) +Train: 67 [ 200/312 ( 64%)] Loss: 3.46 (3.41) Time: 0.411s, 2492.04/s (0.414s, 2472.37/s) LR: 2.334e-01 Data: 0.027 (0.034) +Train: 67 [ 250/312 ( 80%)] Loss: 3.50 (3.42) Time: 0.409s, 2501.17/s (0.414s, 2475.77/s) LR: 2.334e-01 Data: 0.028 (0.033) +Train: 67 [ 300/312 ( 96%)] Loss: 3.46 (3.44) Time: 0.413s, 2480.87/s (0.413s, 2477.99/s) LR: 2.334e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.423 (1.423) Loss: 2.580 ( 2.580) Acc@1: 49.805 ( 49.805) Acc@5: 72.754 ( 72.754) +Test: [ 48/48] Time: 0.090 (0.320) Loss: 2.392 ( 2.641) Acc@1: 51.415 ( 48.150) Acc@5: 75.354 ( 71.490) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-60.pth.tar', 48.73400004516601) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-62.pth.tar', 48.390000036621096) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-63.pth.tar', 48.35200002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-55.pth.tar', 48.33800000366211) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-49.pth.tar', 48.28799996582031) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-67.pth.tar', 48.150000032958985) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-58.pth.tar', 48.12800004638672) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-64.pth.tar', 48.104000030517575) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-53.pth.tar', 48.097999975585935) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-48.pth.tar', 47.95) + +Train: 68 [ 0/312 ( 0%)] Loss: 3.37 (3.37) Time: 1.738s, 589.03/s (1.738s, 589.03/s) LR: 2.292e-01 Data: 1.366 (1.366) +Train: 68 [ 50/312 ( 16%)] Loss: 3.36 (3.35) Time: 0.406s, 2523.13/s (0.432s, 2372.36/s) LR: 2.292e-01 Data: 0.027 (0.054) +Train: 68 [ 100/312 ( 32%)] Loss: 3.38 (3.37) Time: 0.408s, 2509.91/s (0.419s, 2446.09/s) LR: 2.292e-01 Data: 0.033 (0.041) +Train: 68 [ 150/312 ( 48%)] Loss: 3.44 (3.38) Time: 0.408s, 2508.42/s (0.415s, 2469.81/s) LR: 2.292e-01 Data: 0.028 (0.037) +Train: 68 [ 200/312 ( 64%)] Loss: 3.48 (3.40) Time: 0.410s, 2500.07/s (0.413s, 2477.97/s) LR: 2.292e-01 Data: 0.028 (0.035) +Train: 68 [ 250/312 ( 80%)] Loss: 3.56 (3.41) Time: 0.410s, 2499.23/s (0.413s, 2480.71/s) LR: 2.292e-01 Data: 0.027 (0.033) +Train: 68 [ 300/312 ( 96%)] Loss: 3.52 (3.42) Time: 0.414s, 2472.40/s (0.413s, 2482.07/s) LR: 2.292e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.447 (1.447) Loss: 2.588 ( 2.588) Acc@1: 48.926 ( 48.926) Acc@5: 71.875 ( 71.875) +Test: [ 48/48] Time: 0.090 (0.323) Loss: 2.371 ( 2.648) Acc@1: 52.241 ( 48.344) Acc@5: 76.533 ( 71.778) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-60.pth.tar', 48.73400004516601) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-62.pth.tar', 48.390000036621096) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-63.pth.tar', 48.35200002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-68.pth.tar', 48.34400006835938) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-55.pth.tar', 48.33800000366211) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-49.pth.tar', 48.28799996582031) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-67.pth.tar', 48.150000032958985) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-58.pth.tar', 48.12800004638672) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-64.pth.tar', 48.104000030517575) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-53.pth.tar', 48.097999975585935) + +Train: 69 [ 0/312 ( 0%)] Loss: 3.34 (3.34) Time: 2.004s, 511.07/s (2.004s, 511.07/s) LR: 2.251e-01 Data: 1.628 (1.628) +Train: 69 [ 50/312 ( 16%)] Loss: 3.27 (3.33) Time: 0.412s, 2483.79/s (0.443s, 2309.71/s) LR: 2.251e-01 Data: 0.028 (0.059) +Train: 69 [ 100/312 ( 32%)] Loss: 3.42 (3.35) Time: 0.408s, 2507.25/s (0.428s, 2393.12/s) LR: 2.251e-01 Data: 0.026 (0.044) +Train: 69 [ 150/312 ( 48%)] Loss: 3.39 (3.35) Time: 0.412s, 2484.02/s (0.423s, 2422.71/s) LR: 2.251e-01 Data: 0.028 (0.038) +Train: 69 [ 200/312 ( 64%)] Loss: 3.38 (3.37) Time: 0.407s, 2513.98/s (0.420s, 2440.13/s) LR: 2.251e-01 Data: 0.028 (0.036) +Train: 69 [ 250/312 ( 80%)] Loss: 3.46 (3.39) Time: 0.407s, 2515.55/s (0.417s, 2454.42/s) LR: 2.251e-01 Data: 0.028 (0.034) +Train: 69 [ 300/312 ( 96%)] Loss: 3.50 (3.40) Time: 0.406s, 2522.89/s (0.415s, 2464.94/s) LR: 2.251e-01 Data: 0.027 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.436 (1.436) Loss: 2.636 ( 2.636) Acc@1: 47.949 ( 47.949) Acc@5: 72.070 ( 72.070) +Test: [ 48/48] Time: 0.090 (0.318) Loss: 2.439 ( 2.665) Acc@1: 52.948 ( 48.180) Acc@5: 74.057 ( 71.676) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-60.pth.tar', 48.73400004516601) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-62.pth.tar', 48.390000036621096) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-63.pth.tar', 48.35200002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-68.pth.tar', 48.34400006835938) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-55.pth.tar', 48.33800000366211) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-49.pth.tar', 48.28799996582031) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-69.pth.tar', 48.180000052490236) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-67.pth.tar', 48.150000032958985) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-58.pth.tar', 48.12800004638672) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-64.pth.tar', 48.104000030517575) + +Train: 70 [ 0/312 ( 0%)] Loss: 3.31 (3.31) Time: 1.655s, 618.89/s (1.655s, 618.89/s) LR: 2.209e-01 Data: 1.178 (1.178) +Train: 70 [ 50/312 ( 16%)] Loss: 3.34 (3.31) Time: 0.410s, 2499.83/s (0.433s, 2362.26/s) LR: 2.209e-01 Data: 0.027 (0.050) +Train: 70 [ 100/312 ( 32%)] Loss: 3.45 (3.34) Time: 0.413s, 2481.47/s (0.423s, 2421.07/s) LR: 2.209e-01 Data: 0.028 (0.039) +Train: 70 [ 150/312 ( 48%)] Loss: 3.33 (3.35) Time: 0.413s, 2481.55/s (0.420s, 2440.18/s) LR: 2.209e-01 Data: 0.027 (0.036) +Train: 70 [ 200/312 ( 64%)] Loss: 3.41 (3.36) Time: 0.414s, 2472.64/s (0.418s, 2450.19/s) LR: 2.209e-01 Data: 0.028 (0.034) +Train: 70 [ 250/312 ( 80%)] Loss: 3.35 (3.38) Time: 0.412s, 2484.97/s (0.417s, 2457.47/s) LR: 2.209e-01 Data: 0.028 (0.033) +Train: 70 [ 300/312 ( 96%)] Loss: 3.43 (3.39) Time: 0.418s, 2447.66/s (0.416s, 2461.16/s) LR: 2.209e-01 Data: 0.032 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.437 (1.437) Loss: 2.600 ( 2.600) Acc@1: 48.926 ( 48.926) Acc@5: 71.973 ( 71.973) +Test: [ 48/48] Time: 0.089 (0.320) Loss: 2.488 ( 2.681) Acc@1: 52.476 ( 47.888) Acc@5: 73.703 ( 70.950) +Train: 71 [ 0/312 ( 0%)] Loss: 3.16 (3.16) Time: 1.706s, 600.20/s (1.706s, 600.20/s) LR: 2.167e-01 Data: 1.100 (1.100) +Train: 71 [ 50/312 ( 16%)] Loss: 3.37 (3.29) Time: 0.405s, 2525.91/s (0.432s, 2372.66/s) LR: 2.167e-01 Data: 0.027 (0.049) +Train: 71 [ 100/312 ( 32%)] Loss: 3.33 (3.31) Time: 0.407s, 2514.52/s (0.419s, 2442.47/s) LR: 2.167e-01 Data: 0.028 (0.038) +Train: 71 [ 150/312 ( 48%)] Loss: 3.34 (3.33) Time: 0.410s, 2495.35/s (0.416s, 2462.38/s) LR: 2.167e-01 Data: 0.028 (0.035) +Train: 71 [ 200/312 ( 64%)] Loss: 3.33 (3.34) Time: 0.410s, 2495.22/s (0.415s, 2467.94/s) LR: 2.167e-01 Data: 0.028 (0.033) +Train: 71 [ 250/312 ( 80%)] Loss: 3.44 (3.35) Time: 0.408s, 2511.28/s (0.414s, 2473.79/s) LR: 2.167e-01 Data: 0.028 (0.032) +Train: 71 [ 300/312 ( 96%)] Loss: 3.39 (3.37) Time: 0.408s, 2508.24/s (0.413s, 2478.74/s) LR: 2.167e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.436 (1.436) Loss: 2.556 ( 2.556) Acc@1: 50.195 ( 50.195) Acc@5: 73.730 ( 73.730) +Test: [ 48/48] Time: 0.090 (0.319) Loss: 2.474 ( 2.678) Acc@1: 50.708 ( 47.976) Acc@5: 76.651 ( 71.458) +Train: 72 [ 0/312 ( 0%)] Loss: 3.32 (3.32) Time: 1.624s, 630.73/s (1.624s, 630.73/s) LR: 2.126e-01 Data: 1.202 (1.202) +Train: 72 [ 50/312 ( 16%)] Loss: 3.40 (3.29) Time: 0.414s, 2474.92/s (0.436s, 2350.80/s) LR: 2.126e-01 Data: 0.028 (0.051) +Train: 72 [ 100/312 ( 32%)] Loss: 3.30 (3.30) Time: 0.409s, 2501.08/s (0.424s, 2413.37/s) LR: 2.126e-01 Data: 0.026 (0.039) +Train: 72 [ 150/312 ( 48%)] Loss: 3.33 (3.32) Time: 0.408s, 2512.11/s (0.419s, 2443.20/s) LR: 2.126e-01 Data: 0.026 (0.036) +Train: 72 [ 200/312 ( 64%)] Loss: 3.32 (3.33) Time: 0.408s, 2507.50/s (0.416s, 2459.02/s) LR: 2.126e-01 Data: 0.028 (0.034) +Train: 72 [ 250/312 ( 80%)] Loss: 3.42 (3.34) Time: 0.411s, 2490.42/s (0.415s, 2467.14/s) LR: 2.126e-01 Data: 0.028 (0.033) +Train: 72 [ 300/312 ( 96%)] Loss: 3.38 (3.35) Time: 0.414s, 2476.20/s (0.415s, 2469.65/s) LR: 2.126e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.416 (1.416) Loss: 2.676 ( 2.676) Acc@1: 47.754 ( 47.754) Acc@5: 71.191 ( 71.191) +Test: [ 48/48] Time: 0.090 (0.321) Loss: 2.454 ( 2.670) Acc@1: 51.533 ( 48.082) Acc@5: 73.585 ( 71.074) +Train: 73 [ 0/312 ( 0%)] Loss: 3.36 (3.36) Time: 1.628s, 628.83/s (1.628s, 628.83/s) LR: 2.084e-01 Data: 1.205 (1.205) +Train: 73 [ 50/312 ( 16%)] Loss: 3.35 (3.26) Time: 0.407s, 2513.14/s (0.434s, 2360.31/s) LR: 2.084e-01 Data: 0.028 (0.051) +Train: 73 [ 100/312 ( 32%)] Loss: 3.42 (3.29) Time: 0.409s, 2505.06/s (0.421s, 2430.03/s) LR: 2.084e-01 Data: 0.029 (0.039) +Train: 73 [ 150/312 ( 48%)] Loss: 3.45 (3.30) Time: 0.413s, 2479.77/s (0.418s, 2449.19/s) LR: 2.084e-01 Data: 0.028 (0.036) +Train: 73 [ 200/312 ( 64%)] Loss: 3.33 (3.31) Time: 0.411s, 2492.38/s (0.416s, 2459.08/s) LR: 2.084e-01 Data: 0.025 (0.034) +Train: 73 [ 250/312 ( 80%)] Loss: 3.43 (3.32) Time: 0.409s, 2501.45/s (0.415s, 2465.13/s) LR: 2.084e-01 Data: 0.028 (0.033) +Train: 73 [ 300/312 ( 96%)] Loss: 3.31 (3.33) Time: 0.410s, 2498.47/s (0.415s, 2470.15/s) LR: 2.084e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.412 (1.412) Loss: 2.641 ( 2.641) Acc@1: 49.902 ( 49.902) Acc@5: 70.508 ( 70.508) +Test: [ 48/48] Time: 0.091 (0.318) Loss: 2.488 ( 2.699) Acc@1: 50.943 ( 47.866) Acc@5: 73.821 ( 71.060) +Train: 74 [ 0/312 ( 0%)] Loss: 3.18 (3.18) Time: 2.022s, 506.55/s (2.022s, 506.55/s) LR: 2.042e-01 Data: 1.646 (1.646) +Train: 74 [ 50/312 ( 16%)] Loss: 3.16 (3.23) Time: 0.412s, 2485.06/s (0.447s, 2291.53/s) LR: 2.042e-01 Data: 0.026 (0.063) +Train: 74 [ 100/312 ( 32%)] Loss: 3.29 (3.25) Time: 0.410s, 2497.80/s (0.429s, 2387.37/s) LR: 2.042e-01 Data: 0.026 (0.046) +Train: 74 [ 150/312 ( 48%)] Loss: 3.29 (3.28) Time: 0.415s, 2469.42/s (0.423s, 2420.04/s) LR: 2.042e-01 Data: 0.027 (0.040) +Train: 74 [ 200/312 ( 64%)] Loss: 3.33 (3.29) Time: 0.412s, 2486.80/s (0.421s, 2434.29/s) LR: 2.042e-01 Data: 0.028 (0.037) +Train: 74 [ 250/312 ( 80%)] Loss: 3.41 (3.31) Time: 0.409s, 2501.16/s (0.419s, 2444.34/s) LR: 2.042e-01 Data: 0.025 (0.035) +Train: 74 [ 300/312 ( 96%)] Loss: 3.29 (3.32) Time: 0.411s, 2494.42/s (0.418s, 2452.31/s) LR: 2.042e-01 Data: 0.028 (0.034) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.481 (1.481) Loss: 2.617 ( 2.617) Acc@1: 50.879 ( 50.879) Acc@5: 71.973 ( 71.973) +Test: [ 48/48] Time: 0.090 (0.323) Loss: 2.421 ( 2.688) Acc@1: 52.241 ( 48.072) Acc@5: 75.943 ( 71.170) +Train: 75 [ 0/312 ( 0%)] Loss: 3.18 (3.18) Time: 1.996s, 513.09/s (1.996s, 513.09/s) LR: 2.000e-01 Data: 1.359 (1.359) +Train: 75 [ 50/312 ( 16%)] Loss: 3.32 (3.22) Time: 0.413s, 2478.63/s (0.442s, 2314.49/s) LR: 2.000e-01 Data: 0.030 (0.055) +Train: 75 [ 100/312 ( 32%)] Loss: 3.17 (3.24) Time: 0.408s, 2509.75/s (0.427s, 2399.88/s) LR: 2.000e-01 Data: 0.027 (0.042) +Train: 75 [ 150/312 ( 48%)] Loss: 3.33 (3.26) Time: 0.408s, 2509.64/s (0.421s, 2433.35/s) LR: 2.000e-01 Data: 0.027 (0.037) +Train: 75 [ 200/312 ( 64%)] Loss: 3.29 (3.28) Time: 0.408s, 2508.38/s (0.418s, 2447.26/s) LR: 2.000e-01 Data: 0.027 (0.035) +Train: 75 [ 250/312 ( 80%)] Loss: 3.37 (3.29) Time: 0.416s, 2459.48/s (0.417s, 2456.13/s) LR: 2.000e-01 Data: 0.027 (0.033) +Train: 75 [ 300/312 ( 96%)] Loss: 3.36 (3.30) Time: 0.410s, 2495.48/s (0.416s, 2460.93/s) LR: 2.000e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.422 (1.422) Loss: 2.533 ( 2.533) Acc@1: 50.098 ( 50.098) Acc@5: 73.926 ( 73.926) +Test: [ 48/48] Time: 0.091 (0.320) Loss: 2.409 ( 2.673) Acc@1: 54.481 ( 48.090) Acc@5: 76.179 ( 71.414) +Train: 76 [ 0/312 ( 0%)] Loss: 3.18 (3.18) Time: 1.686s, 607.32/s (1.686s, 607.32/s) LR: 1.958e-01 Data: 1.311 (1.311) +Train: 76 [ 50/312 ( 16%)] Loss: 3.19 (3.21) Time: 0.410s, 2496.96/s (0.437s, 2345.24/s) LR: 1.958e-01 Data: 0.027 (0.053) +Train: 76 [ 100/312 ( 32%)] Loss: 3.36 (3.24) Time: 0.414s, 2475.67/s (0.425s, 2410.85/s) LR: 1.958e-01 Data: 0.027 (0.040) +Train: 76 [ 150/312 ( 48%)] Loss: 3.23 (3.25) Time: 0.410s, 2497.08/s (0.420s, 2435.25/s) LR: 1.958e-01 Data: 0.027 (0.036) +Train: 76 [ 200/312 ( 64%)] Loss: 3.28 (3.26) Time: 0.407s, 2514.99/s (0.418s, 2450.51/s) LR: 1.958e-01 Data: 0.026 (0.034) +Train: 76 [ 250/312 ( 80%)] Loss: 3.28 (3.27) Time: 0.413s, 2480.22/s (0.416s, 2458.65/s) LR: 1.958e-01 Data: 0.028 (0.033) +Train: 76 [ 300/312 ( 96%)] Loss: 3.31 (3.28) Time: 0.411s, 2490.64/s (0.416s, 2463.09/s) LR: 1.958e-01 Data: 0.026 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.428 (1.428) Loss: 2.709 ( 2.709) Acc@1: 48.340 ( 48.340) Acc@5: 70.312 ( 70.312) +Test: [ 48/48] Time: 0.090 (0.320) Loss: 2.542 ( 2.717) Acc@1: 50.825 ( 47.690) Acc@5: 72.524 ( 70.394) +Train: 77 [ 0/312 ( 0%)] Loss: 3.13 (3.13) Time: 1.730s, 591.81/s (1.730s, 591.81/s) LR: 1.916e-01 Data: 1.180 (1.180) +Train: 77 [ 50/312 ( 16%)] Loss: 3.16 (3.21) Time: 0.412s, 2484.44/s (0.436s, 2349.53/s) LR: 1.916e-01 Data: 0.029 (0.050) +Train: 77 [ 100/312 ( 32%)] Loss: 3.34 (3.21) Time: 0.409s, 2502.54/s (0.423s, 2418.88/s) LR: 1.916e-01 Data: 0.028 (0.039) +Train: 77 [ 150/312 ( 48%)] Loss: 3.27 (3.23) Time: 0.408s, 2507.57/s (0.419s, 2442.93/s) LR: 1.916e-01 Data: 0.027 (0.036) +Train: 77 [ 200/312 ( 64%)] Loss: 3.34 (3.24) Time: 0.412s, 2483.17/s (0.417s, 2454.84/s) LR: 1.916e-01 Data: 0.029 (0.034) +Train: 77 [ 250/312 ( 80%)] Loss: 3.26 (3.25) Time: 0.417s, 2455.45/s (0.416s, 2462.01/s) LR: 1.916e-01 Data: 0.029 (0.032) +Train: 77 [ 300/312 ( 96%)] Loss: 3.44 (3.27) Time: 0.408s, 2512.16/s (0.415s, 2467.61/s) LR: 1.916e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.423 (1.423) Loss: 2.690 ( 2.690) Acc@1: 46.973 ( 46.973) Acc@5: 72.070 ( 72.070) +Test: [ 48/48] Time: 0.090 (0.323) Loss: 2.472 ( 2.722) Acc@1: 51.415 ( 47.640) Acc@5: 74.292 ( 70.704) +Train: 78 [ 0/312 ( 0%)] Loss: 3.23 (3.23) Time: 1.587s, 645.43/s (1.587s, 645.43/s) LR: 1.874e-01 Data: 1.213 (1.213) +Train: 78 [ 50/312 ( 16%)] Loss: 3.18 (3.15) Time: 0.410s, 2496.56/s (0.432s, 2367.94/s) LR: 1.874e-01 Data: 0.028 (0.051) +Train: 78 [ 100/312 ( 32%)] Loss: 3.30 (3.18) Time: 0.409s, 2502.62/s (0.422s, 2427.28/s) LR: 1.874e-01 Data: 0.028 (0.039) +Train: 78 [ 150/312 ( 48%)] Loss: 3.25 (3.21) Time: 0.409s, 2501.76/s (0.418s, 2451.21/s) LR: 1.874e-01 Data: 0.028 (0.036) +Train: 78 [ 200/312 ( 64%)] Loss: 3.32 (3.22) Time: 0.411s, 2492.45/s (0.416s, 2462.54/s) LR: 1.874e-01 Data: 0.027 (0.034) +Train: 78 [ 250/312 ( 80%)] Loss: 3.35 (3.24) Time: 0.410s, 2500.18/s (0.415s, 2468.20/s) LR: 1.874e-01 Data: 0.027 (0.033) +Train: 78 [ 300/312 ( 96%)] Loss: 3.35 (3.25) Time: 0.408s, 2512.47/s (0.414s, 2473.65/s) LR: 1.874e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.429 (1.429) Loss: 2.605 ( 2.605) Acc@1: 50.977 ( 50.977) Acc@5: 71.680 ( 71.680) +Test: [ 48/48] Time: 0.090 (0.323) Loss: 2.372 ( 2.666) Acc@1: 53.066 ( 48.628) Acc@5: 76.769 ( 71.536) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-60.pth.tar', 48.73400004516601) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-78.pth.tar', 48.6280000390625) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-62.pth.tar', 48.390000036621096) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-63.pth.tar', 48.35200002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-68.pth.tar', 48.34400006835938) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-55.pth.tar', 48.33800000366211) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-49.pth.tar', 48.28799996582031) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-69.pth.tar', 48.180000052490236) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-67.pth.tar', 48.150000032958985) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-58.pth.tar', 48.12800004638672) + +Train: 79 [ 0/312 ( 0%)] Loss: 3.15 (3.15) Time: 1.774s, 577.13/s (1.774s, 577.13/s) LR: 1.833e-01 Data: 1.400 (1.400) +Train: 79 [ 50/312 ( 16%)] Loss: 3.16 (3.17) Time: 0.410s, 2495.78/s (0.438s, 2340.11/s) LR: 1.833e-01 Data: 0.025 (0.055) +Train: 79 [ 100/312 ( 32%)] Loss: 3.24 (3.18) Time: 0.408s, 2506.92/s (0.424s, 2414.39/s) LR: 1.833e-01 Data: 0.028 (0.042) +Train: 79 [ 150/312 ( 48%)] Loss: 3.23 (3.19) Time: 0.408s, 2508.18/s (0.419s, 2442.80/s) LR: 1.833e-01 Data: 0.027 (0.037) +Train: 79 [ 200/312 ( 64%)] Loss: 3.23 (3.21) Time: 0.414s, 2471.02/s (0.417s, 2455.44/s) LR: 1.833e-01 Data: 0.032 (0.035) +Train: 79 [ 250/312 ( 80%)] Loss: 3.34 (3.22) Time: 0.414s, 2475.17/s (0.416s, 2463.00/s) LR: 1.833e-01 Data: 0.032 (0.033) +Train: 79 [ 300/312 ( 96%)] Loss: 3.37 (3.23) Time: 0.410s, 2500.32/s (0.415s, 2468.07/s) LR: 1.833e-01 Data: 0.029 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.443 (1.443) Loss: 2.607 ( 2.607) Acc@1: 49.219 ( 49.219) Acc@5: 72.363 ( 72.363) +Test: [ 48/48] Time: 0.090 (0.319) Loss: 2.426 ( 2.703) Acc@1: 53.184 ( 47.904) Acc@5: 75.000 ( 70.948) +Train: 80 [ 0/312 ( 0%)] Loss: 3.21 (3.21) Time: 1.689s, 606.38/s (1.689s, 606.38/s) LR: 1.791e-01 Data: 1.313 (1.313) +Train: 80 [ 50/312 ( 16%)] Loss: 3.08 (3.16) Time: 0.411s, 2490.71/s (0.438s, 2338.21/s) LR: 1.791e-01 Data: 0.029 (0.055) +Train: 80 [ 100/312 ( 32%)] Loss: 3.10 (3.16) Time: 0.407s, 2514.65/s (0.424s, 2415.73/s) LR: 1.791e-01 Data: 0.028 (0.042) +Train: 80 [ 150/312 ( 48%)] Loss: 3.27 (3.18) Time: 0.408s, 2512.04/s (0.419s, 2445.42/s) LR: 1.791e-01 Data: 0.027 (0.037) +Train: 80 [ 200/312 ( 64%)] Loss: 3.30 (3.19) Time: 0.410s, 2499.58/s (0.416s, 2459.22/s) LR: 1.791e-01 Data: 0.027 (0.035) +Train: 80 [ 250/312 ( 80%)] Loss: 3.12 (3.20) Time: 0.412s, 2487.32/s (0.415s, 2465.38/s) LR: 1.791e-01 Data: 0.027 (0.033) +Train: 80 [ 300/312 ( 96%)] Loss: 3.37 (3.21) Time: 0.403s, 2540.05/s (0.414s, 2475.67/s) LR: 1.791e-01 Data: 0.028 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.453 (1.453) Loss: 2.654 ( 2.654) Acc@1: 48.438 ( 48.438) Acc@5: 69.629 ( 69.629) +Test: [ 48/48] Time: 0.088 (0.321) Loss: 2.421 ( 2.732) Acc@1: 55.189 ( 47.722) Acc@5: 76.061 ( 70.458) +Train: 81 [ 0/312 ( 0%)] Loss: 3.04 (3.04) Time: 1.818s, 563.12/s (1.818s, 563.12/s) LR: 1.749e-01 Data: 1.124 (1.124) +Train: 81 [ 50/312 ( 16%)] Loss: 3.19 (3.14) Time: 0.403s, 2544.07/s (0.430s, 2383.69/s) LR: 1.749e-01 Data: 0.028 (0.050) +Train: 81 [ 100/312 ( 32%)] Loss: 3.24 (3.15) Time: 0.403s, 2543.24/s (0.416s, 2460.71/s) LR: 1.749e-01 Data: 0.029 (0.039) +Train: 81 [ 150/312 ( 48%)] Loss: 3.21 (3.17) Time: 0.406s, 2525.16/s (0.412s, 2485.06/s) LR: 1.749e-01 Data: 0.028 (0.035) +Train: 81 [ 200/312 ( 64%)] Loss: 3.24 (3.18) Time: 0.409s, 2503.66/s (0.411s, 2493.41/s) LR: 1.749e-01 Data: 0.028 (0.033) +Train: 81 [ 250/312 ( 80%)] Loss: 3.18 (3.19) Time: 0.410s, 2498.14/s (0.411s, 2494.02/s) LR: 1.749e-01 Data: 0.026 (0.032) +Train: 81 [ 300/312 ( 96%)] Loss: 3.33 (3.20) Time: 0.411s, 2493.94/s (0.411s, 2492.61/s) LR: 1.749e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.494 (1.494) Loss: 2.656 ( 2.656) Acc@1: 49.219 ( 49.219) Acc@5: 70.898 ( 70.898) +Test: [ 48/48] Time: 0.091 (0.320) Loss: 2.479 ( 2.743) Acc@1: 51.887 ( 47.332) Acc@5: 74.882 ( 70.024) +Train: 82 [ 0/312 ( 0%)] Loss: 3.16 (3.16) Time: 2.194s, 466.67/s (2.194s, 466.67/s) LR: 1.708e-01 Data: 1.138 (1.138) +Train: 82 [ 50/312 ( 16%)] Loss: 3.21 (3.12) Time: 0.413s, 2477.53/s (0.447s, 2290.14/s) LR: 1.708e-01 Data: 0.028 (0.049) +Train: 82 [ 100/312 ( 32%)] Loss: 3.07 (3.13) Time: 0.411s, 2490.13/s (0.430s, 2380.76/s) LR: 1.708e-01 Data: 0.029 (0.038) +Train: 82 [ 150/312 ( 48%)] Loss: 3.28 (3.15) Time: 0.413s, 2481.70/s (0.425s, 2411.72/s) LR: 1.708e-01 Data: 0.028 (0.035) +Train: 82 [ 200/312 ( 64%)] Loss: 3.22 (3.16) Time: 0.412s, 2484.97/s (0.422s, 2429.05/s) LR: 1.708e-01 Data: 0.029 (0.033) +Train: 82 [ 250/312 ( 80%)] Loss: 3.22 (3.17) Time: 0.411s, 2489.30/s (0.420s, 2438.97/s) LR: 1.708e-01 Data: 0.028 (0.032) +Train: 82 [ 300/312 ( 96%)] Loss: 3.26 (3.18) Time: 0.410s, 2500.14/s (0.419s, 2446.80/s) LR: 1.708e-01 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.409 (1.409) Loss: 2.750 ( 2.750) Acc@1: 48.047 ( 48.047) Acc@5: 70.020 ( 70.020) +Test: [ 48/48] Time: 0.090 (0.321) Loss: 2.510 ( 2.729) Acc@1: 51.533 ( 47.668) Acc@5: 76.061 ( 70.664) +Train: 83 [ 0/312 ( 0%)] Loss: 3.09 (3.09) Time: 1.629s, 628.45/s (1.629s, 628.45/s) LR: 1.666e-01 Data: 1.255 (1.255) +Train: 83 [ 50/312 ( 16%)] Loss: 3.01 (3.09) Time: 0.410s, 2499.85/s (0.434s, 2359.83/s) LR: 1.666e-01 Data: 0.028 (0.052) +Train: 83 [ 100/312 ( 32%)] Loss: 3.15 (3.11) Time: 0.410s, 2496.56/s (0.423s, 2421.95/s) LR: 1.666e-01 Data: 0.029 (0.040) +Train: 83 [ 150/312 ( 48%)] Loss: 3.11 (3.12) Time: 0.408s, 2512.72/s (0.419s, 2444.23/s) LR: 1.666e-01 Data: 0.026 (0.036) +Train: 83 [ 200/312 ( 64%)] Loss: 3.21 (3.14) Time: 0.407s, 2518.22/s (0.417s, 2457.95/s) LR: 1.666e-01 Data: 0.027 (0.034) +Train: 83 [ 250/312 ( 80%)] Loss: 3.20 (3.15) Time: 0.410s, 2498.09/s (0.415s, 2466.26/s) LR: 1.666e-01 Data: 0.028 (0.033) +Train: 83 [ 300/312 ( 96%)] Loss: 3.26 (3.16) Time: 0.409s, 2501.26/s (0.415s, 2470.17/s) LR: 1.666e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.408 (1.408) Loss: 2.719 ( 2.719) Acc@1: 46.875 ( 46.875) Acc@5: 69.434 ( 69.434) +Test: [ 48/48] Time: 0.090 (0.321) Loss: 2.474 ( 2.735) Acc@1: 54.009 ( 47.882) Acc@5: 75.472 ( 70.510) +Train: 84 [ 0/312 ( 0%)] Loss: 3.01 (3.01) Time: 1.928s, 531.14/s (1.928s, 531.14/s) LR: 1.625e-01 Data: 1.556 (1.556) +Train: 84 [ 50/312 ( 16%)] Loss: 3.12 (3.08) Time: 0.409s, 2503.07/s (0.440s, 2328.64/s) LR: 1.625e-01 Data: 0.028 (0.059) +Train: 84 [ 100/312 ( 32%)] Loss: 3.19 (3.10) Time: 0.411s, 2494.45/s (0.426s, 2406.31/s) LR: 1.625e-01 Data: 0.028 (0.044) +Train: 84 [ 150/312 ( 48%)] Loss: 3.14 (3.11) Time: 0.413s, 2478.01/s (0.421s, 2430.24/s) LR: 1.625e-01 Data: 0.027 (0.038) +Train: 84 [ 200/312 ( 64%)] Loss: 3.17 (3.12) Time: 0.417s, 2455.93/s (0.419s, 2442.59/s) LR: 1.625e-01 Data: 0.029 (0.036) +Train: 84 [ 250/312 ( 80%)] Loss: 3.21 (3.14) Time: 0.410s, 2497.42/s (0.418s, 2450.40/s) LR: 1.625e-01 Data: 0.027 (0.034) +Train: 84 [ 300/312 ( 96%)] Loss: 3.28 (3.15) Time: 0.413s, 2476.48/s (0.417s, 2455.57/s) LR: 1.625e-01 Data: 0.029 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.443 (1.443) Loss: 2.630 ( 2.630) Acc@1: 50.293 ( 50.293) Acc@5: 71.387 ( 71.387) +Test: [ 48/48] Time: 0.090 (0.322) Loss: 2.440 ( 2.696) Acc@1: 52.241 ( 48.088) Acc@5: 75.000 ( 71.012) +Train: 85 [ 0/312 ( 0%)] Loss: 3.10 (3.10) Time: 1.763s, 580.75/s (1.763s, 580.75/s) LR: 1.584e-01 Data: 1.247 (1.247) +Train: 85 [ 50/312 ( 16%)] Loss: 3.13 (3.06) Time: 0.410s, 2496.66/s (0.436s, 2349.35/s) LR: 1.584e-01 Data: 0.029 (0.052) +Train: 85 [ 100/312 ( 32%)] Loss: 3.16 (3.08) Time: 0.407s, 2514.64/s (0.424s, 2417.13/s) LR: 1.584e-01 Data: 0.027 (0.040) +Train: 85 [ 150/312 ( 48%)] Loss: 3.11 (3.09) Time: 0.409s, 2506.34/s (0.418s, 2449.30/s) LR: 1.584e-01 Data: 0.032 (0.036) +Train: 85 [ 200/312 ( 64%)] Loss: 3.13 (3.11) Time: 0.405s, 2527.79/s (0.415s, 2466.99/s) LR: 1.584e-01 Data: 0.027 (0.034) +Train: 85 [ 250/312 ( 80%)] Loss: 3.23 (3.12) Time: 0.406s, 2522.19/s (0.413s, 2477.17/s) LR: 1.584e-01 Data: 0.026 (0.033) +Train: 85 [ 300/312 ( 96%)] Loss: 3.29 (3.13) Time: 0.410s, 2499.10/s (0.413s, 2481.29/s) LR: 1.584e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.448 (1.448) Loss: 2.754 ( 2.754) Acc@1: 47.461 ( 47.461) Acc@5: 69.238 ( 69.238) +Test: [ 48/48] Time: 0.090 (0.322) Loss: 2.517 ( 2.770) Acc@1: 52.123 ( 47.500) Acc@5: 74.175 ( 70.038) +Train: 86 [ 0/312 ( 0%)] Loss: 3.07 (3.07) Time: 1.875s, 546.10/s (1.875s, 546.10/s) LR: 1.543e-01 Data: 1.217 (1.217) +Train: 86 [ 50/312 ( 16%)] Loss: 3.05 (3.06) Time: 0.406s, 2523.17/s (0.436s, 2350.33/s) LR: 1.543e-01 Data: 0.027 (0.051) +Train: 86 [ 100/312 ( 32%)] Loss: 3.12 (3.06) Time: 0.408s, 2510.33/s (0.421s, 2430.42/s) LR: 1.543e-01 Data: 0.027 (0.039) +Train: 86 [ 150/312 ( 48%)] Loss: 3.14 (3.08) Time: 0.410s, 2498.20/s (0.417s, 2453.22/s) LR: 1.543e-01 Data: 0.024 (0.035) +Train: 86 [ 200/312 ( 64%)] Loss: 3.15 (3.09) Time: 0.411s, 2489.93/s (0.416s, 2462.37/s) LR: 1.543e-01 Data: 0.032 (0.034) +Train: 86 [ 250/312 ( 80%)] Loss: 3.23 (3.10) Time: 0.408s, 2511.70/s (0.414s, 2471.73/s) LR: 1.543e-01 Data: 0.027 (0.032) +Train: 86 [ 300/312 ( 96%)] Loss: 3.13 (3.11) Time: 0.409s, 2502.92/s (0.413s, 2478.42/s) LR: 1.543e-01 Data: 0.029 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.454 (1.454) Loss: 2.722 ( 2.722) Acc@1: 47.949 ( 47.949) Acc@5: 69.238 ( 69.238) +Test: [ 48/48] Time: 0.091 (0.321) Loss: 2.533 ( 2.755) Acc@1: 50.236 ( 47.228) Acc@5: 74.646 ( 70.062) +Train: 87 [ 0/312 ( 0%)] Loss: 3.09 (3.09) Time: 1.709s, 599.19/s (1.709s, 599.19/s) LR: 1.503e-01 Data: 1.242 (1.242) +Train: 87 [ 50/312 ( 16%)] Loss: 3.08 (3.05) Time: 0.412s, 2487.40/s (0.439s, 2334.38/s) LR: 1.503e-01 Data: 0.028 (0.052) +Train: 87 [ 100/312 ( 32%)] Loss: 3.06 (3.05) Time: 0.411s, 2493.03/s (0.426s, 2403.73/s) LR: 1.503e-01 Data: 0.027 (0.040) +Train: 87 [ 150/312 ( 48%)] Loss: 3.05 (3.06) Time: 0.407s, 2514.37/s (0.420s, 2436.26/s) LR: 1.503e-01 Data: 0.028 (0.036) +Train: 87 [ 200/312 ( 64%)] Loss: 3.01 (3.07) Time: 0.407s, 2516.98/s (0.417s, 2454.96/s) LR: 1.503e-01 Data: 0.026 (0.034) +Train: 87 [ 250/312 ( 80%)] Loss: 3.19 (3.08) Time: 0.409s, 2505.77/s (0.415s, 2465.31/s) LR: 1.503e-01 Data: 0.027 (0.033) +Train: 87 [ 300/312 ( 96%)] Loss: 3.10 (3.09) Time: 0.414s, 2475.38/s (0.415s, 2469.70/s) LR: 1.503e-01 Data: 0.029 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.407 (1.407) Loss: 2.757 ( 2.757) Acc@1: 47.754 ( 47.754) Acc@5: 68.848 ( 68.848) +Test: [ 48/48] Time: 0.091 (0.319) Loss: 2.503 ( 2.787) Acc@1: 49.882 ( 47.186) Acc@5: 74.882 ( 69.534) +Train: 88 [ 0/312 ( 0%)] Loss: 2.88 (2.88) Time: 1.676s, 610.81/s (1.676s, 610.81/s) LR: 1.462e-01 Data: 1.300 (1.300) +Train: 88 [ 50/312 ( 16%)] Loss: 3.06 (3.01) Time: 0.409s, 2505.76/s (0.443s, 2312.93/s) LR: 1.462e-01 Data: 0.029 (0.060) +Train: 88 [ 100/312 ( 32%)] Loss: 3.11 (3.03) Time: 0.409s, 2501.42/s (0.425s, 2408.14/s) LR: 1.462e-01 Data: 0.032 (0.045) +Train: 88 [ 150/312 ( 48%)] Loss: 3.03 (3.05) Time: 0.407s, 2514.51/s (0.419s, 2442.89/s) LR: 1.462e-01 Data: 0.029 (0.039) +Train: 88 [ 200/312 ( 64%)] Loss: 3.19 (3.06) Time: 0.410s, 2499.00/s (0.416s, 2459.07/s) LR: 1.462e-01 Data: 0.028 (0.036) +Train: 88 [ 250/312 ( 80%)] Loss: 3.10 (3.07) Time: 0.410s, 2497.24/s (0.415s, 2464.75/s) LR: 1.462e-01 Data: 0.028 (0.035) +Train: 88 [ 300/312 ( 96%)] Loss: 3.16 (3.08) Time: 0.408s, 2507.72/s (0.415s, 2470.38/s) LR: 1.462e-01 Data: 0.028 (0.034) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.423 (1.423) Loss: 2.711 ( 2.711) Acc@1: 47.656 ( 47.656) Acc@5: 69.727 ( 69.727) +Test: [ 48/48] Time: 0.091 (0.319) Loss: 2.462 ( 2.739) Acc@1: 51.297 ( 47.822) Acc@5: 74.057 ( 70.386) +Train: 89 [ 0/312 ( 0%)] Loss: 3.06 (3.06) Time: 1.695s, 604.02/s (1.695s, 604.02/s) LR: 1.422e-01 Data: 1.319 (1.319) +Train: 89 [ 50/312 ( 16%)] Loss: 3.04 (3.00) Time: 0.413s, 2481.55/s (0.438s, 2340.05/s) LR: 1.422e-01 Data: 0.029 (0.054) +Train: 89 [ 100/312 ( 32%)] Loss: 3.13 (3.01) Time: 0.411s, 2491.99/s (0.425s, 2408.27/s) LR: 1.422e-01 Data: 0.028 (0.041) +Train: 89 [ 150/312 ( 48%)] Loss: 3.16 (3.03) Time: 0.416s, 2464.35/s (0.421s, 2431.93/s) LR: 1.422e-01 Data: 0.033 (0.037) +Train: 89 [ 200/312 ( 64%)] Loss: 2.98 (3.04) Time: 0.412s, 2484.98/s (0.419s, 2445.02/s) LR: 1.422e-01 Data: 0.028 (0.035) +Train: 89 [ 250/312 ( 80%)] Loss: 3.16 (3.05) Time: 0.409s, 2503.76/s (0.418s, 2452.00/s) LR: 1.422e-01 Data: 0.027 (0.033) +Train: 89 [ 300/312 ( 96%)] Loss: 3.08 (3.06) Time: 0.412s, 2487.76/s (0.417s, 2457.78/s) LR: 1.422e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.463 (1.463) Loss: 2.667 ( 2.667) Acc@1: 48.633 ( 48.633) Acc@5: 70.508 ( 70.508) +Test: [ 48/48] Time: 0.091 (0.320) Loss: 2.455 ( 2.728) Acc@1: 53.538 ( 48.214) Acc@5: 75.236 ( 70.552) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-60.pth.tar', 48.73400004516601) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-78.pth.tar', 48.6280000390625) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-62.pth.tar', 48.390000036621096) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-63.pth.tar', 48.35200002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-68.pth.tar', 48.34400006835938) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-55.pth.tar', 48.33800000366211) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-49.pth.tar', 48.28799996582031) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-89.pth.tar', 48.21400005004883) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-69.pth.tar', 48.180000052490236) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-67.pth.tar', 48.150000032958985) + +Train: 90 [ 0/312 ( 0%)] Loss: 3.04 (3.04) Time: 1.643s, 623.06/s (1.643s, 623.06/s) LR: 1.382e-01 Data: 1.119 (1.119) +Train: 90 [ 50/312 ( 16%)] Loss: 2.95 (2.98) Time: 0.408s, 2509.27/s (0.438s, 2335.24/s) LR: 1.382e-01 Data: 0.028 (0.050) +Train: 90 [ 100/312 ( 32%)] Loss: 3.02 (3.00) Time: 0.408s, 2510.85/s (0.424s, 2412.96/s) LR: 1.382e-01 Data: 0.027 (0.039) +Train: 90 [ 150/312 ( 48%)] Loss: 2.96 (3.01) Time: 0.411s, 2491.30/s (0.420s, 2438.65/s) LR: 1.382e-01 Data: 0.028 (0.035) +Train: 90 [ 200/312 ( 64%)] Loss: 3.02 (3.02) Time: 0.412s, 2487.81/s (0.418s, 2451.44/s) LR: 1.382e-01 Data: 0.029 (0.033) +Train: 90 [ 250/312 ( 80%)] Loss: 3.13 (3.03) Time: 0.410s, 2500.56/s (0.416s, 2459.81/s) LR: 1.382e-01 Data: 0.027 (0.032) +Train: 90 [ 300/312 ( 96%)] Loss: 3.11 (3.04) Time: 0.408s, 2508.21/s (0.415s, 2464.76/s) LR: 1.382e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.427 (1.427) Loss: 2.626 ( 2.626) Acc@1: 49.609 ( 49.609) Acc@5: 70.996 ( 70.996) +Test: [ 48/48] Time: 0.090 (0.323) Loss: 2.392 ( 2.690) Acc@1: 52.830 ( 48.640) Acc@5: 75.000 ( 70.844) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-60.pth.tar', 48.73400004516601) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-90.pth.tar', 48.64000006591797) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-78.pth.tar', 48.6280000390625) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-62.pth.tar', 48.390000036621096) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-63.pth.tar', 48.35200002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-68.pth.tar', 48.34400006835938) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-55.pth.tar', 48.33800000366211) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-49.pth.tar', 48.28799996582031) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-89.pth.tar', 48.21400005004883) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-69.pth.tar', 48.180000052490236) + +Train: 91 [ 0/312 ( 0%)] Loss: 3.05 (3.05) Time: 1.810s, 565.60/s (1.810s, 565.60/s) LR: 1.342e-01 Data: 1.217 (1.217) +Train: 91 [ 50/312 ( 16%)] Loss: 3.00 (2.97) Time: 0.404s, 2532.34/s (0.434s, 2360.73/s) LR: 1.342e-01 Data: 0.026 (0.051) +Train: 91 [ 100/312 ( 32%)] Loss: 2.98 (2.99) Time: 0.407s, 2517.80/s (0.421s, 2434.77/s) LR: 1.342e-01 Data: 0.023 (0.039) +Train: 91 [ 150/312 ( 48%)] Loss: 3.04 (3.00) Time: 0.411s, 2489.50/s (0.417s, 2455.33/s) LR: 1.342e-01 Data: 0.028 (0.036) +Train: 91 [ 200/312 ( 64%)] Loss: 3.07 (3.01) Time: 0.408s, 2507.28/s (0.415s, 2464.75/s) LR: 1.342e-01 Data: 0.028 (0.034) +Train: 91 [ 250/312 ( 80%)] Loss: 3.09 (3.02) Time: 0.412s, 2486.10/s (0.414s, 2473.09/s) LR: 1.342e-01 Data: 0.026 (0.033) +Train: 91 [ 300/312 ( 96%)] Loss: 3.20 (3.03) Time: 0.414s, 2471.49/s (0.413s, 2477.67/s) LR: 1.342e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.496 (1.496) Loss: 2.786 ( 2.786) Acc@1: 45.605 ( 45.605) Acc@5: 69.336 ( 69.336) +Test: [ 48/48] Time: 0.090 (0.324) Loss: 2.526 ( 2.840) Acc@1: 51.651 ( 46.524) Acc@5: 73.349 ( 68.786) +Train: 92 [ 0/312 ( 0%)] Loss: 2.82 (2.82) Time: 1.667s, 614.27/s (1.667s, 614.27/s) LR: 1.303e-01 Data: 1.293 (1.293) +Train: 92 [ 50/312 ( 16%)] Loss: 2.97 (2.94) Time: 0.410s, 2498.97/s (0.435s, 2353.61/s) LR: 1.303e-01 Data: 0.028 (0.052) +Train: 92 [ 100/312 ( 32%)] Loss: 3.10 (2.96) Time: 0.416s, 2462.55/s (0.424s, 2416.04/s) LR: 1.303e-01 Data: 0.029 (0.040) +Train: 92 [ 150/312 ( 48%)] Loss: 2.97 (2.97) Time: 0.408s, 2512.21/s (0.420s, 2439.34/s) LR: 1.303e-01 Data: 0.026 (0.036) +Train: 92 [ 200/312 ( 64%)] Loss: 3.08 (2.99) Time: 0.409s, 2501.54/s (0.417s, 2454.92/s) LR: 1.303e-01 Data: 0.028 (0.034) +Train: 92 [ 250/312 ( 80%)] Loss: 3.15 (3.00) Time: 0.413s, 2479.90/s (0.416s, 2463.02/s) LR: 1.303e-01 Data: 0.028 (0.033) +Train: 92 [ 300/312 ( 96%)] Loss: 3.17 (3.01) Time: 0.416s, 2459.34/s (0.415s, 2465.65/s) LR: 1.303e-01 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.433 (1.433) Loss: 2.748 ( 2.748) Acc@1: 46.973 ( 46.973) Acc@5: 69.824 ( 69.824) +Test: [ 48/48] Time: 0.090 (0.323) Loss: 2.539 ( 2.812) Acc@1: 51.297 ( 46.898) Acc@5: 74.292 ( 69.092) +Train: 93 [ 0/312 ( 0%)] Loss: 2.99 (2.99) Time: 1.979s, 517.32/s (1.979s, 517.32/s) LR: 1.264e-01 Data: 1.606 (1.606) +Train: 93 [ 50/312 ( 16%)] Loss: 2.95 (2.95) Time: 0.411s, 2491.10/s (0.438s, 2337.63/s) LR: 1.264e-01 Data: 0.031 (0.058) +Train: 93 [ 100/312 ( 32%)] Loss: 2.97 (2.95) Time: 0.411s, 2488.58/s (0.424s, 2416.68/s) LR: 1.264e-01 Data: 0.028 (0.043) +Train: 93 [ 150/312 ( 48%)] Loss: 3.04 (2.97) Time: 0.416s, 2463.94/s (0.420s, 2439.34/s) LR: 1.264e-01 Data: 0.029 (0.038) +Train: 93 [ 200/312 ( 64%)] Loss: 2.96 (2.98) Time: 0.407s, 2515.97/s (0.417s, 2454.47/s) LR: 1.264e-01 Data: 0.029 (0.036) +Train: 93 [ 250/312 ( 80%)] Loss: 2.94 (2.99) Time: 0.408s, 2507.81/s (0.415s, 2465.86/s) LR: 1.264e-01 Data: 0.026 (0.034) +Train: 93 [ 300/312 ( 96%)] Loss: 3.09 (3.00) Time: 0.410s, 2498.34/s (0.414s, 2471.54/s) LR: 1.264e-01 Data: 0.026 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.431 (1.431) Loss: 2.718 ( 2.718) Acc@1: 47.559 ( 47.559) Acc@5: 70.410 ( 70.410) +Test: [ 48/48] Time: 0.090 (0.323) Loss: 2.574 ( 2.761) Acc@1: 50.236 ( 47.514) Acc@5: 73.467 ( 69.856) +Train: 94 [ 0/312 ( 0%)] Loss: 2.88 (2.88) Time: 1.588s, 644.64/s (1.588s, 644.64/s) LR: 1.225e-01 Data: 1.199 (1.199) +Train: 94 [ 50/312 ( 16%)] Loss: 2.95 (2.91) Time: 0.407s, 2516.81/s (0.432s, 2370.31/s) LR: 1.225e-01 Data: 0.027 (0.051) +Train: 94 [ 100/312 ( 32%)] Loss: 2.91 (2.93) Time: 0.411s, 2490.66/s (0.422s, 2428.27/s) LR: 1.225e-01 Data: 0.028 (0.039) +Train: 94 [ 150/312 ( 48%)] Loss: 3.06 (2.95) Time: 0.406s, 2522.47/s (0.417s, 2453.49/s) LR: 1.225e-01 Data: 0.029 (0.036) +Train: 94 [ 200/312 ( 64%)] Loss: 3.15 (2.96) Time: 0.408s, 2510.67/s (0.415s, 2470.21/s) LR: 1.225e-01 Data: 0.030 (0.034) +Train: 94 [ 250/312 ( 80%)] Loss: 3.01 (2.96) Time: 0.406s, 2523.52/s (0.413s, 2480.17/s) LR: 1.225e-01 Data: 0.027 (0.033) +Train: 94 [ 300/312 ( 96%)] Loss: 3.10 (2.97) Time: 0.409s, 2506.62/s (0.412s, 2484.88/s) LR: 1.225e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.444 (1.444) Loss: 2.696 ( 2.696) Acc@1: 49.023 ( 49.023) Acc@5: 70.996 ( 70.996) +Test: [ 48/48] Time: 0.090 (0.322) Loss: 2.501 ( 2.749) Acc@1: 51.415 ( 48.100) Acc@5: 73.821 ( 69.994) +Train: 95 [ 0/312 ( 0%)] Loss: 2.90 (2.90) Time: 1.730s, 592.04/s (1.730s, 592.04/s) LR: 1.187e-01 Data: 1.354 (1.354) +Train: 95 [ 50/312 ( 16%)] Loss: 2.91 (2.89) Time: 0.408s, 2510.87/s (0.436s, 2346.03/s) LR: 1.187e-01 Data: 0.029 (0.054) +Train: 95 [ 100/312 ( 32%)] Loss: 2.90 (2.91) Time: 0.407s, 2513.56/s (0.422s, 2424.09/s) LR: 1.187e-01 Data: 0.027 (0.041) +Train: 95 [ 150/312 ( 48%)] Loss: 2.96 (2.93) Time: 0.413s, 2476.97/s (0.418s, 2449.71/s) LR: 1.187e-01 Data: 0.026 (0.037) +Train: 95 [ 200/312 ( 64%)] Loss: 2.89 (2.94) Time: 0.414s, 2470.81/s (0.416s, 2459.34/s) LR: 1.187e-01 Data: 0.028 (0.034) +Train: 95 [ 250/312 ( 80%)] Loss: 3.03 (2.95) Time: 0.406s, 2520.64/s (0.415s, 2466.87/s) LR: 1.187e-01 Data: 0.026 (0.033) +Train: 95 [ 300/312 ( 96%)] Loss: 3.08 (2.96) Time: 0.413s, 2479.79/s (0.414s, 2472.98/s) LR: 1.187e-01 Data: 0.030 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.428 (1.428) Loss: 2.732 ( 2.732) Acc@1: 49.121 ( 49.121) Acc@5: 69.629 ( 69.629) +Test: [ 48/48] Time: 0.091 (0.323) Loss: 2.565 ( 2.795) Acc@1: 51.297 ( 47.260) Acc@5: 73.113 ( 69.292) +Train: 96 [ 0/312 ( 0%)] Loss: 2.90 (2.90) Time: 1.568s, 652.94/s (1.568s, 652.94/s) LR: 1.148e-01 Data: 1.195 (1.195) +Train: 96 [ 50/312 ( 16%)] Loss: 3.01 (2.88) Time: 0.411s, 2490.10/s (0.435s, 2352.87/s) LR: 1.148e-01 Data: 0.027 (0.051) +Train: 96 [ 100/312 ( 32%)] Loss: 2.92 (2.89) Time: 0.409s, 2501.43/s (0.424s, 2415.62/s) LR: 1.148e-01 Data: 0.029 (0.040) +Train: 96 [ 150/312 ( 48%)] Loss: 2.87 (2.90) Time: 0.407s, 2515.16/s (0.419s, 2444.66/s) LR: 1.148e-01 Data: 0.028 (0.036) +Train: 96 [ 200/312 ( 64%)] Loss: 2.87 (2.92) Time: 0.409s, 2502.84/s (0.416s, 2462.06/s) LR: 1.148e-01 Data: 0.033 (0.034) +Train: 96 [ 250/312 ( 80%)] Loss: 3.02 (2.93) Time: 0.409s, 2505.26/s (0.414s, 2472.11/s) LR: 1.148e-01 Data: 0.027 (0.033) +Train: 96 [ 300/312 ( 96%)] Loss: 3.06 (2.94) Time: 0.410s, 2500.48/s (0.413s, 2476.66/s) LR: 1.148e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.431 (1.431) Loss: 2.723 ( 2.723) Acc@1: 48.047 ( 48.047) Acc@5: 69.434 ( 69.434) +Test: [ 48/48] Time: 0.091 (0.322) Loss: 2.567 ( 2.807) Acc@1: 51.651 ( 47.394) Acc@5: 73.703 ( 69.126) +Train: 97 [ 0/312 ( 0%)] Loss: 2.84 (2.84) Time: 1.552s, 659.86/s (1.552s, 659.86/s) LR: 1.111e-01 Data: 1.169 (1.169) +Train: 97 [ 50/312 ( 16%)] Loss: 2.82 (2.87) Time: 0.413s, 2480.06/s (0.435s, 2351.93/s) LR: 1.111e-01 Data: 0.027 (0.050) +Train: 97 [ 100/312 ( 32%)] Loss: 2.89 (2.88) Time: 0.409s, 2501.86/s (0.424s, 2415.44/s) LR: 1.111e-01 Data: 0.027 (0.039) +Train: 97 [ 150/312 ( 48%)] Loss: 2.80 (2.89) Time: 0.415s, 2467.37/s (0.420s, 2438.56/s) LR: 1.111e-01 Data: 0.027 (0.035) +Train: 97 [ 200/312 ( 64%)] Loss: 2.94 (2.90) Time: 0.412s, 2483.26/s (0.418s, 2448.47/s) LR: 1.111e-01 Data: 0.027 (0.033) +Train: 97 [ 250/312 ( 80%)] Loss: 2.98 (2.91) Time: 0.411s, 2491.62/s (0.417s, 2454.61/s) LR: 1.111e-01 Data: 0.027 (0.032) +Train: 97 [ 300/312 ( 96%)] Loss: 2.95 (2.92) Time: 0.412s, 2485.07/s (0.416s, 2459.46/s) LR: 1.111e-01 Data: 0.026 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.427 (1.427) Loss: 2.819 ( 2.819) Acc@1: 45.801 ( 45.801) Acc@5: 68.750 ( 68.750) +Test: [ 48/48] Time: 0.090 (0.322) Loss: 2.625 ( 2.848) Acc@1: 52.005 ( 46.598) Acc@5: 71.934 ( 68.610) +Train: 98 [ 0/312 ( 0%)] Loss: 2.77 (2.77) Time: 1.473s, 695.27/s (1.473s, 695.27/s) LR: 1.073e-01 Data: 1.093 (1.093) +Train: 98 [ 50/312 ( 16%)] Loss: 2.85 (2.84) Time: 0.411s, 2493.89/s (0.434s, 2360.22/s) LR: 1.073e-01 Data: 0.028 (0.049) +Train: 98 [ 100/312 ( 32%)] Loss: 2.87 (2.87) Time: 0.412s, 2485.69/s (0.423s, 2419.92/s) LR: 1.073e-01 Data: 0.026 (0.038) +Train: 98 [ 150/312 ( 48%)] Loss: 2.97 (2.87) Time: 0.410s, 2496.58/s (0.419s, 2443.17/s) LR: 1.073e-01 Data: 0.028 (0.035) +Train: 98 [ 200/312 ( 64%)] Loss: 3.01 (2.89) Time: 0.412s, 2486.95/s (0.417s, 2454.40/s) LR: 1.073e-01 Data: 0.028 (0.033) +Train: 98 [ 250/312 ( 80%)] Loss: 2.93 (2.89) Time: 0.412s, 2484.70/s (0.416s, 2460.43/s) LR: 1.073e-01 Data: 0.027 (0.032) +Train: 98 [ 300/312 ( 96%)] Loss: 2.93 (2.90) Time: 0.410s, 2495.34/s (0.416s, 2464.47/s) LR: 1.073e-01 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.436 (1.436) Loss: 2.797 ( 2.797) Acc@1: 46.777 ( 46.777) Acc@5: 68.555 ( 68.555) +Test: [ 48/48] Time: 0.091 (0.326) Loss: 2.527 ( 2.815) Acc@1: 51.297 ( 47.406) Acc@5: 73.467 ( 69.138) +Train: 99 [ 0/312 ( 0%)] Loss: 2.79 (2.79) Time: 1.495s, 685.15/s (1.495s, 685.15/s) LR: 1.036e-01 Data: 1.121 (1.121) +Train: 99 [ 50/312 ( 16%)] Loss: 2.85 (2.83) Time: 0.413s, 2478.04/s (0.439s, 2335.19/s) LR: 1.036e-01 Data: 0.028 (0.050) +Train: 99 [ 100/312 ( 32%)] Loss: 2.94 (2.85) Time: 0.409s, 2501.96/s (0.426s, 2406.07/s) LR: 1.036e-01 Data: 0.028 (0.039) +Train: 99 [ 150/312 ( 48%)] Loss: 2.85 (2.86) Time: 0.412s, 2487.63/s (0.421s, 2431.51/s) LR: 1.036e-01 Data: 0.028 (0.036) +Train: 99 [ 200/312 ( 64%)] Loss: 2.92 (2.87) Time: 0.413s, 2481.21/s (0.419s, 2444.35/s) LR: 1.036e-01 Data: 0.028 (0.034) +Train: 99 [ 250/312 ( 80%)] Loss: 2.88 (2.88) Time: 0.411s, 2493.87/s (0.417s, 2454.64/s) LR: 1.036e-01 Data: 0.028 (0.032) +Train: 99 [ 300/312 ( 96%)] Loss: 2.99 (2.89) Time: 0.413s, 2479.82/s (0.416s, 2461.20/s) LR: 1.036e-01 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.429 (1.429) Loss: 2.787 ( 2.787) Acc@1: 47.559 ( 47.559) Acc@5: 68.457 ( 68.457) +Test: [ 48/48] Time: 0.090 (0.320) Loss: 2.625 ( 2.835) Acc@1: 50.590 ( 46.966) Acc@5: 72.759 ( 68.642) +Train: 100 [ 0/312 ( 0%)] Loss: 2.75 (2.75) Time: 1.771s, 578.12/s (1.771s, 578.12/s) LR: 1.000e-01 Data: 1.067 (1.067) +Train: 100 [ 50/312 ( 16%)] Loss: 2.74 (2.82) Time: 0.408s, 2512.86/s (0.437s, 2344.57/s) LR: 1.000e-01 Data: 0.027 (0.048) +Train: 100 [ 100/312 ( 32%)] Loss: 2.91 (2.83) Time: 0.410s, 2499.22/s (0.424s, 2416.27/s) LR: 1.000e-01 Data: 0.028 (0.038) +Train: 100 [ 150/312 ( 48%)] Loss: 2.85 (2.84) Time: 0.410s, 2497.82/s (0.419s, 2441.43/s) LR: 1.000e-01 Data: 0.028 (0.035) +Train: 100 [ 200/312 ( 64%)] Loss: 2.96 (2.85) Time: 0.409s, 2503.05/s (0.417s, 2454.77/s) LR: 1.000e-01 Data: 0.028 (0.033) +Train: 100 [ 250/312 ( 80%)] Loss: 2.89 (2.87) Time: 0.410s, 2499.27/s (0.416s, 2462.14/s) LR: 1.000e-01 Data: 0.028 (0.032) +Train: 100 [ 300/312 ( 96%)] Loss: 3.00 (2.88) Time: 0.408s, 2507.96/s (0.415s, 2467.36/s) LR: 1.000e-01 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.409 (1.409) Loss: 2.742 ( 2.742) Acc@1: 46.680 ( 46.680) Acc@5: 70.508 ( 70.508) +Test: [ 48/48] Time: 0.091 (0.322) Loss: 2.611 ( 2.815) Acc@1: 52.594 ( 47.228) Acc@5: 73.231 ( 69.180) +Train: 101 [ 0/312 ( 0%)] Loss: 2.82 (2.82) Time: 1.704s, 601.08/s (1.704s, 601.08/s) LR: 9.639e-02 Data: 1.328 (1.328) +Train: 101 [ 50/312 ( 16%)] Loss: 2.81 (2.79) Time: 0.412s, 2485.75/s (0.437s, 2345.89/s) LR: 9.639e-02 Data: 0.028 (0.053) +Train: 101 [ 100/312 ( 32%)] Loss: 2.86 (2.81) Time: 0.412s, 2483.26/s (0.424s, 2414.48/s) LR: 9.639e-02 Data: 0.028 (0.041) +Train: 101 [ 150/312 ( 48%)] Loss: 2.80 (2.83) Time: 0.410s, 2499.27/s (0.420s, 2438.27/s) LR: 9.639e-02 Data: 0.026 (0.036) +Train: 101 [ 200/312 ( 64%)] Loss: 2.90 (2.84) Time: 0.411s, 2494.17/s (0.418s, 2449.93/s) LR: 9.639e-02 Data: 0.028 (0.034) +Train: 101 [ 250/312 ( 80%)] Loss: 2.96 (2.85) Time: 0.410s, 2496.37/s (0.417s, 2457.16/s) LR: 9.639e-02 Data: 0.027 (0.033) +Train: 101 [ 300/312 ( 96%)] Loss: 2.96 (2.86) Time: 0.410s, 2498.58/s (0.416s, 2461.83/s) LR: 9.639e-02 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.421 (1.421) Loss: 2.736 ( 2.736) Acc@1: 49.121 ( 49.121) Acc@5: 68.359 ( 68.359) +Test: [ 48/48] Time: 0.090 (0.320) Loss: 2.537 ( 2.798) Acc@1: 51.061 ( 47.444) Acc@5: 74.292 ( 69.164) +Train: 102 [ 0/312 ( 0%)] Loss: 2.92 (2.92) Time: 1.535s, 667.20/s (1.535s, 667.20/s) LR: 9.283e-02 Data: 1.094 (1.094) +Train: 102 [ 50/312 ( 16%)] Loss: 2.78 (2.80) Time: 0.411s, 2494.01/s (0.433s, 2362.62/s) LR: 9.283e-02 Data: 0.028 (0.049) +Train: 102 [ 100/312 ( 32%)] Loss: 2.77 (2.80) Time: 0.410s, 2498.49/s (0.422s, 2424.74/s) LR: 9.283e-02 Data: 0.022 (0.038) +Train: 102 [ 150/312 ( 48%)] Loss: 2.87 (2.81) Time: 0.411s, 2489.88/s (0.419s, 2445.36/s) LR: 9.283e-02 Data: 0.028 (0.035) +Train: 102 [ 200/312 ( 64%)] Loss: 2.84 (2.82) Time: 0.409s, 2504.24/s (0.417s, 2455.46/s) LR: 9.283e-02 Data: 0.028 (0.033) +Train: 102 [ 250/312 ( 80%)] Loss: 2.84 (2.83) Time: 0.412s, 2486.67/s (0.416s, 2461.95/s) LR: 9.283e-02 Data: 0.027 (0.032) +Train: 102 [ 300/312 ( 96%)] Loss: 2.92 (2.84) Time: 0.411s, 2490.94/s (0.415s, 2465.83/s) LR: 9.283e-02 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.424 (1.424) Loss: 2.748 ( 2.748) Acc@1: 48.145 ( 48.145) Acc@5: 69.336 ( 69.336) +Test: [ 48/48] Time: 0.090 (0.322) Loss: 2.531 ( 2.794) Acc@1: 51.179 ( 47.370) Acc@5: 74.646 ( 69.324) +Train: 103 [ 0/312 ( 0%)] Loss: 2.77 (2.77) Time: 1.960s, 522.38/s (1.960s, 522.38/s) LR: 8.932e-02 Data: 1.586 (1.586) +Train: 103 [ 50/312 ( 16%)] Loss: 2.71 (2.78) Time: 0.409s, 2505.67/s (0.440s, 2326.63/s) LR: 8.932e-02 Data: 0.027 (0.058) +Train: 103 [ 100/312 ( 32%)] Loss: 2.80 (2.79) Time: 0.411s, 2494.11/s (0.425s, 2406.82/s) LR: 8.932e-02 Data: 0.028 (0.043) +Train: 103 [ 150/312 ( 48%)] Loss: 2.76 (2.81) Time: 0.409s, 2504.41/s (0.420s, 2436.22/s) LR: 8.932e-02 Data: 0.026 (0.038) +Train: 103 [ 200/312 ( 64%)] Loss: 2.85 (2.81) Time: 0.409s, 2501.56/s (0.418s, 2451.12/s) LR: 8.932e-02 Data: 0.027 (0.036) +Train: 103 [ 250/312 ( 80%)] Loss: 2.88 (2.82) Time: 0.409s, 2502.69/s (0.416s, 2459.24/s) LR: 8.932e-02 Data: 0.028 (0.034) +Train: 103 [ 300/312 ( 96%)] Loss: 2.91 (2.82) Time: 0.408s, 2508.99/s (0.415s, 2465.34/s) LR: 8.932e-02 Data: 0.027 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.416 (1.416) Loss: 2.709 ( 2.709) Acc@1: 48.926 ( 48.926) Acc@5: 69.434 ( 69.434) +Test: [ 48/48] Time: 0.090 (0.320) Loss: 2.529 ( 2.778) Acc@1: 52.594 ( 47.880) Acc@5: 73.939 ( 69.436) +Train: 104 [ 0/312 ( 0%)] Loss: 2.70 (2.70) Time: 2.251s, 454.94/s (2.251s, 454.94/s) LR: 8.586e-02 Data: 1.293 (1.293) +Train: 104 [ 50/312 ( 16%)] Loss: 2.81 (2.75) Time: 0.412s, 2483.55/s (0.447s, 2291.16/s) LR: 8.586e-02 Data: 0.027 (0.052) +Train: 104 [ 100/312 ( 32%)] Loss: 2.80 (2.77) Time: 0.410s, 2495.48/s (0.430s, 2382.47/s) LR: 8.586e-02 Data: 0.029 (0.040) +Train: 104 [ 150/312 ( 48%)] Loss: 2.81 (2.78) Time: 0.409s, 2504.04/s (0.423s, 2419.31/s) LR: 8.586e-02 Data: 0.028 (0.036) +Train: 104 [ 200/312 ( 64%)] Loss: 2.76 (2.79) Time: 0.410s, 2496.61/s (0.420s, 2436.73/s) LR: 8.586e-02 Data: 0.029 (0.034) +Train: 104 [ 250/312 ( 80%)] Loss: 2.87 (2.80) Time: 0.414s, 2474.41/s (0.418s, 2446.95/s) LR: 8.586e-02 Data: 0.028 (0.033) +Train: 104 [ 300/312 ( 96%)] Loss: 2.84 (2.81) Time: 0.416s, 2458.82/s (0.417s, 2453.88/s) LR: 8.586e-02 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.438 (1.438) Loss: 2.772 ( 2.772) Acc@1: 47.949 ( 47.949) Acc@5: 69.824 ( 69.824) +Test: [ 48/48] Time: 0.090 (0.322) Loss: 2.578 ( 2.826) Acc@1: 50.708 ( 47.132) Acc@5: 74.175 ( 68.804) +Train: 105 [ 0/312 ( 0%)] Loss: 2.69 (2.69) Time: 1.642s, 623.59/s (1.642s, 623.59/s) LR: 8.244e-02 Data: 1.267 (1.267) +Train: 105 [ 50/312 ( 16%)] Loss: 2.78 (2.74) Time: 0.410s, 2494.98/s (0.435s, 2356.32/s) LR: 8.244e-02 Data: 0.026 (0.052) +Train: 105 [ 100/312 ( 32%)] Loss: 2.71 (2.75) Time: 0.406s, 2521.17/s (0.422s, 2426.97/s) LR: 8.244e-02 Data: 0.025 (0.040) +Train: 105 [ 150/312 ( 48%)] Loss: 2.82 (2.77) Time: 0.404s, 2537.32/s (0.417s, 2456.70/s) LR: 8.244e-02 Data: 0.027 (0.036) +Train: 105 [ 200/312 ( 64%)] Loss: 2.79 (2.77) Time: 0.408s, 2511.77/s (0.414s, 2472.36/s) LR: 8.244e-02 Data: 0.031 (0.034) +Train: 105 [ 250/312 ( 80%)] Loss: 2.88 (2.78) Time: 0.408s, 2509.16/s (0.413s, 2479.87/s) LR: 8.244e-02 Data: 0.029 (0.033) +Train: 105 [ 300/312 ( 96%)] Loss: 2.84 (2.79) Time: 0.412s, 2488.24/s (0.413s, 2482.25/s) LR: 8.244e-02 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.418 (1.418) Loss: 2.799 ( 2.799) Acc@1: 46.875 ( 46.875) Acc@5: 69.043 ( 69.043) +Test: [ 48/48] Time: 0.090 (0.321) Loss: 2.598 ( 2.870) Acc@1: 50.472 ( 46.918) Acc@5: 73.467 ( 68.238) +Train: 106 [ 0/312 ( 0%)] Loss: 2.68 (2.68) Time: 1.999s, 512.36/s (1.999s, 512.36/s) LR: 7.908e-02 Data: 1.432 (1.432) +Train: 106 [ 50/312 ( 16%)] Loss: 2.71 (2.73) Time: 0.408s, 2512.03/s (0.441s, 2320.22/s) LR: 7.908e-02 Data: 0.027 (0.055) +Train: 106 [ 100/312 ( 32%)] Loss: 2.72 (2.73) Time: 0.412s, 2485.90/s (0.427s, 2399.92/s) LR: 7.908e-02 Data: 0.027 (0.042) +Train: 106 [ 150/312 ( 48%)] Loss: 2.78 (2.74) Time: 0.413s, 2477.33/s (0.422s, 2429.27/s) LR: 7.908e-02 Data: 0.027 (0.037) +Train: 106 [ 200/312 ( 64%)] Loss: 2.85 (2.76) Time: 0.413s, 2481.19/s (0.419s, 2442.79/s) LR: 7.908e-02 Data: 0.028 (0.035) +Train: 106 [ 250/312 ( 80%)] Loss: 2.65 (2.77) Time: 0.413s, 2477.55/s (0.418s, 2450.08/s) LR: 7.908e-02 Data: 0.028 (0.033) +Train: 106 [ 300/312 ( 96%)] Loss: 2.80 (2.77) Time: 0.413s, 2482.11/s (0.417s, 2454.81/s) LR: 7.908e-02 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.447 (1.447) Loss: 2.793 ( 2.793) Acc@1: 48.047 ( 48.047) Acc@5: 68.262 ( 68.262) +Test: [ 48/48] Time: 0.090 (0.325) Loss: 2.556 ( 2.821) Acc@1: 51.297 ( 47.478) Acc@5: 74.292 ( 68.698) +Train: 107 [ 0/312 ( 0%)] Loss: 2.58 (2.58) Time: 1.605s, 637.89/s (1.605s, 637.89/s) LR: 7.577e-02 Data: 1.230 (1.230) +Train: 107 [ 50/312 ( 16%)] Loss: 2.68 (2.71) Time: 0.410s, 2497.14/s (0.434s, 2358.26/s) LR: 7.577e-02 Data: 0.027 (0.051) +Train: 107 [ 100/312 ( 32%)] Loss: 2.77 (2.72) Time: 0.410s, 2498.72/s (0.423s, 2423.36/s) LR: 7.577e-02 Data: 0.028 (0.040) +Train: 107 [ 150/312 ( 48%)] Loss: 2.74 (2.72) Time: 0.412s, 2485.27/s (0.419s, 2446.32/s) LR: 7.577e-02 Data: 0.028 (0.036) +Train: 107 [ 200/312 ( 64%)] Loss: 2.82 (2.74) Time: 0.412s, 2488.18/s (0.417s, 2457.54/s) LR: 7.577e-02 Data: 0.028 (0.034) +Train: 107 [ 250/312 ( 80%)] Loss: 2.67 (2.75) Time: 0.410s, 2498.06/s (0.415s, 2464.83/s) LR: 7.577e-02 Data: 0.028 (0.033) +Train: 107 [ 300/312 ( 96%)] Loss: 2.75 (2.75) Time: 0.408s, 2510.17/s (0.415s, 2469.33/s) LR: 7.577e-02 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.443 (1.443) Loss: 2.780 ( 2.780) Acc@1: 47.363 ( 47.363) Acc@5: 69.922 ( 69.922) +Test: [ 48/48] Time: 0.090 (0.322) Loss: 2.602 ( 2.823) Acc@1: 51.061 ( 47.190) Acc@5: 73.939 ( 68.832) +Train: 108 [ 0/312 ( 0%)] Loss: 2.76 (2.76) Time: 1.686s, 607.38/s (1.686s, 607.38/s) LR: 7.252e-02 Data: 1.312 (1.312) +Train: 108 [ 50/312 ( 16%)] Loss: 2.68 (2.71) Time: 0.409s, 2503.68/s (0.434s, 2358.68/s) LR: 7.252e-02 Data: 0.027 (0.053) +Train: 108 [ 100/312 ( 32%)] Loss: 2.80 (2.71) Time: 0.408s, 2510.03/s (0.423s, 2422.73/s) LR: 7.252e-02 Data: 0.029 (0.041) +Train: 108 [ 150/312 ( 48%)] Loss: 2.71 (2.72) Time: 0.411s, 2492.74/s (0.419s, 2445.76/s) LR: 7.252e-02 Data: 0.028 (0.036) +Train: 108 [ 200/312 ( 64%)] Loss: 2.71 (2.72) Time: 0.415s, 2468.95/s (0.417s, 2455.91/s) LR: 7.252e-02 Data: 0.028 (0.034) +Train: 108 [ 250/312 ( 80%)] Loss: 2.78 (2.73) Time: 0.409s, 2501.55/s (0.416s, 2464.35/s) LR: 7.252e-02 Data: 0.028 (0.033) +Train: 108 [ 300/312 ( 96%)] Loss: 2.67 (2.74) Time: 0.411s, 2492.29/s (0.415s, 2469.49/s) LR: 7.252e-02 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.485 (1.485) Loss: 2.775 ( 2.775) Acc@1: 46.973 ( 46.973) Acc@5: 69.238 ( 69.238) +Test: [ 48/48] Time: 0.090 (0.323) Loss: 2.567 ( 2.848) Acc@1: 52.241 ( 47.196) Acc@5: 73.113 ( 68.604) +Train: 109 [ 0/312 ( 0%)] Loss: 2.69 (2.69) Time: 1.963s, 521.58/s (1.963s, 521.58/s) LR: 6.932e-02 Data: 1.588 (1.588) +Train: 109 [ 50/312 ( 16%)] Loss: 2.65 (2.67) Time: 0.408s, 2508.23/s (0.442s, 2314.78/s) LR: 6.932e-02 Data: 0.028 (0.059) +Train: 109 [ 100/312 ( 32%)] Loss: 2.78 (2.69) Time: 0.410s, 2495.44/s (0.427s, 2399.78/s) LR: 6.932e-02 Data: 0.028 (0.043) +Train: 109 [ 150/312 ( 48%)] Loss: 2.81 (2.70) Time: 0.410s, 2499.09/s (0.422s, 2427.84/s) LR: 6.932e-02 Data: 0.028 (0.038) +Train: 109 [ 200/312 ( 64%)] Loss: 2.71 (2.70) Time: 0.413s, 2477.91/s (0.419s, 2441.92/s) LR: 6.932e-02 Data: 0.027 (0.036) +Train: 109 [ 250/312 ( 80%)] Loss: 2.71 (2.71) Time: 0.412s, 2488.38/s (0.418s, 2450.30/s) LR: 6.932e-02 Data: 0.028 (0.034) +Train: 109 [ 300/312 ( 96%)] Loss: 2.65 (2.72) Time: 0.413s, 2479.66/s (0.417s, 2456.03/s) LR: 6.932e-02 Data: 0.027 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.490 (1.490) Loss: 2.775 ( 2.775) Acc@1: 46.484 ( 46.484) Acc@5: 69.141 ( 69.141) +Test: [ 48/48] Time: 0.091 (0.324) Loss: 2.536 ( 2.851) Acc@1: 51.887 ( 47.334) Acc@5: 75.236 ( 68.512) +Train: 110 [ 0/312 ( 0%)] Loss: 2.75 (2.75) Time: 1.620s, 632.04/s (1.620s, 632.04/s) LR: 6.617e-02 Data: 1.245 (1.245) +Train: 110 [ 50/312 ( 16%)] Loss: 2.65 (2.66) Time: 0.410s, 2497.80/s (0.435s, 2353.35/s) LR: 6.617e-02 Data: 0.028 (0.052) +Train: 110 [ 100/312 ( 32%)] Loss: 2.78 (2.68) Time: 0.409s, 2502.23/s (0.424s, 2416.53/s) LR: 6.617e-02 Data: 0.028 (0.040) +Train: 110 [ 150/312 ( 48%)] Loss: 2.72 (2.68) Time: 0.415s, 2464.55/s (0.420s, 2437.48/s) LR: 6.617e-02 Data: 0.029 (0.036) +Train: 110 [ 200/312 ( 64%)] Loss: 2.65 (2.69) Time: 0.412s, 2486.02/s (0.418s, 2448.27/s) LR: 6.617e-02 Data: 0.029 (0.034) +Train: 110 [ 250/312 ( 80%)] Loss: 2.77 (2.70) Time: 0.410s, 2497.75/s (0.417s, 2455.70/s) LR: 6.617e-02 Data: 0.027 (0.033) +Train: 110 [ 300/312 ( 96%)] Loss: 2.78 (2.70) Time: 0.410s, 2498.06/s (0.416s, 2462.03/s) LR: 6.617e-02 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.443 (1.443) Loss: 2.779 ( 2.779) Acc@1: 46.973 ( 46.973) Acc@5: 68.945 ( 68.945) +Test: [ 48/48] Time: 0.090 (0.320) Loss: 2.521 ( 2.802) Acc@1: 52.476 ( 48.208) Acc@5: 74.646 ( 69.154) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-60.pth.tar', 48.73400004516601) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-90.pth.tar', 48.64000006591797) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-78.pth.tar', 48.6280000390625) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-62.pth.tar', 48.390000036621096) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-63.pth.tar', 48.35200002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-68.pth.tar', 48.34400006835938) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-55.pth.tar', 48.33800000366211) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-49.pth.tar', 48.28799996582031) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-89.pth.tar', 48.21400005004883) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-110.pth.tar', 48.20800004150391) + +Train: 111 [ 0/312 ( 0%)] Loss: 2.61 (2.61) Time: 1.723s, 594.35/s (1.723s, 594.35/s) LR: 6.309e-02 Data: 1.348 (1.348) +Train: 111 [ 50/312 ( 16%)] Loss: 2.70 (2.65) Time: 0.415s, 2466.00/s (0.437s, 2341.03/s) LR: 6.309e-02 Data: 0.034 (0.054) +Train: 111 [ 100/312 ( 32%)] Loss: 2.61 (2.65) Time: 0.413s, 2477.92/s (0.425s, 2412.11/s) LR: 6.309e-02 Data: 0.028 (0.042) +Train: 111 [ 150/312 ( 48%)] Loss: 2.71 (2.67) Time: 0.410s, 2499.13/s (0.420s, 2438.51/s) LR: 6.309e-02 Data: 0.028 (0.037) +Train: 111 [ 200/312 ( 64%)] Loss: 2.66 (2.68) Time: 0.410s, 2494.99/s (0.418s, 2451.37/s) LR: 6.309e-02 Data: 0.027 (0.035) +Train: 111 [ 250/312 ( 80%)] Loss: 2.68 (2.68) Time: 0.411s, 2493.70/s (0.417s, 2458.20/s) LR: 6.309e-02 Data: 0.029 (0.034) +Train: 111 [ 300/312 ( 96%)] Loss: 2.72 (2.69) Time: 0.415s, 2467.78/s (0.416s, 2462.68/s) LR: 6.309e-02 Data: 0.028 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.420 (1.420) Loss: 2.785 ( 2.785) Acc@1: 46.875 ( 46.875) Acc@5: 68.555 ( 68.555) +Test: [ 48/48] Time: 0.090 (0.320) Loss: 2.539 ( 2.839) Acc@1: 52.123 ( 47.338) Acc@5: 74.764 ( 68.618) +Train: 112 [ 0/312 ( 0%)] Loss: 2.68 (2.68) Time: 1.709s, 599.12/s (1.709s, 599.12/s) LR: 6.007e-02 Data: 1.335 (1.335) +Train: 112 [ 50/312 ( 16%)] Loss: 2.71 (2.65) Time: 0.410s, 2498.58/s (0.436s, 2347.22/s) LR: 6.007e-02 Data: 0.026 (0.053) +Train: 112 [ 100/312 ( 32%)] Loss: 2.71 (2.65) Time: 0.410s, 2497.60/s (0.423s, 2418.70/s) LR: 6.007e-02 Data: 0.028 (0.041) +Train: 112 [ 150/312 ( 48%)] Loss: 2.71 (2.66) Time: 0.409s, 2502.70/s (0.419s, 2442.13/s) LR: 6.007e-02 Data: 0.028 (0.037) +Train: 112 [ 200/312 ( 64%)] Loss: 2.54 (2.66) Time: 0.410s, 2500.21/s (0.417s, 2454.61/s) LR: 6.007e-02 Data: 0.027 (0.034) +Train: 112 [ 250/312 ( 80%)] Loss: 2.70 (2.67) Time: 0.410s, 2496.09/s (0.416s, 2461.93/s) LR: 6.007e-02 Data: 0.026 (0.033) +Train: 112 [ 300/312 ( 96%)] Loss: 2.81 (2.67) Time: 0.415s, 2467.41/s (0.415s, 2466.74/s) LR: 6.007e-02 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.424 (1.424) Loss: 2.777 ( 2.777) Acc@1: 46.875 ( 46.875) Acc@5: 69.434 ( 69.434) +Test: [ 48/48] Time: 0.090 (0.320) Loss: 2.606 ( 2.831) Acc@1: 50.590 ( 47.382) Acc@5: 72.524 ( 68.762) +Train: 113 [ 0/312 ( 0%)] Loss: 2.66 (2.66) Time: 1.617s, 633.11/s (1.617s, 633.11/s) LR: 5.711e-02 Data: 1.243 (1.243) +Train: 113 [ 50/312 ( 16%)] Loss: 2.71 (2.62) Time: 0.412s, 2488.38/s (0.434s, 2358.47/s) LR: 5.711e-02 Data: 0.028 (0.052) +Train: 113 [ 100/312 ( 32%)] Loss: 2.68 (2.63) Time: 0.411s, 2489.10/s (0.423s, 2423.21/s) LR: 5.711e-02 Data: 0.029 (0.040) +Train: 113 [ 150/312 ( 48%)] Loss: 2.63 (2.64) Time: 0.411s, 2493.75/s (0.419s, 2445.95/s) LR: 5.711e-02 Data: 0.028 (0.036) +Train: 113 [ 200/312 ( 64%)] Loss: 2.68 (2.65) Time: 0.412s, 2487.91/s (0.417s, 2457.46/s) LR: 5.711e-02 Data: 0.028 (0.034) +Train: 113 [ 250/312 ( 80%)] Loss: 2.68 (2.65) Time: 0.413s, 2481.53/s (0.415s, 2464.60/s) LR: 5.711e-02 Data: 0.029 (0.033) +Train: 113 [ 300/312 ( 96%)] Loss: 2.79 (2.66) Time: 0.411s, 2492.01/s (0.415s, 2469.38/s) LR: 5.711e-02 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.419 (1.419) Loss: 2.754 ( 2.754) Acc@1: 47.852 ( 47.852) Acc@5: 69.043 ( 69.043) +Test: [ 48/48] Time: 0.091 (0.320) Loss: 2.552 ( 2.832) Acc@1: 51.179 ( 47.492) Acc@5: 74.528 ( 68.612) +Train: 114 [ 0/312 ( 0%)] Loss: 2.62 (2.62) Time: 1.669s, 613.51/s (1.669s, 613.51/s) LR: 5.421e-02 Data: 1.237 (1.237) +Train: 114 [ 50/312 ( 16%)] Loss: 2.62 (2.60) Time: 0.409s, 2502.67/s (0.435s, 2356.36/s) LR: 5.421e-02 Data: 0.027 (0.052) +Train: 114 [ 100/312 ( 32%)] Loss: 2.74 (2.62) Time: 0.410s, 2499.91/s (0.422s, 2423.77/s) LR: 5.421e-02 Data: 0.027 (0.040) +Train: 114 [ 150/312 ( 48%)] Loss: 2.63 (2.63) Time: 0.408s, 2510.32/s (0.419s, 2446.65/s) LR: 5.421e-02 Data: 0.028 (0.036) +Train: 114 [ 200/312 ( 64%)] Loss: 2.61 (2.63) Time: 0.411s, 2492.29/s (0.417s, 2458.33/s) LR: 5.421e-02 Data: 0.028 (0.034) +Train: 114 [ 250/312 ( 80%)] Loss: 2.73 (2.64) Time: 0.411s, 2492.28/s (0.415s, 2465.42/s) LR: 5.421e-02 Data: 0.027 (0.033) +Train: 114 [ 300/312 ( 96%)] Loss: 2.68 (2.65) Time: 0.409s, 2506.38/s (0.415s, 2469.69/s) LR: 5.421e-02 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.432 (1.432) Loss: 2.757 ( 2.757) Acc@1: 46.680 ( 46.680) Acc@5: 68.848 ( 68.848) +Test: [ 48/48] Time: 0.091 (0.320) Loss: 2.547 ( 2.849) Acc@1: 51.887 ( 47.160) Acc@5: 74.292 ( 68.508) +Train: 115 [ 0/312 ( 0%)] Loss: 2.57 (2.57) Time: 1.807s, 566.66/s (1.807s, 566.66/s) LR: 5.137e-02 Data: 1.332 (1.332) +Train: 115 [ 50/312 ( 16%)] Loss: 2.65 (2.60) Time: 0.415s, 2469.75/s (0.439s, 2331.86/s) LR: 5.137e-02 Data: 0.028 (0.053) +Train: 115 [ 100/312 ( 32%)] Loss: 2.55 (2.61) Time: 0.412s, 2482.70/s (0.426s, 2405.44/s) LR: 5.137e-02 Data: 0.029 (0.041) +Train: 115 [ 150/312 ( 48%)] Loss: 2.64 (2.62) Time: 0.412s, 2487.97/s (0.421s, 2431.34/s) LR: 5.137e-02 Data: 0.027 (0.036) +Train: 115 [ 200/312 ( 64%)] Loss: 2.61 (2.62) Time: 0.412s, 2482.76/s (0.419s, 2443.95/s) LR: 5.137e-02 Data: 0.028 (0.034) +Train: 115 [ 250/312 ( 80%)] Loss: 2.72 (2.62) Time: 0.409s, 2502.41/s (0.418s, 2451.55/s) LR: 5.137e-02 Data: 0.027 (0.033) +Train: 115 [ 300/312 ( 96%)] Loss: 2.70 (2.63) Time: 0.411s, 2494.20/s (0.417s, 2456.70/s) LR: 5.137e-02 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.433 (1.433) Loss: 2.796 ( 2.796) Acc@1: 46.777 ( 46.777) Acc@5: 68.945 ( 68.945) +Test: [ 48/48] Time: 0.090 (0.318) Loss: 2.562 ( 2.854) Acc@1: 51.061 ( 47.358) Acc@5: 72.642 ( 68.522) +Train: 116 [ 0/312 ( 0%)] Loss: 2.56 (2.56) Time: 1.602s, 639.36/s (1.602s, 639.36/s) LR: 4.860e-02 Data: 1.228 (1.228) +Train: 116 [ 50/312 ( 16%)] Loss: 2.56 (2.58) Time: 0.410s, 2495.70/s (0.435s, 2353.62/s) LR: 4.860e-02 Data: 0.027 (0.051) +Train: 116 [ 100/312 ( 32%)] Loss: 2.59 (2.59) Time: 0.414s, 2474.14/s (0.424s, 2416.72/s) LR: 4.860e-02 Data: 0.028 (0.040) +Train: 116 [ 150/312 ( 48%)] Loss: 2.47 (2.60) Time: 0.410s, 2496.66/s (0.420s, 2438.29/s) LR: 4.860e-02 Data: 0.026 (0.036) +Train: 116 [ 200/312 ( 64%)] Loss: 2.69 (2.61) Time: 0.412s, 2484.55/s (0.418s, 2449.63/s) LR: 4.860e-02 Data: 0.026 (0.034) +Train: 116 [ 250/312 ( 80%)] Loss: 2.73 (2.61) Time: 0.411s, 2493.81/s (0.417s, 2458.30/s) LR: 4.860e-02 Data: 0.026 (0.033) +Train: 116 [ 300/312 ( 96%)] Loss: 2.72 (2.62) Time: 0.409s, 2502.86/s (0.415s, 2465.13/s) LR: 4.860e-02 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.411 (1.411) Loss: 2.772 ( 2.772) Acc@1: 47.949 ( 47.949) Acc@5: 69.238 ( 69.238) +Test: [ 48/48] Time: 0.091 (0.320) Loss: 2.534 ( 2.810) Acc@1: 51.297 ( 47.778) Acc@5: 73.113 ( 69.110) +Train: 117 [ 0/312 ( 0%)] Loss: 2.58 (2.58) Time: 1.840s, 556.54/s (1.840s, 556.54/s) LR: 4.590e-02 Data: 1.465 (1.465) +Train: 117 [ 50/312 ( 16%)] Loss: 2.58 (2.58) Time: 0.409s, 2504.47/s (0.440s, 2329.42/s) LR: 4.590e-02 Data: 0.027 (0.056) +Train: 117 [ 100/312 ( 32%)] Loss: 2.72 (2.58) Time: 0.410s, 2500.28/s (0.425s, 2410.79/s) LR: 4.590e-02 Data: 0.027 (0.042) +Train: 117 [ 150/312 ( 48%)] Loss: 2.55 (2.59) Time: 0.410s, 2500.43/s (0.420s, 2440.05/s) LR: 4.590e-02 Data: 0.027 (0.037) +Train: 117 [ 200/312 ( 64%)] Loss: 2.60 (2.59) Time: 0.410s, 2496.17/s (0.417s, 2454.49/s) LR: 4.590e-02 Data: 0.028 (0.035) +Train: 117 [ 250/312 ( 80%)] Loss: 2.60 (2.60) Time: 0.411s, 2493.66/s (0.416s, 2462.48/s) LR: 4.590e-02 Data: 0.027 (0.034) +Train: 117 [ 300/312 ( 96%)] Loss: 2.67 (2.60) Time: 0.413s, 2476.43/s (0.415s, 2467.51/s) LR: 4.590e-02 Data: 0.028 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.441 (1.441) Loss: 2.829 ( 2.829) Acc@1: 45.996 ( 45.996) Acc@5: 67.969 ( 67.969) +Test: [ 48/48] Time: 0.091 (0.319) Loss: 2.582 ( 2.871) Acc@1: 50.943 ( 46.960) Acc@5: 72.759 ( 68.088) +Train: 118 [ 0/312 ( 0%)] Loss: 2.58 (2.58) Time: 1.846s, 554.86/s (1.846s, 554.86/s) LR: 4.326e-02 Data: 1.471 (1.471) +Train: 118 [ 50/312 ( 16%)] Loss: 2.54 (2.56) Time: 0.410s, 2499.83/s (0.439s, 2330.62/s) LR: 4.326e-02 Data: 0.028 (0.056) +Train: 118 [ 100/312 ( 32%)] Loss: 2.63 (2.57) Time: 0.412s, 2483.57/s (0.426s, 2405.89/s) LR: 4.326e-02 Data: 0.029 (0.042) +Train: 118 [ 150/312 ( 48%)] Loss: 2.52 (2.57) Time: 0.410s, 2495.40/s (0.421s, 2432.55/s) LR: 4.326e-02 Data: 0.028 (0.037) +Train: 118 [ 200/312 ( 64%)] Loss: 2.62 (2.58) Time: 0.411s, 2493.25/s (0.419s, 2446.00/s) LR: 4.326e-02 Data: 0.027 (0.035) +Train: 118 [ 250/312 ( 80%)] Loss: 2.59 (2.58) Time: 0.412s, 2484.34/s (0.417s, 2453.77/s) LR: 4.326e-02 Data: 0.029 (0.034) +Train: 118 [ 300/312 ( 96%)] Loss: 2.65 (2.59) Time: 0.414s, 2476.35/s (0.416s, 2459.21/s) LR: 4.326e-02 Data: 0.027 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.425 (1.425) Loss: 2.801 ( 2.801) Acc@1: 47.168 ( 47.168) Acc@5: 67.773 ( 67.773) +Test: [ 48/48] Time: 0.089 (0.321) Loss: 2.655 ( 2.872) Acc@1: 49.764 ( 47.024) Acc@5: 72.170 ( 68.078) +Train: 119 [ 0/312 ( 0%)] Loss: 2.59 (2.59) Time: 1.492s, 686.49/s (1.492s, 686.49/s) LR: 4.069e-02 Data: 1.118 (1.118) +Train: 119 [ 50/312 ( 16%)] Loss: 2.55 (2.55) Time: 0.411s, 2494.06/s (0.436s, 2350.72/s) LR: 4.069e-02 Data: 0.028 (0.051) +Train: 119 [ 100/312 ( 32%)] Loss: 2.54 (2.55) Time: 0.412s, 2483.41/s (0.424s, 2413.27/s) LR: 4.069e-02 Data: 0.033 (0.040) +Train: 119 [ 150/312 ( 48%)] Loss: 2.60 (2.55) Time: 0.412s, 2482.55/s (0.420s, 2439.65/s) LR: 4.069e-02 Data: 0.030 (0.036) +Train: 119 [ 200/312 ( 64%)] Loss: 2.63 (2.56) Time: 0.414s, 2472.34/s (0.417s, 2452.84/s) LR: 4.069e-02 Data: 0.028 (0.034) +Train: 119 [ 250/312 ( 80%)] Loss: 2.56 (2.57) Time: 0.414s, 2473.83/s (0.416s, 2460.60/s) LR: 4.069e-02 Data: 0.028 (0.033) +Train: 119 [ 300/312 ( 96%)] Loss: 2.62 (2.57) Time: 0.411s, 2488.89/s (0.415s, 2465.13/s) LR: 4.069e-02 Data: 0.031 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.429 (1.429) Loss: 2.745 ( 2.745) Acc@1: 46.973 ( 46.973) Acc@5: 69.043 ( 69.043) +Test: [ 48/48] Time: 0.091 (0.320) Loss: 2.573 ( 2.794) Acc@1: 52.358 ( 48.118) Acc@5: 72.759 ( 69.142) +Train: 120 [ 0/312 ( 0%)] Loss: 2.52 (2.52) Time: 1.678s, 610.12/s (1.678s, 610.12/s) LR: 3.820e-02 Data: 1.305 (1.305) +Train: 120 [ 50/312 ( 16%)] Loss: 2.57 (2.53) Time: 0.409s, 2502.14/s (0.435s, 2352.79/s) LR: 3.820e-02 Data: 0.025 (0.053) +Train: 120 [ 100/312 ( 32%)] Loss: 2.64 (2.54) Time: 0.409s, 2506.30/s (0.423s, 2423.53/s) LR: 3.820e-02 Data: 0.030 (0.040) +Train: 120 [ 150/312 ( 48%)] Loss: 2.59 (2.55) Time: 0.407s, 2513.80/s (0.418s, 2450.88/s) LR: 3.820e-02 Data: 0.027 (0.036) +Train: 120 [ 200/312 ( 64%)] Loss: 2.63 (2.55) Time: 0.409s, 2502.95/s (0.416s, 2464.38/s) LR: 3.820e-02 Data: 0.025 (0.034) +Train: 120 [ 250/312 ( 80%)] Loss: 2.54 (2.55) Time: 0.412s, 2482.65/s (0.415s, 2470.12/s) LR: 3.820e-02 Data: 0.028 (0.033) +Train: 120 [ 300/312 ( 96%)] Loss: 2.67 (2.56) Time: 0.410s, 2498.32/s (0.414s, 2475.50/s) LR: 3.820e-02 Data: 0.029 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.402 (1.402) Loss: 2.744 ( 2.744) Acc@1: 47.070 ( 47.070) Acc@5: 69.434 ( 69.434) +Test: [ 48/48] Time: 0.091 (0.321) Loss: 2.528 ( 2.801) Acc@1: 50.354 ( 48.120) Acc@5: 73.821 ( 69.132) +Train: 121 [ 0/312 ( 0%)] Loss: 2.47 (2.47) Time: 1.802s, 568.39/s (1.802s, 568.39/s) LR: 3.577e-02 Data: 1.428 (1.428) +Train: 121 [ 50/312 ( 16%)] Loss: 2.50 (2.52) Time: 0.413s, 2478.53/s (0.439s, 2332.30/s) LR: 3.577e-02 Data: 0.028 (0.055) +Train: 121 [ 100/312 ( 32%)] Loss: 2.45 (2.53) Time: 0.408s, 2512.68/s (0.425s, 2412.17/s) LR: 3.577e-02 Data: 0.028 (0.042) +Train: 121 [ 150/312 ( 48%)] Loss: 2.53 (2.53) Time: 0.408s, 2510.75/s (0.419s, 2445.52/s) LR: 3.577e-02 Data: 0.026 (0.037) +Train: 121 [ 200/312 ( 64%)] Loss: 2.55 (2.54) Time: 0.408s, 2511.81/s (0.416s, 2462.09/s) LR: 3.577e-02 Data: 0.028 (0.035) +Train: 121 [ 250/312 ( 80%)] Loss: 2.56 (2.54) Time: 0.412s, 2484.43/s (0.415s, 2468.96/s) LR: 3.577e-02 Data: 0.028 (0.034) +Train: 121 [ 300/312 ( 96%)] Loss: 2.55 (2.55) Time: 0.412s, 2485.31/s (0.414s, 2471.08/s) LR: 3.577e-02 Data: 0.027 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.414 (1.414) Loss: 2.725 ( 2.725) Acc@1: 47.559 ( 47.559) Acc@5: 69.531 ( 69.531) +Test: [ 48/48] Time: 0.091 (0.318) Loss: 2.540 ( 2.795) Acc@1: 50.118 ( 48.184) Acc@5: 73.939 ( 69.252) +Train: 122 [ 0/312 ( 0%)] Loss: 2.57 (2.57) Time: 1.775s, 576.76/s (1.775s, 576.76/s) LR: 3.342e-02 Data: 1.400 (1.400) +Train: 122 [ 50/312 ( 16%)] Loss: 2.44 (2.52) Time: 0.411s, 2488.70/s (0.438s, 2340.09/s) LR: 3.342e-02 Data: 0.030 (0.055) +Train: 122 [ 100/312 ( 32%)] Loss: 2.51 (2.53) Time: 0.409s, 2502.56/s (0.425s, 2409.57/s) LR: 3.342e-02 Data: 0.028 (0.042) +Train: 122 [ 150/312 ( 48%)] Loss: 2.44 (2.53) Time: 0.406s, 2522.84/s (0.419s, 2442.27/s) LR: 3.342e-02 Data: 0.028 (0.037) +Train: 122 [ 200/312 ( 64%)] Loss: 2.43 (2.53) Time: 0.407s, 2514.48/s (0.416s, 2460.92/s) LR: 3.342e-02 Data: 0.028 (0.035) +Train: 122 [ 250/312 ( 80%)] Loss: 2.56 (2.53) Time: 0.414s, 2473.36/s (0.414s, 2470.90/s) LR: 3.342e-02 Data: 0.027 (0.033) +Train: 122 [ 300/312 ( 96%)] Loss: 2.58 (2.54) Time: 0.413s, 2478.23/s (0.414s, 2474.56/s) LR: 3.342e-02 Data: 0.029 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.420 (1.420) Loss: 2.746 ( 2.746) Acc@1: 47.949 ( 47.949) Acc@5: 68.359 ( 68.359) +Test: [ 48/48] Time: 0.089 (0.321) Loss: 2.547 ( 2.784) Acc@1: 51.415 ( 48.344) Acc@5: 71.934 ( 69.412) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-60.pth.tar', 48.73400004516601) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-90.pth.tar', 48.64000006591797) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-78.pth.tar', 48.6280000390625) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-62.pth.tar', 48.390000036621096) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-63.pth.tar', 48.35200002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-68.pth.tar', 48.34400006835938) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-122.pth.tar', 48.34399996826172) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-55.pth.tar', 48.33800000366211) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-49.pth.tar', 48.28799996582031) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-89.pth.tar', 48.21400005004883) + +Train: 123 [ 0/312 ( 0%)] Loss: 2.48 (2.48) Time: 1.976s, 518.20/s (1.976s, 518.20/s) LR: 3.113e-02 Data: 1.483 (1.483) +Train: 123 [ 50/312 ( 16%)] Loss: 2.56 (2.50) Time: 0.408s, 2509.89/s (0.439s, 2333.28/s) LR: 3.113e-02 Data: 0.029 (0.057) +Train: 123 [ 100/312 ( 32%)] Loss: 2.60 (2.51) Time: 0.413s, 2478.52/s (0.424s, 2415.03/s) LR: 3.113e-02 Data: 0.033 (0.043) +Train: 123 [ 150/312 ( 48%)] Loss: 2.57 (2.51) Time: 0.413s, 2479.33/s (0.420s, 2437.02/s) LR: 3.113e-02 Data: 0.028 (0.038) +Train: 123 [ 200/312 ( 64%)] Loss: 2.52 (2.52) Time: 0.408s, 2506.99/s (0.418s, 2448.64/s) LR: 3.113e-02 Data: 0.025 (0.035) +Train: 123 [ 250/312 ( 80%)] Loss: 2.63 (2.52) Time: 0.408s, 2509.88/s (0.416s, 2458.88/s) LR: 3.113e-02 Data: 0.027 (0.034) +Train: 123 [ 300/312 ( 96%)] Loss: 2.53 (2.52) Time: 0.414s, 2472.59/s (0.415s, 2465.45/s) LR: 3.113e-02 Data: 0.033 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.428 (1.428) Loss: 2.766 ( 2.766) Acc@1: 47.461 ( 47.461) Acc@5: 68.848 ( 68.848) +Test: [ 48/48] Time: 0.091 (0.321) Loss: 2.569 ( 2.803) Acc@1: 52.005 ( 48.140) Acc@5: 73.231 ( 69.184) +Train: 124 [ 0/312 ( 0%)] Loss: 2.55 (2.55) Time: 1.686s, 607.49/s (1.686s, 607.49/s) LR: 2.893e-02 Data: 1.138 (1.138) +Train: 124 [ 50/312 ( 16%)] Loss: 2.55 (2.49) Time: 0.411s, 2489.82/s (0.437s, 2340.86/s) LR: 2.893e-02 Data: 0.028 (0.050) +Train: 124 [ 100/312 ( 32%)] Loss: 2.55 (2.50) Time: 0.406s, 2521.67/s (0.423s, 2419.25/s) LR: 2.893e-02 Data: 0.027 (0.038) +Train: 124 [ 150/312 ( 48%)] Loss: 2.48 (2.50) Time: 0.407s, 2517.15/s (0.418s, 2449.53/s) LR: 2.893e-02 Data: 0.025 (0.035) +Train: 124 [ 200/312 ( 64%)] Loss: 2.48 (2.50) Time: 0.409s, 2505.82/s (0.416s, 2463.90/s) LR: 2.893e-02 Data: 0.027 (0.033) +Train: 124 [ 250/312 ( 80%)] Loss: 2.54 (2.51) Time: 0.416s, 2462.95/s (0.415s, 2469.22/s) LR: 2.893e-02 Data: 0.027 (0.032) +Train: 124 [ 300/312 ( 96%)] Loss: 2.53 (2.51) Time: 0.410s, 2498.79/s (0.414s, 2472.95/s) LR: 2.893e-02 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.425 (1.425) Loss: 2.763 ( 2.763) Acc@1: 46.582 ( 46.582) Acc@5: 68.750 ( 68.750) +Test: [ 48/48] Time: 0.090 (0.320) Loss: 2.552 ( 2.803) Acc@1: 51.533 ( 48.054) Acc@5: 72.524 ( 69.000) +Train: 125 [ 0/312 ( 0%)] Loss: 2.53 (2.53) Time: 1.566s, 654.09/s (1.566s, 654.09/s) LR: 2.679e-02 Data: 1.077 (1.077) +Train: 125 [ 50/312 ( 16%)] Loss: 2.46 (2.49) Time: 0.409s, 2506.37/s (0.431s, 2374.14/s) LR: 2.679e-02 Data: 0.028 (0.048) +Train: 125 [ 100/312 ( 32%)] Loss: 2.51 (2.49) Time: 0.416s, 2462.93/s (0.421s, 2431.03/s) LR: 2.679e-02 Data: 0.030 (0.038) +Train: 125 [ 150/312 ( 48%)] Loss: 2.51 (2.49) Time: 0.408s, 2512.71/s (0.418s, 2449.29/s) LR: 2.679e-02 Data: 0.028 (0.035) +Train: 125 [ 200/312 ( 64%)] Loss: 2.53 (2.50) Time: 0.408s, 2508.55/s (0.416s, 2463.37/s) LR: 2.679e-02 Data: 0.028 (0.033) +Train: 125 [ 250/312 ( 80%)] Loss: 2.51 (2.50) Time: 0.410s, 2499.81/s (0.414s, 2472.28/s) LR: 2.679e-02 Data: 0.029 (0.032) +Train: 125 [ 300/312 ( 96%)] Loss: 2.48 (2.50) Time: 0.410s, 2496.99/s (0.414s, 2476.27/s) LR: 2.679e-02 Data: 0.027 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.423 (1.423) Loss: 2.773 ( 2.773) Acc@1: 47.168 ( 47.168) Acc@5: 69.336 ( 69.336) +Test: [ 48/48] Time: 0.091 (0.318) Loss: 2.594 ( 2.814) Acc@1: 53.184 ( 47.998) Acc@5: 73.349 ( 68.886) +Train: 126 [ 0/312 ( 0%)] Loss: 2.55 (2.55) Time: 1.700s, 602.49/s (1.700s, 602.49/s) LR: 2.474e-02 Data: 1.324 (1.324) +Train: 126 [ 50/312 ( 16%)] Loss: 2.34 (2.48) Time: 0.410s, 2499.08/s (0.437s, 2340.70/s) LR: 2.474e-02 Data: 0.028 (0.054) +Train: 126 [ 100/312 ( 32%)] Loss: 2.51 (2.48) Time: 0.404s, 2535.05/s (0.423s, 2422.21/s) LR: 2.474e-02 Data: 0.029 (0.041) +Train: 126 [ 150/312 ( 48%)] Loss: 2.54 (2.48) Time: 0.409s, 2506.63/s (0.417s, 2455.06/s) LR: 2.474e-02 Data: 0.033 (0.037) +Train: 126 [ 200/312 ( 64%)] Loss: 2.51 (2.48) Time: 0.406s, 2521.43/s (0.414s, 2472.66/s) LR: 2.474e-02 Data: 0.028 (0.035) +Train: 126 [ 250/312 ( 80%)] Loss: 2.58 (2.49) Time: 0.408s, 2511.85/s (0.413s, 2482.18/s) LR: 2.474e-02 Data: 0.028 (0.033) +Train: 126 [ 300/312 ( 96%)] Loss: 2.47 (2.49) Time: 0.410s, 2496.85/s (0.412s, 2484.94/s) LR: 2.474e-02 Data: 0.028 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.428 (1.428) Loss: 2.835 ( 2.835) Acc@1: 47.754 ( 47.754) Acc@5: 68.164 ( 68.164) +Test: [ 48/48] Time: 0.091 (0.321) Loss: 2.590 ( 2.846) Acc@1: 50.472 ( 47.742) Acc@5: 72.995 ( 68.518) +Train: 127 [ 0/312 ( 0%)] Loss: 2.47 (2.47) Time: 1.770s, 578.47/s (1.770s, 578.47/s) LR: 2.276e-02 Data: 1.394 (1.394) +Train: 127 [ 50/312 ( 16%)] Loss: 2.45 (2.45) Time: 0.408s, 2507.78/s (0.439s, 2332.27/s) LR: 2.276e-02 Data: 0.028 (0.058) +Train: 127 [ 100/312 ( 32%)] Loss: 2.47 (2.46) Time: 0.409s, 2505.16/s (0.425s, 2411.45/s) LR: 2.276e-02 Data: 0.027 (0.043) +Train: 127 [ 150/312 ( 48%)] Loss: 2.45 (2.47) Time: 0.410s, 2497.96/s (0.420s, 2436.06/s) LR: 2.276e-02 Data: 0.028 (0.038) +Train: 127 [ 200/312 ( 64%)] Loss: 2.43 (2.47) Time: 0.409s, 2506.72/s (0.417s, 2453.43/s) LR: 2.276e-02 Data: 0.028 (0.035) +Train: 127 [ 250/312 ( 80%)] Loss: 2.50 (2.47) Time: 0.411s, 2489.98/s (0.416s, 2464.49/s) LR: 2.276e-02 Data: 0.028 (0.034) +Train: 127 [ 300/312 ( 96%)] Loss: 2.50 (2.48) Time: 0.409s, 2504.18/s (0.415s, 2470.35/s) LR: 2.276e-02 Data: 0.027 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.432 (1.432) Loss: 2.816 ( 2.816) Acc@1: 46.289 ( 46.289) Acc@5: 68.066 ( 68.066) +Test: [ 48/48] Time: 0.090 (0.320) Loss: 2.566 ( 2.817) Acc@1: 51.769 ( 48.078) Acc@5: 74.175 ( 68.846) +Train: 128 [ 0/312 ( 0%)] Loss: 2.39 (2.39) Time: 1.936s, 528.82/s (1.936s, 528.82/s) LR: 2.086e-02 Data: 1.562 (1.562) +Train: 128 [ 50/312 ( 16%)] Loss: 2.40 (2.44) Time: 0.410s, 2500.18/s (0.440s, 2326.92/s) LR: 2.086e-02 Data: 0.027 (0.058) +Train: 128 [ 100/312 ( 32%)] Loss: 2.38 (2.45) Time: 0.410s, 2494.70/s (0.426s, 2403.96/s) LR: 2.086e-02 Data: 0.028 (0.043) +Train: 128 [ 150/312 ( 48%)] Loss: 2.42 (2.46) Time: 0.408s, 2511.39/s (0.421s, 2430.69/s) LR: 2.086e-02 Data: 0.027 (0.038) +Train: 128 [ 200/312 ( 64%)] Loss: 2.45 (2.46) Time: 0.408s, 2511.10/s (0.418s, 2447.96/s) LR: 2.086e-02 Data: 0.029 (0.036) +Train: 128 [ 250/312 ( 80%)] Loss: 2.46 (2.46) Time: 0.414s, 2472.10/s (0.417s, 2458.58/s) LR: 2.086e-02 Data: 0.026 (0.034) +Train: 128 [ 300/312 ( 96%)] Loss: 2.47 (2.46) Time: 0.416s, 2463.84/s (0.416s, 2463.10/s) LR: 2.086e-02 Data: 0.028 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.430 (1.430) Loss: 2.818 ( 2.818) Acc@1: 46.680 ( 46.680) Acc@5: 67.383 ( 67.383) +Test: [ 48/48] Time: 0.090 (0.319) Loss: 2.576 ( 2.838) Acc@1: 50.472 ( 47.776) Acc@5: 72.995 ( 68.514) +Train: 129 [ 0/312 ( 0%)] Loss: 2.44 (2.44) Time: 1.777s, 576.19/s (1.777s, 576.19/s) LR: 1.903e-02 Data: 1.402 (1.402) +Train: 129 [ 50/312 ( 16%)] Loss: 2.36 (2.44) Time: 0.414s, 2476.00/s (0.443s, 2313.61/s) LR: 1.903e-02 Data: 0.029 (0.055) +Train: 129 [ 100/312 ( 32%)] Loss: 2.36 (2.44) Time: 0.410s, 2495.62/s (0.428s, 2393.15/s) LR: 1.903e-02 Data: 0.028 (0.042) +Train: 129 [ 150/312 ( 48%)] Loss: 2.44 (2.45) Time: 0.414s, 2471.14/s (0.423s, 2421.64/s) LR: 1.903e-02 Data: 0.030 (0.037) +Train: 129 [ 200/312 ( 64%)] Loss: 2.40 (2.45) Time: 0.414s, 2472.62/s (0.420s, 2436.55/s) LR: 1.903e-02 Data: 0.028 (0.035) +Train: 129 [ 250/312 ( 80%)] Loss: 2.48 (2.45) Time: 0.410s, 2495.08/s (0.419s, 2446.70/s) LR: 1.903e-02 Data: 0.028 (0.034) +Train: 129 [ 300/312 ( 96%)] Loss: 2.43 (2.46) Time: 0.411s, 2493.03/s (0.417s, 2453.43/s) LR: 1.903e-02 Data: 0.028 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.435 (1.435) Loss: 2.789 ( 2.789) Acc@1: 47.461 ( 47.461) Acc@5: 67.578 ( 67.578) +Test: [ 48/48] Time: 0.092 (0.322) Loss: 2.563 ( 2.826) Acc@1: 51.651 ( 48.066) Acc@5: 72.995 ( 68.778) +Train: 130 [ 0/312 ( 0%)] Loss: 2.34 (2.34) Time: 1.592s, 643.23/s (1.592s, 643.23/s) LR: 1.729e-02 Data: 1.170 (1.170) +Train: 130 [ 50/312 ( 16%)] Loss: 2.33 (2.43) Time: 0.412s, 2483.73/s (0.435s, 2351.59/s) LR: 1.729e-02 Data: 0.029 (0.050) +Train: 130 [ 100/312 ( 32%)] Loss: 2.39 (2.44) Time: 0.412s, 2488.14/s (0.424s, 2417.50/s) LR: 1.729e-02 Data: 0.029 (0.039) +Train: 130 [ 150/312 ( 48%)] Loss: 2.43 (2.44) Time: 0.409s, 2501.99/s (0.420s, 2441.00/s) LR: 1.729e-02 Data: 0.028 (0.036) +Train: 130 [ 200/312 ( 64%)] Loss: 2.39 (2.44) Time: 0.414s, 2475.05/s (0.418s, 2452.14/s) LR: 1.729e-02 Data: 0.028 (0.034) +Train: 130 [ 250/312 ( 80%)] Loss: 2.47 (2.44) Time: 0.415s, 2470.08/s (0.417s, 2457.75/s) LR: 1.729e-02 Data: 0.028 (0.033) +Train: 130 [ 300/312 ( 96%)] Loss: 2.50 (2.45) Time: 0.410s, 2494.92/s (0.416s, 2463.16/s) LR: 1.729e-02 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.414 (1.414) Loss: 2.785 ( 2.785) Acc@1: 47.949 ( 47.949) Acc@5: 68.652 ( 68.652) +Test: [ 48/48] Time: 0.090 (0.319) Loss: 2.540 ( 2.822) Acc@1: 52.005 ( 48.124) Acc@5: 73.585 ( 68.766) +Train: 131 [ 0/312 ( 0%)] Loss: 2.52 (2.52) Time: 1.847s, 554.47/s (1.847s, 554.47/s) LR: 1.563e-02 Data: 1.472 (1.472) +Train: 131 [ 50/312 ( 16%)] Loss: 2.40 (2.42) Time: 0.410s, 2499.86/s (0.439s, 2331.62/s) LR: 1.563e-02 Data: 0.027 (0.056) +Train: 131 [ 100/312 ( 32%)] Loss: 2.46 (2.42) Time: 0.410s, 2496.50/s (0.425s, 2407.81/s) LR: 1.563e-02 Data: 0.028 (0.042) +Train: 131 [ 150/312 ( 48%)] Loss: 2.39 (2.43) Time: 0.410s, 2499.46/s (0.420s, 2435.21/s) LR: 1.563e-02 Data: 0.027 (0.037) +Train: 131 [ 200/312 ( 64%)] Loss: 2.45 (2.43) Time: 0.414s, 2475.71/s (0.418s, 2448.94/s) LR: 1.563e-02 Data: 0.027 (0.035) +Train: 131 [ 250/312 ( 80%)] Loss: 2.41 (2.43) Time: 0.410s, 2498.69/s (0.417s, 2456.35/s) LR: 1.563e-02 Data: 0.027 (0.034) +Train: 131 [ 300/312 ( 96%)] Loss: 2.51 (2.44) Time: 0.409s, 2501.68/s (0.416s, 2463.53/s) LR: 1.563e-02 Data: 0.029 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.433 (1.433) Loss: 2.749 ( 2.749) Acc@1: 48.535 ( 48.535) Acc@5: 68.262 ( 68.262) +Test: [ 48/48] Time: 0.090 (0.321) Loss: 2.536 ( 2.805) Acc@1: 52.005 ( 48.208) Acc@5: 73.349 ( 69.092) +Train: 132 [ 0/312 ( 0%)] Loss: 2.31 (2.31) Time: 1.719s, 595.74/s (1.719s, 595.74/s) LR: 1.404e-02 Data: 1.130 (1.130) +Train: 132 [ 50/312 ( 16%)] Loss: 2.45 (2.42) Time: 0.411s, 2491.27/s (0.438s, 2337.59/s) LR: 1.404e-02 Data: 0.028 (0.049) +Train: 132 [ 100/312 ( 32%)] Loss: 2.48 (2.42) Time: 0.409s, 2504.63/s (0.425s, 2410.32/s) LR: 1.404e-02 Data: 0.027 (0.039) +Train: 132 [ 150/312 ( 48%)] Loss: 2.45 (2.43) Time: 0.411s, 2491.02/s (0.420s, 2436.81/s) LR: 1.404e-02 Data: 0.027 (0.035) +Train: 132 [ 200/312 ( 64%)] Loss: 2.39 (2.43) Time: 0.412s, 2486.18/s (0.418s, 2449.11/s) LR: 1.404e-02 Data: 0.029 (0.033) +Train: 132 [ 250/312 ( 80%)] Loss: 2.45 (2.43) Time: 0.408s, 2507.91/s (0.417s, 2456.16/s) LR: 1.404e-02 Data: 0.028 (0.032) +Train: 132 [ 300/312 ( 96%)] Loss: 2.41 (2.43) Time: 0.410s, 2496.45/s (0.416s, 2462.77/s) LR: 1.404e-02 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.427 (1.427) Loss: 2.803 ( 2.803) Acc@1: 48.145 ( 48.145) Acc@5: 68.262 ( 68.262) +Test: [ 48/48] Time: 0.090 (0.321) Loss: 2.553 ( 2.827) Acc@1: 50.943 ( 48.002) Acc@5: 73.939 ( 68.856) +Train: 133 [ 0/312 ( 0%)] Loss: 2.38 (2.38) Time: 1.518s, 674.74/s (1.518s, 674.74/s) LR: 1.254e-02 Data: 1.122 (1.122) +Train: 133 [ 50/312 ( 16%)] Loss: 2.46 (2.41) Time: 0.413s, 2480.71/s (0.434s, 2359.70/s) LR: 1.254e-02 Data: 0.029 (0.049) +Train: 133 [ 100/312 ( 32%)] Loss: 2.40 (2.41) Time: 0.410s, 2499.84/s (0.422s, 2424.38/s) LR: 1.254e-02 Data: 0.027 (0.038) +Train: 133 [ 150/312 ( 48%)] Loss: 2.35 (2.41) Time: 0.410s, 2498.83/s (0.418s, 2448.23/s) LR: 1.254e-02 Data: 0.027 (0.035) +Train: 133 [ 200/312 ( 64%)] Loss: 2.45 (2.42) Time: 0.410s, 2496.65/s (0.417s, 2458.43/s) LR: 1.254e-02 Data: 0.027 (0.033) +Train: 133 [ 250/312 ( 80%)] Loss: 2.45 (2.42) Time: 0.411s, 2489.31/s (0.416s, 2464.44/s) LR: 1.254e-02 Data: 0.028 (0.032) +Train: 133 [ 300/312 ( 96%)] Loss: 2.34 (2.42) Time: 0.412s, 2483.96/s (0.415s, 2468.22/s) LR: 1.254e-02 Data: 0.029 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.419 (1.419) Loss: 2.815 ( 2.815) Acc@1: 47.852 ( 47.852) Acc@5: 67.773 ( 67.773) +Test: [ 48/48] Time: 0.090 (0.319) Loss: 2.577 ( 2.838) Acc@1: 51.415 ( 47.814) Acc@5: 73.231 ( 68.568) +Train: 134 [ 0/312 ( 0%)] Loss: 2.47 (2.47) Time: 1.791s, 571.74/s (1.791s, 571.74/s) LR: 1.112e-02 Data: 1.416 (1.416) +Train: 134 [ 50/312 ( 16%)] Loss: 2.34 (2.41) Time: 0.409s, 2502.65/s (0.437s, 2342.55/s) LR: 1.112e-02 Data: 0.027 (0.055) +Train: 134 [ 100/312 ( 32%)] Loss: 2.36 (2.41) Time: 0.409s, 2504.50/s (0.424s, 2414.73/s) LR: 1.112e-02 Data: 0.027 (0.042) +Train: 134 [ 150/312 ( 48%)] Loss: 2.34 (2.41) Time: 0.409s, 2504.51/s (0.420s, 2440.60/s) LR: 1.112e-02 Data: 0.029 (0.037) +Train: 134 [ 200/312 ( 64%)] Loss: 2.44 (2.42) Time: 0.409s, 2503.63/s (0.417s, 2454.16/s) LR: 1.112e-02 Data: 0.028 (0.035) +Train: 134 [ 250/312 ( 80%)] Loss: 2.36 (2.42) Time: 0.409s, 2502.78/s (0.416s, 2461.87/s) LR: 1.112e-02 Data: 0.028 (0.033) +Train: 134 [ 300/312 ( 96%)] Loss: 2.38 (2.42) Time: 0.412s, 2487.43/s (0.415s, 2466.73/s) LR: 1.112e-02 Data: 0.029 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.446 (1.446) Loss: 2.776 ( 2.776) Acc@1: 47.754 ( 47.754) Acc@5: 67.871 ( 67.871) +Test: [ 48/48] Time: 0.090 (0.321) Loss: 2.544 ( 2.806) Acc@1: 51.415 ( 48.262) Acc@5: 73.939 ( 69.038) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-60.pth.tar', 48.73400004516601) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-90.pth.tar', 48.64000006591797) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-78.pth.tar', 48.6280000390625) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-62.pth.tar', 48.390000036621096) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-63.pth.tar', 48.35200002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-68.pth.tar', 48.34400006835938) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-122.pth.tar', 48.34399996826172) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-55.pth.tar', 48.33800000366211) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-49.pth.tar', 48.28799996582031) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-134.pth.tar', 48.26199996826172) + +Train: 135 [ 0/312 ( 0%)] Loss: 2.42 (2.42) Time: 1.587s, 645.31/s (1.587s, 645.31/s) LR: 9.789e-03 Data: 1.212 (1.212) +Train: 135 [ 50/312 ( 16%)] Loss: 2.33 (2.40) Time: 0.409s, 2502.42/s (0.433s, 2364.54/s) LR: 9.789e-03 Data: 0.023 (0.051) +Train: 135 [ 100/312 ( 32%)] Loss: 2.37 (2.41) Time: 0.410s, 2496.42/s (0.422s, 2426.03/s) LR: 9.789e-03 Data: 0.028 (0.039) +Train: 135 [ 150/312 ( 48%)] Loss: 2.31 (2.41) Time: 0.411s, 2494.13/s (0.418s, 2447.93/s) LR: 9.789e-03 Data: 0.030 (0.036) +Train: 135 [ 200/312 ( 64%)] Loss: 2.48 (2.41) Time: 0.410s, 2497.94/s (0.416s, 2459.46/s) LR: 9.789e-03 Data: 0.027 (0.034) +Train: 135 [ 250/312 ( 80%)] Loss: 2.44 (2.41) Time: 0.410s, 2499.71/s (0.415s, 2465.63/s) LR: 9.789e-03 Data: 0.028 (0.033) +Train: 135 [ 300/312 ( 96%)] Loss: 2.44 (2.41) Time: 0.410s, 2497.92/s (0.415s, 2469.86/s) LR: 9.789e-03 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.509 (1.509) Loss: 2.809 ( 2.809) Acc@1: 47.949 ( 47.949) Acc@5: 68.555 ( 68.555) +Test: [ 48/48] Time: 0.090 (0.323) Loss: 2.600 ( 2.841) Acc@1: 50.354 ( 47.830) Acc@5: 73.231 ( 68.498) +Train: 136 [ 0/312 ( 0%)] Loss: 2.36 (2.36) Time: 1.677s, 610.70/s (1.677s, 610.70/s) LR: 8.536e-03 Data: 1.302 (1.302) +Train: 136 [ 50/312 ( 16%)] Loss: 2.51 (2.40) Time: 0.412s, 2482.83/s (0.436s, 2346.36/s) LR: 8.536e-03 Data: 0.028 (0.054) +Train: 136 [ 100/312 ( 32%)] Loss: 2.42 (2.39) Time: 0.411s, 2488.89/s (0.424s, 2417.54/s) LR: 8.536e-03 Data: 0.027 (0.041) +Train: 136 [ 150/312 ( 48%)] Loss: 2.40 (2.40) Time: 0.410s, 2495.59/s (0.419s, 2442.14/s) LR: 8.536e-03 Data: 0.028 (0.037) +Train: 136 [ 200/312 ( 64%)] Loss: 2.32 (2.40) Time: 0.410s, 2498.02/s (0.417s, 2454.90/s) LR: 8.536e-03 Data: 0.028 (0.035) +Train: 136 [ 250/312 ( 80%)] Loss: 2.24 (2.40) Time: 0.411s, 2492.32/s (0.416s, 2462.46/s) LR: 8.536e-03 Data: 0.029 (0.033) +Train: 136 [ 300/312 ( 96%)] Loss: 2.42 (2.40) Time: 0.410s, 2499.48/s (0.415s, 2467.34/s) LR: 8.536e-03 Data: 0.027 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.417 (1.417) Loss: 2.787 ( 2.787) Acc@1: 48.438 ( 48.438) Acc@5: 68.750 ( 68.750) +Test: [ 48/48] Time: 0.090 (0.319) Loss: 2.566 ( 2.814) Acc@1: 50.943 ( 48.142) Acc@5: 73.585 ( 68.982) +Train: 137 [ 0/312 ( 0%)] Loss: 2.31 (2.31) Time: 1.616s, 633.81/s (1.616s, 633.81/s) LR: 7.367e-03 Data: 1.066 (1.066) +Train: 137 [ 50/312 ( 16%)] Loss: 2.44 (2.39) Time: 0.406s, 2525.13/s (0.429s, 2388.16/s) LR: 7.367e-03 Data: 0.027 (0.048) +Train: 137 [ 100/312 ( 32%)] Loss: 2.48 (2.40) Time: 0.406s, 2519.83/s (0.417s, 2453.56/s) LR: 7.367e-03 Data: 0.029 (0.038) +Train: 137 [ 150/312 ( 48%)] Loss: 2.41 (2.40) Time: 0.408s, 2509.80/s (0.414s, 2471.93/s) LR: 7.367e-03 Data: 0.026 (0.035) +Train: 137 [ 200/312 ( 64%)] Loss: 2.45 (2.40) Time: 0.410s, 2496.56/s (0.413s, 2477.42/s) LR: 7.367e-03 Data: 0.028 (0.033) +Train: 137 [ 250/312 ( 80%)] Loss: 2.32 (2.40) Time: 0.410s, 2498.50/s (0.413s, 2481.31/s) LR: 7.367e-03 Data: 0.029 (0.032) +Train: 137 [ 300/312 ( 96%)] Loss: 2.41 (2.40) Time: 0.410s, 2497.82/s (0.412s, 2483.76/s) LR: 7.367e-03 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.438 (1.438) Loss: 2.783 ( 2.783) Acc@1: 48.242 ( 48.242) Acc@5: 67.871 ( 67.871) +Test: [ 48/48] Time: 0.090 (0.321) Loss: 2.567 ( 2.812) Acc@1: 51.415 ( 48.232) Acc@5: 73.585 ( 68.852) +Train: 138 [ 0/312 ( 0%)] Loss: 2.35 (2.35) Time: 1.611s, 635.70/s (1.611s, 635.70/s) LR: 6.283e-03 Data: 1.235 (1.235) +Train: 138 [ 50/312 ( 16%)] Loss: 2.43 (2.39) Time: 0.410s, 2496.92/s (0.436s, 2346.29/s) LR: 6.283e-03 Data: 0.023 (0.051) +Train: 138 [ 100/312 ( 32%)] Loss: 2.42 (2.39) Time: 0.408s, 2508.07/s (0.424s, 2416.61/s) LR: 6.283e-03 Data: 0.027 (0.040) +Train: 138 [ 150/312 ( 48%)] Loss: 2.40 (2.39) Time: 0.406s, 2520.47/s (0.419s, 2445.45/s) LR: 6.283e-03 Data: 0.028 (0.036) +Train: 138 [ 200/312 ( 64%)] Loss: 2.40 (2.39) Time: 0.408s, 2511.58/s (0.416s, 2461.57/s) LR: 6.283e-03 Data: 0.027 (0.034) +Train: 138 [ 250/312 ( 80%)] Loss: 2.41 (2.40) Time: 0.410s, 2499.47/s (0.415s, 2468.75/s) LR: 6.283e-03 Data: 0.029 (0.033) +Train: 138 [ 300/312 ( 96%)] Loss: 2.40 (2.40) Time: 0.410s, 2497.56/s (0.414s, 2471.16/s) LR: 6.283e-03 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.497 (1.497) Loss: 2.790 ( 2.790) Acc@1: 47.656 ( 47.656) Acc@5: 67.871 ( 67.871) +Test: [ 48/48] Time: 0.090 (0.322) Loss: 2.564 ( 2.817) Acc@1: 51.061 ( 48.122) Acc@5: 74.057 ( 68.866) +Train: 139 [ 0/312 ( 0%)] Loss: 2.43 (2.43) Time: 1.574s, 650.38/s (1.574s, 650.38/s) LR: 5.284e-03 Data: 1.203 (1.203) +Train: 139 [ 50/312 ( 16%)] Loss: 2.38 (2.38) Time: 0.408s, 2508.61/s (0.430s, 2380.10/s) LR: 5.284e-03 Data: 0.028 (0.050) +Train: 139 [ 100/312 ( 32%)] Loss: 2.41 (2.38) Time: 0.409s, 2502.25/s (0.420s, 2438.68/s) LR: 5.284e-03 Data: 0.028 (0.039) +Train: 139 [ 150/312 ( 48%)] Loss: 2.36 (2.38) Time: 0.411s, 2489.07/s (0.418s, 2452.60/s) LR: 5.284e-03 Data: 0.028 (0.035) +Train: 139 [ 200/312 ( 64%)] Loss: 2.41 (2.39) Time: 0.411s, 2492.15/s (0.416s, 2458.61/s) LR: 5.284e-03 Data: 0.028 (0.034) +Train: 139 [ 250/312 ( 80%)] Loss: 2.37 (2.39) Time: 0.412s, 2486.90/s (0.416s, 2462.14/s) LR: 5.284e-03 Data: 0.026 (0.032) +Train: 139 [ 300/312 ( 96%)] Loss: 2.40 (2.39) Time: 0.412s, 2484.86/s (0.415s, 2465.80/s) LR: 5.284e-03 Data: 0.029 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.435 (1.435) Loss: 2.801 ( 2.801) Acc@1: 48.145 ( 48.145) Acc@5: 68.066 ( 68.066) +Test: [ 48/48] Time: 0.091 (0.320) Loss: 2.562 ( 2.824) Acc@1: 51.297 ( 48.080) Acc@5: 73.703 ( 68.844) +Train: 140 [ 0/312 ( 0%)] Loss: 2.41 (2.41) Time: 1.734s, 590.44/s (1.734s, 590.44/s) LR: 4.370e-03 Data: 1.360 (1.360) +Train: 140 [ 50/312 ( 16%)] Loss: 2.47 (2.38) Time: 0.410s, 2499.70/s (0.438s, 2337.41/s) LR: 4.370e-03 Data: 0.025 (0.054) +Train: 140 [ 100/312 ( 32%)] Loss: 2.42 (2.38) Time: 0.410s, 2494.66/s (0.425s, 2410.49/s) LR: 4.370e-03 Data: 0.027 (0.041) +Train: 140 [ 150/312 ( 48%)] Loss: 2.37 (2.38) Time: 0.413s, 2478.15/s (0.421s, 2434.64/s) LR: 4.370e-03 Data: 0.030 (0.036) +Train: 140 [ 200/312 ( 64%)] Loss: 2.39 (2.38) Time: 0.410s, 2500.07/s (0.418s, 2447.67/s) LR: 4.370e-03 Data: 0.028 (0.034) +Train: 140 [ 250/312 ( 80%)] Loss: 2.39 (2.38) Time: 0.410s, 2494.93/s (0.417s, 2456.16/s) LR: 4.370e-03 Data: 0.027 (0.033) +Train: 140 [ 300/312 ( 96%)] Loss: 2.41 (2.38) Time: 0.414s, 2471.38/s (0.416s, 2459.72/s) LR: 4.370e-03 Data: 0.029 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.421 (1.421) Loss: 2.800 ( 2.800) Acc@1: 47.754 ( 47.754) Acc@5: 67.773 ( 67.773) +Test: [ 48/48] Time: 0.090 (0.321) Loss: 2.567 ( 2.829) Acc@1: 51.887 ( 48.072) Acc@5: 73.821 ( 68.640) +Train: 141 [ 0/312 ( 0%)] Loss: 2.32 (2.32) Time: 1.836s, 557.72/s (1.836s, 557.72/s) LR: 3.543e-03 Data: 1.462 (1.462) +Train: 141 [ 50/312 ( 16%)] Loss: 2.39 (2.39) Time: 0.412s, 2486.42/s (0.437s, 2341.67/s) LR: 3.543e-03 Data: 0.029 (0.056) +Train: 141 [ 100/312 ( 32%)] Loss: 2.37 (2.38) Time: 0.409s, 2504.66/s (0.424s, 2413.07/s) LR: 3.543e-03 Data: 0.028 (0.042) +Train: 141 [ 150/312 ( 48%)] Loss: 2.44 (2.38) Time: 0.414s, 2473.86/s (0.420s, 2437.87/s) LR: 3.543e-03 Data: 0.028 (0.037) +Train: 141 [ 200/312 ( 64%)] Loss: 2.38 (2.38) Time: 0.410s, 2498.26/s (0.418s, 2450.87/s) LR: 3.543e-03 Data: 0.028 (0.035) +Train: 141 [ 250/312 ( 80%)] Loss: 2.42 (2.38) Time: 0.408s, 2512.22/s (0.416s, 2460.57/s) LR: 3.543e-03 Data: 0.027 (0.034) +Train: 141 [ 300/312 ( 96%)] Loss: 2.48 (2.38) Time: 0.411s, 2493.88/s (0.415s, 2466.22/s) LR: 3.543e-03 Data: 0.027 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.449 (1.449) Loss: 2.770 ( 2.770) Acc@1: 48.438 ( 48.438) Acc@5: 68.262 ( 68.262) +Test: [ 48/48] Time: 0.091 (0.318) Loss: 2.551 ( 2.803) Acc@1: 51.651 ( 48.498) Acc@5: 74.057 ( 69.110) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-60.pth.tar', 48.73400004516601) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-90.pth.tar', 48.64000006591797) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-78.pth.tar', 48.6280000390625) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-141.pth.tar', 48.49800007080078) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-62.pth.tar', 48.390000036621096) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-63.pth.tar', 48.35200002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-68.pth.tar', 48.34400006835938) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-122.pth.tar', 48.34399996826172) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-55.pth.tar', 48.33800000366211) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-49.pth.tar', 48.28799996582031) + +Train: 142 [ 0/312 ( 0%)] Loss: 2.35 (2.35) Time: 1.416s, 723.16/s (1.416s, 723.16/s) LR: 2.801e-03 Data: 1.028 (1.028) +Train: 142 [ 50/312 ( 16%)] Loss: 2.32 (2.36) Time: 0.414s, 2471.86/s (0.434s, 2357.27/s) LR: 2.801e-03 Data: 0.032 (0.048) +Train: 142 [ 100/312 ( 32%)] Loss: 2.41 (2.37) Time: 0.413s, 2481.73/s (0.424s, 2416.84/s) LR: 2.801e-03 Data: 0.027 (0.038) +Train: 142 [ 150/312 ( 48%)] Loss: 2.32 (2.37) Time: 0.409s, 2500.67/s (0.420s, 2440.11/s) LR: 2.801e-03 Data: 0.028 (0.035) +Train: 142 [ 200/312 ( 64%)] Loss: 2.27 (2.37) Time: 0.414s, 2470.54/s (0.417s, 2452.94/s) LR: 2.801e-03 Data: 0.033 (0.033) +Train: 142 [ 250/312 ( 80%)] Loss: 2.40 (2.37) Time: 0.412s, 2486.56/s (0.416s, 2459.60/s) LR: 2.801e-03 Data: 0.028 (0.032) +Train: 142 [ 300/312 ( 96%)] Loss: 2.35 (2.37) Time: 0.410s, 2495.39/s (0.416s, 2464.09/s) LR: 2.801e-03 Data: 0.028 (0.031) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.450 (1.450) Loss: 2.775 ( 2.775) Acc@1: 48.535 ( 48.535) Acc@5: 68.164 ( 68.164) +Test: [ 48/48] Time: 0.090 (0.320) Loss: 2.559 ( 2.810) Acc@1: 50.825 ( 48.440) Acc@5: 73.703 ( 69.016) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-60.pth.tar', 48.73400004516601) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-90.pth.tar', 48.64000006591797) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-78.pth.tar', 48.6280000390625) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-141.pth.tar', 48.49800007080078) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-142.pth.tar', 48.43999997070313) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-62.pth.tar', 48.390000036621096) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-63.pth.tar', 48.35200002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-68.pth.tar', 48.34400006835938) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-122.pth.tar', 48.34399996826172) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-55.pth.tar', 48.33800000366211) + +Train: 143 [ 0/312 ( 0%)] Loss: 2.37 (2.37) Time: 1.639s, 624.75/s (1.639s, 624.75/s) LR: 2.146e-03 Data: 1.264 (1.264) +Train: 143 [ 50/312 ( 16%)] Loss: 2.41 (2.37) Time: 0.410s, 2498.81/s (0.437s, 2343.00/s) LR: 2.146e-03 Data: 0.028 (0.052) +Train: 143 [ 100/312 ( 32%)] Loss: 2.34 (2.37) Time: 0.411s, 2492.84/s (0.424s, 2415.23/s) LR: 2.146e-03 Data: 0.027 (0.040) +Train: 143 [ 150/312 ( 48%)] Loss: 2.45 (2.37) Time: 0.412s, 2482.86/s (0.420s, 2439.33/s) LR: 2.146e-03 Data: 0.026 (0.036) +Train: 143 [ 200/312 ( 64%)] Loss: 2.36 (2.37) Time: 0.409s, 2501.68/s (0.417s, 2453.09/s) LR: 2.146e-03 Data: 0.028 (0.034) +Train: 143 [ 250/312 ( 80%)] Loss: 2.35 (2.37) Time: 0.410s, 2499.21/s (0.416s, 2463.37/s) LR: 2.146e-03 Data: 0.027 (0.033) +Train: 143 [ 300/312 ( 96%)] Loss: 2.46 (2.37) Time: 0.411s, 2491.64/s (0.415s, 2468.52/s) LR: 2.146e-03 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.419 (1.419) Loss: 2.766 ( 2.766) Acc@1: 48.633 ( 48.633) Acc@5: 68.066 ( 68.066) +Test: [ 48/48] Time: 0.090 (0.319) Loss: 2.549 ( 2.802) Acc@1: 51.533 ( 48.556) Acc@5: 73.349 ( 68.978) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-60.pth.tar', 48.73400004516601) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-90.pth.tar', 48.64000006591797) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-78.pth.tar', 48.6280000390625) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-143.pth.tar', 48.55600001953125) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-141.pth.tar', 48.49800007080078) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-142.pth.tar', 48.43999997070313) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-62.pth.tar', 48.390000036621096) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-63.pth.tar', 48.35200002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-68.pth.tar', 48.34400006835938) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-122.pth.tar', 48.34399996826172) + +Train: 144 [ 0/312 ( 0%)] Loss: 2.44 (2.44) Time: 1.589s, 644.44/s (1.589s, 644.44/s) LR: 1.577e-03 Data: 1.215 (1.215) +Train: 144 [ 50/312 ( 16%)] Loss: 2.37 (2.38) Time: 0.409s, 2504.94/s (0.433s, 2366.80/s) LR: 1.577e-03 Data: 0.028 (0.052) +Train: 144 [ 100/312 ( 32%)] Loss: 2.30 (2.37) Time: 0.411s, 2492.10/s (0.422s, 2427.70/s) LR: 1.577e-03 Data: 0.028 (0.040) +Train: 144 [ 150/312 ( 48%)] Loss: 2.42 (2.37) Time: 0.412s, 2484.14/s (0.419s, 2446.45/s) LR: 1.577e-03 Data: 0.027 (0.036) +Train: 144 [ 200/312 ( 64%)] Loss: 2.40 (2.37) Time: 0.409s, 2504.15/s (0.417s, 2456.57/s) LR: 1.577e-03 Data: 0.028 (0.034) +Train: 144 [ 250/312 ( 80%)] Loss: 2.40 (2.37) Time: 0.413s, 2479.98/s (0.416s, 2461.11/s) LR: 1.577e-03 Data: 0.027 (0.033) +Train: 144 [ 300/312 ( 96%)] Loss: 2.35 (2.37) Time: 0.407s, 2515.41/s (0.415s, 2467.83/s) LR: 1.577e-03 Data: 0.027 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.436 (1.436) Loss: 2.786 ( 2.786) Acc@1: 48.340 ( 48.340) Acc@5: 67.969 ( 67.969) +Test: [ 48/48] Time: 0.090 (0.322) Loss: 2.572 ( 2.818) Acc@1: 51.887 ( 48.354) Acc@5: 73.113 ( 68.776) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-60.pth.tar', 48.73400004516601) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-90.pth.tar', 48.64000006591797) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-78.pth.tar', 48.6280000390625) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-143.pth.tar', 48.55600001953125) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-141.pth.tar', 48.49800007080078) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-142.pth.tar', 48.43999997070313) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-62.pth.tar', 48.390000036621096) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-144.pth.tar', 48.353999979248044) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-63.pth.tar', 48.35200002197266) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-68.pth.tar', 48.34400006835938) + +Train: 145 [ 0/312 ( 0%)] Loss: 2.31 (2.31) Time: 1.815s, 564.21/s (1.815s, 564.21/s) LR: 1.096e-03 Data: 1.204 (1.204) +Train: 145 [ 50/312 ( 16%)] Loss: 2.38 (2.37) Time: 0.409s, 2506.57/s (0.436s, 2348.33/s) LR: 1.096e-03 Data: 0.028 (0.051) +Train: 145 [ 100/312 ( 32%)] Loss: 2.37 (2.37) Time: 0.411s, 2490.21/s (0.424s, 2415.77/s) LR: 1.096e-03 Data: 0.027 (0.040) +Train: 145 [ 150/312 ( 48%)] Loss: 2.40 (2.37) Time: 0.410s, 2499.93/s (0.420s, 2438.12/s) LR: 1.096e-03 Data: 0.028 (0.036) +Train: 145 [ 200/312 ( 64%)] Loss: 2.35 (2.37) Time: 0.410s, 2500.53/s (0.417s, 2454.60/s) LR: 1.096e-03 Data: 0.027 (0.034) +Train: 145 [ 250/312 ( 80%)] Loss: 2.41 (2.37) Time: 0.411s, 2491.42/s (0.416s, 2463.37/s) LR: 1.096e-03 Data: 0.028 (0.033) +Train: 145 [ 300/312 ( 96%)] Loss: 2.41 (2.37) Time: 0.413s, 2478.77/s (0.415s, 2467.03/s) LR: 1.096e-03 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.440 (1.440) Loss: 2.781 ( 2.781) Acc@1: 48.535 ( 48.535) Acc@5: 67.773 ( 67.773) +Test: [ 48/48] Time: 0.090 (0.324) Loss: 2.567 ( 2.818) Acc@1: 51.769 ( 48.324) Acc@5: 72.642 ( 68.816) +Train: 146 [ 0/312 ( 0%)] Loss: 2.32 (2.32) Time: 1.792s, 571.27/s (1.792s, 571.27/s) LR: 7.014e-04 Data: 1.419 (1.419) +Train: 146 [ 50/312 ( 16%)] Loss: 2.38 (2.36) Time: 0.409s, 2506.32/s (0.436s, 2347.81/s) LR: 7.014e-04 Data: 0.026 (0.055) +Train: 146 [ 100/312 ( 32%)] Loss: 2.38 (2.37) Time: 0.410s, 2497.27/s (0.423s, 2418.83/s) LR: 7.014e-04 Data: 0.027 (0.041) +Train: 146 [ 150/312 ( 48%)] Loss: 2.38 (2.37) Time: 0.412s, 2485.51/s (0.420s, 2440.51/s) LR: 7.014e-04 Data: 0.028 (0.037) +Train: 146 [ 200/312 ( 64%)] Loss: 2.38 (2.37) Time: 0.409s, 2506.41/s (0.417s, 2454.86/s) LR: 7.014e-04 Data: 0.027 (0.035) +Train: 146 [ 250/312 ( 80%)] Loss: 2.26 (2.37) Time: 0.405s, 2527.67/s (0.415s, 2467.65/s) LR: 7.014e-04 Data: 0.027 (0.033) +Train: 146 [ 300/312 ( 96%)] Loss: 2.36 (2.37) Time: 0.406s, 2525.19/s (0.414s, 2476.25/s) LR: 7.014e-04 Data: 0.029 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.451 (1.451) Loss: 2.786 ( 2.786) Acc@1: 48.145 ( 48.145) Acc@5: 67.773 ( 67.773) +Test: [ 48/48] Time: 0.090 (0.323) Loss: 2.571 ( 2.818) Acc@1: 52.123 ( 48.362) Acc@5: 72.995 ( 68.766) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-60.pth.tar', 48.73400004516601) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-90.pth.tar', 48.64000006591797) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-78.pth.tar', 48.6280000390625) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-143.pth.tar', 48.55600001953125) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-141.pth.tar', 48.49800007080078) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-142.pth.tar', 48.43999997070313) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-62.pth.tar', 48.390000036621096) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-146.pth.tar', 48.36200001708984) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-144.pth.tar', 48.353999979248044) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-63.pth.tar', 48.35200002197266) + +Train: 147 [ 0/312 ( 0%)] Loss: 2.38 (2.38) Time: 1.673s, 612.14/s (1.673s, 612.14/s) LR: 3.947e-04 Data: 1.299 (1.299) +Train: 147 [ 50/312 ( 16%)] Loss: 2.32 (2.37) Time: 0.413s, 2481.79/s (0.438s, 2339.82/s) LR: 3.947e-04 Data: 0.030 (0.056) +Train: 147 [ 100/312 ( 32%)] Loss: 2.31 (2.37) Time: 0.407s, 2515.60/s (0.425s, 2411.40/s) LR: 3.947e-04 Data: 0.027 (0.042) +Train: 147 [ 150/312 ( 48%)] Loss: 2.48 (2.37) Time: 0.409s, 2506.47/s (0.419s, 2442.17/s) LR: 3.947e-04 Data: 0.028 (0.038) +Train: 147 [ 200/312 ( 64%)] Loss: 2.37 (2.37) Time: 0.409s, 2503.07/s (0.417s, 2456.69/s) LR: 3.947e-04 Data: 0.029 (0.035) +Train: 147 [ 250/312 ( 80%)] Loss: 2.37 (2.37) Time: 0.414s, 2471.28/s (0.416s, 2462.12/s) LR: 3.947e-04 Data: 0.026 (0.034) +Train: 147 [ 300/312 ( 96%)] Loss: 2.43 (2.37) Time: 0.408s, 2511.03/s (0.415s, 2467.44/s) LR: 3.947e-04 Data: 0.028 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.425 (1.425) Loss: 2.770 ( 2.770) Acc@1: 48.145 ( 48.145) Acc@5: 67.285 ( 67.285) +Test: [ 48/48] Time: 0.090 (0.321) Loss: 2.560 ( 2.806) Acc@1: 52.005 ( 48.460) Acc@5: 72.995 ( 69.006) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-60.pth.tar', 48.73400004516601) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-90.pth.tar', 48.64000006591797) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-78.pth.tar', 48.6280000390625) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-143.pth.tar', 48.55600001953125) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-141.pth.tar', 48.49800007080078) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-147.pth.tar', 48.46000003051758) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-142.pth.tar', 48.43999997070313) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-62.pth.tar', 48.390000036621096) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-146.pth.tar', 48.36200001708984) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-144.pth.tar', 48.353999979248044) + +Train: 148 [ 0/312 ( 0%)] Loss: 2.36 (2.36) Time: 1.718s, 595.87/s (1.718s, 595.87/s) LR: 1.754e-04 Data: 1.346 (1.346) +Train: 148 [ 50/312 ( 16%)] Loss: 2.36 (2.36) Time: 0.408s, 2507.66/s (0.432s, 2368.51/s) LR: 1.754e-04 Data: 0.027 (0.054) +Train: 148 [ 100/312 ( 32%)] Loss: 2.44 (2.37) Time: 0.410s, 2500.28/s (0.421s, 2433.44/s) LR: 1.754e-04 Data: 0.027 (0.041) +Train: 148 [ 150/312 ( 48%)] Loss: 2.38 (2.37) Time: 0.410s, 2495.60/s (0.418s, 2449.79/s) LR: 1.754e-04 Data: 0.027 (0.037) +Train: 148 [ 200/312 ( 64%)] Loss: 2.36 (2.37) Time: 0.407s, 2514.34/s (0.416s, 2461.87/s) LR: 1.754e-04 Data: 0.028 (0.035) +Train: 148 [ 250/312 ( 80%)] Loss: 2.40 (2.37) Time: 0.410s, 2498.95/s (0.415s, 2469.66/s) LR: 1.754e-04 Data: 0.026 (0.033) +Train: 148 [ 300/312 ( 96%)] Loss: 2.32 (2.37) Time: 0.413s, 2481.77/s (0.414s, 2473.69/s) LR: 1.754e-04 Data: 0.028 (0.032) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.421 (1.421) Loss: 2.780 ( 2.780) Acc@1: 47.754 ( 47.754) Acc@5: 68.164 ( 68.164) +Test: [ 48/48] Time: 0.090 (0.322) Loss: 2.565 ( 2.813) Acc@1: 51.887 ( 48.380) Acc@5: 73.231 ( 68.958) +Current checkpoints: + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-60.pth.tar', 48.73400004516601) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-90.pth.tar', 48.64000006591797) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-78.pth.tar', 48.6280000390625) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-143.pth.tar', 48.55600001953125) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-141.pth.tar', 48.49800007080078) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-147.pth.tar', 48.46000003051758) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-142.pth.tar', 48.43999997070313) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-62.pth.tar', 48.390000036621096) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-148.pth.tar', 48.37999997924805) + ('./output/train/ImageNetTraining20.0-frac-1over4/checkpoint-146.pth.tar', 48.36200001708984) + +Train: 149 [ 0/312 ( 0%)] Loss: 2.41 (2.41) Time: 2.077s, 492.91/s (2.077s, 492.91/s) LR: 4.386e-05 Data: 1.702 (1.702) +Train: 149 [ 50/312 ( 16%)] Loss: 2.46 (2.37) Time: 0.411s, 2489.77/s (0.446s, 2298.51/s) LR: 4.386e-05 Data: 0.031 (0.061) +Train: 149 [ 100/312 ( 32%)] Loss: 2.43 (2.36) Time: 0.405s, 2527.98/s (0.427s, 2399.42/s) LR: 4.386e-05 Data: 0.029 (0.045) +Train: 149 [ 150/312 ( 48%)] Loss: 2.34 (2.36) Time: 0.405s, 2525.78/s (0.420s, 2440.24/s) LR: 4.386e-05 Data: 0.027 (0.039) +Train: 149 [ 200/312 ( 64%)] Loss: 2.35 (2.37) Time: 0.404s, 2532.51/s (0.416s, 2460.98/s) LR: 4.386e-05 Data: 0.027 (0.036) +Train: 149 [ 250/312 ( 80%)] Loss: 2.47 (2.37) Time: 0.408s, 2508.01/s (0.414s, 2472.73/s) LR: 4.386e-05 Data: 0.028 (0.035) +Train: 149 [ 300/312 ( 96%)] Loss: 2.33 (2.37) Time: 0.412s, 2483.56/s (0.413s, 2478.20/s) LR: 4.386e-05 Data: 0.032 (0.033) +Distributing BatchNorm running means and vars +Test: [ 0/48] Time: 1.429 (1.429) Loss: 2.787 ( 2.787) Acc@1: 47.656 ( 47.656) Acc@5: 67.578 ( 67.578) +Test: [ 48/48] Time: 0.091 (0.323) Loss: 2.573 ( 2.818) Acc@1: 51.415 ( 48.274) Acc@5: 72.877 ( 68.830) +*** Best metric: 48.73400004516601 (epoch 60) +--result +[ + { + "epoch": 146, + "train": { + "loss": 2.3669257164001465 + }, + "validation": { + "loss": 2.8177401666259767, + "top1": 48.36200001708984, + "top5": 68.76600003417968 + } + }, + { + "epoch": 148, + "train": { + "loss": 2.3682570457458496 + }, + "validation": { + "loss": 2.8133713523864747, + "top1": 48.37999997924805, + "top5": 68.95800000732422 + } + }, + { + "epoch": 62, + "train": { + "loss": 3.524199962615967 + }, + "validation": { + "loss": 2.630918745880127, + "top1": 48.390000036621096, + "top5": 71.93200004638672 + } + }, + { + "epoch": 142, + "train": { + "loss": 2.3723840713500977 + }, + "validation": { + "loss": 2.8102378479003907, + "top1": 48.43999997070313, + "top5": 69.01600008300781 + } + }, + { + "epoch": 147, + "train": { + "loss": 2.3710074424743652 + }, + "validation": { + "loss": 2.805688974609375, + "top1": 48.46000003051758, + "top5": 69.00600003417969 + } + }, + { + "epoch": 141, + "train": { + "loss": 2.3747737407684326 + }, + "validation": { + "loss": 2.8027838427734375, + "top1": 48.49800007080078, + "top5": 69.11000010742187 + } + }, + { + "epoch": 143, + "train": { + "loss": 2.371351718902588 + }, + "validation": { + "loss": 2.802447621307373, + "top1": 48.55600001953125, + "top5": 68.97800005859375 + } + }, + { + "epoch": 78, + "train": { + "loss": 3.2513880729675293 + }, + "validation": { + "loss": 2.6659132025909424, + "top1": 48.6280000390625, + "top5": 71.5360001220703 + } + }, + { + "epoch": 90, + "train": { + "loss": 3.0457143783569336 + }, + "validation": { + "loss": 2.690470294418335, + "top1": 48.64000006591797, + "top5": 70.844 + } + }, + { + "epoch": 60, + "train": { + "loss": 3.5596461296081543 + }, + "validation": { + "loss": 2.631229259338379, + "top1": 48.73400004516601, + "top5": 72.43400006835938 + } + } +] diff --git a/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/files/requirements.txt b/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/files/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..d388cd950a4a88b1d9f37efc5c83fee7de76a1be --- /dev/null +++ b/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/files/requirements.txt @@ -0,0 +1,108 @@ +GitPython==3.1.44 +MarkupSafe==2.1.5 +PyYAML==6.0.2 +aiofiles==23.2.1 +aiohappyeyeballs==2.4.6 +aiohttp==3.11.12 +aiosignal==1.3.2 +annotated-types==0.7.0 +anyio==4.8.0 +async-timeout==5.0.1 +attrs==25.1.0 +certifi==2025.1.31 +charset-normalizer==3.4.1 +click==8.1.8 +contourpy==1.3.0 +cycler==0.12.1 +datasets==3.3.2 +dill==0.3.8 +docker-pycreds==0.4.0 +eval_type_backport==0.2.2 +exceptiongroup==1.2.2 +fastapi==0.115.8 +ffmpy==0.5.0 +filelock==3.17.0 +fonttools==4.56.0 +frozenlist==1.5.0 +fsspec==2024.12.0 +gitdb==4.0.12 +gradio==4.44.1 +gradio_client==1.3.0 +h11==0.14.0 +httpcore==1.0.7 +httpx==0.28.1 +huggingface-hub==0.29.1 +idna==3.10 +importlib_metadata==8.6.1 +importlib_resources==6.5.2 +Jinja2==3.1.5 +kiwisolver==1.4.7 +markdown-it-py==3.0.0 +matplotlib==3.9.4 +mdurl==0.1.2 +multidict==6.1.0 +multiprocess==0.70.16 +numpy==2.0.2 +orjson==3.10.15 +packaging==24.2 +pandas==2.2.3 +pillow==10.4.0 +platformdirs==4.3.6 +propcache==0.3.0 +protobuf==5.29.3 +psutil==7.0.0 +pyarrow==19.0.1 +pydantic==2.10.6 +pydantic_core==2.27.2 +pydub==0.25.1 +Pygments==2.19.1 +pyparsing==3.2.1 +python-dateutil==2.9.0.post0 +python-multipart==0.0.20 +pytz==2025.1 +requests==2.32.3 +rich==13.9.4 +ruff==0.9.7 +semantic-version==2.10.0 +sentry-sdk==2.22.0 +setproctitle==1.3.4 +shellingham==1.5.4 +six==1.17.0 +smmap==5.0.2 +sniffio==1.3.1 +starlette==0.45.3 +tomlkit==0.12.0 +tqdm==4.67.1 +typer==0.15.1 +typing_extensions==4.12.2 +tzdata==2025.1 +urllib3==2.3.0 +uvicorn==0.34.0 +wandb==0.19.7 +websockets==12.0 +xxhash==3.5.0 +yarl==1.18.3 +zipp==3.21.0 +mpmath==1.3.0 +networkx==3.2.1 +nvidia-cublas-cu12==12.4.5.8 +nvidia-cuda-cupti-cu12==12.4.127 +nvidia-cuda-nvrtc-cu12==12.4.127 +nvidia-cuda-runtime-cu12==12.4.127 +nvidia-cudnn-cu12==9.1.0.70 +nvidia-cufft-cu12==11.2.1.3 +nvidia-curand-cu12==10.3.5.147 +nvidia-cusolver-cu12==11.6.1.9 +nvidia-cusparse-cu12==12.3.1.170 +nvidia-cusparselt-cu12==0.6.2 +nvidia-nccl-cu12==2.21.5 +nvidia-nvjitlink-cu12==12.4.127 +nvidia-nvtx-cu12==12.4.127 +safetensors==0.5.2 +sympy==1.13.1 +torch==2.6.0 +torchvision==0.21.0 +triton==3.2.0 +pip==23.0.1 +setuptools==58.1.0 +wheel==0.45.1 diff --git a/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/files/wandb-metadata.json b/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/files/wandb-metadata.json new file mode 100644 index 0000000000000000000000000000000000000000..4ccd2a5cd2be84c6e3dfd5d08d66b3b2298e189b --- /dev/null +++ b/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/files/wandb-metadata.json @@ -0,0 +1,88 @@ +{ + "os": "Linux-5.10.233-224.894.amzn2.x86_64-x86_64-with-glibc2.36", + "python": "CPython 3.9.21", + "startedAt": "2025-02-24T01:13:34.719874Z", + "args": [ + "--dataset", + "hfds/datacomp/imagenet-1k-random-20.0-frac-1over4", + "--log-wandb", + "--wandb-project", + "ImageNetTraining20.0-frac-1over4", + "--experiment", + "ImageNetTraining20.0-frac-1over4", + "--model", + "seresnet34", + "--sched", + "cosine", + "--epochs", + "150", + "--warmup-epochs", + "5", + "--lr", + "0.4", + "--reprob", + "0.5", + "--remode", + "pixel", + "--batch-size", + "256", + "--amp", + "-j", + "4" + ], + "program": "/app/pytorch-image-models/train.py", + "codePath": "train.py", + "git": { + "remote": "https://github.com/huggingface/pytorch-image-models.git", + "commit": "e76ea5474db7c0f3cc00424efc6a4e52fb4e945e" + }, + "email": "meg@huggingface.co", + "root": "/app/pytorch-image-models", + "host": "r-datacomp-imagenettraining20-0-frac-1over4-ixy510w3-af1dd-avuh", + "executable": "/usr/local/bin/python3.9", + "codePathLocal": "train.py", + "cpu_count": 24, + "cpu_count_logical": 48, + "gpu": "NVIDIA L4", + "gpu_count": 4, + "disk": { + "/": { + "total": "3757625933824", + "used": "136043196416" + } + }, + "memory": { + "total": "195171028992" + }, + "cpu": { + "count": 24, + "countLogical": 48 + }, + "gpu_nvidia": [ + { + "name": "NVIDIA L4", + "memoryTotal": "24152899584", + "cudaCores": 7424, + "architecture": "Ada" + }, + { + "name": "NVIDIA L4", + "memoryTotal": "24152899584", + "cudaCores": 7424, + "architecture": "Ada" + }, + { + "name": "NVIDIA L4", + "memoryTotal": "24152899584", + "cudaCores": 7424, + "architecture": "Ada" + }, + { + "name": "NVIDIA L4", + "memoryTotal": "24152899584", + "cudaCores": 7424, + "architecture": "Ada" + } + ], + "cudaVersion": "12.4" +} \ No newline at end of file diff --git a/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/logs/debug-core.log b/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/logs/debug-core.log new file mode 100644 index 0000000000000000000000000000000000000000..59974320cd17e23338401658b26533a3faf4a725 --- /dev/null +++ b/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/logs/debug-core.log @@ -0,0 +1,7 @@ +{"time":"2025-02-24T00:57:01.216995823Z","level":"INFO","msg":"main: starting server","port-filename":"/tmp/tmpalcqokby/port-1.txt","pid":1,"log-level":0,"disable-analytics":false,"shutdown-on-parent-exit":false} +{"time":"2025-02-24T00:57:01.218056989Z","level":"INFO","msg":"Will exit if parent process dies.","ppid":1} +{"time":"2025-02-24T00:57:01.218051989Z","level":"INFO","msg":"server is running","addr":{"IP":"127.0.0.1","Port":39583,"Zone":""}} +{"time":"2025-02-24T00:57:01.408084946Z","level":"INFO","msg":"connection: ManageConnectionData: new connection created","id":"127.0.0.1:34126"} +{"time":"2025-02-24T01:13:34.443708914Z","level":"INFO","msg":"connection: ManageConnectionData: new connection created","id":"127.0.0.1:47696"} +{"time":"2025-02-24T01:13:34.720851379Z","level":"INFO","msg":"handleInformInit: received","streamId":"w1u5xl1c","id":"127.0.0.1:47696"} +{"time":"2025-02-24T01:13:34.826586583Z","level":"INFO","msg":"handleInformInit: stream started","streamId":"w1u5xl1c","id":"127.0.0.1:47696"} diff --git a/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/logs/debug-internal.log b/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/logs/debug-internal.log new file mode 100644 index 0000000000000000000000000000000000000000..2a0011d94f7bcc8ed55f0805b551e10de01e3006 --- /dev/null +++ b/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/logs/debug-internal.log @@ -0,0 +1,9 @@ +{"time":"2025-02-24T01:13:34.721009141Z","level":"INFO","msg":"stream: starting","core version":"0.19.7","symlink path":"/app/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/logs/debug-core.log"} +{"time":"2025-02-24T01:13:34.826536368Z","level":"INFO","msg":"created new stream","id":"w1u5xl1c"} +{"time":"2025-02-24T01:13:34.826579152Z","level":"INFO","msg":"stream: started","id":"w1u5xl1c"} +{"time":"2025-02-24T01:13:34.826642277Z","level":"INFO","msg":"writer: Do: started","stream_id":"w1u5xl1c"} +{"time":"2025-02-24T01:13:34.82668172Z","level":"INFO","msg":"sender: started","stream_id":"w1u5xl1c"} +{"time":"2025-02-24T01:13:34.826767286Z","level":"INFO","msg":"handler: started","stream_id":"w1u5xl1c"} +{"time":"2025-02-24T01:13:35.017665625Z","level":"INFO","msg":"Starting system monitor"} +{"time":"2025-02-24T07:17:05.017986312Z","level":"ERROR","msg":"monitor: cpu: error sampling metrics: open /proc/144/stat: no such file or directory\nopen /proc/144/status: no such file or directory"} +{"time":"2025-02-24T07:17:05.018275432Z","level":"ERROR","msg":"monitor: memory: error sampling metrics: open /proc/144/statm: no such file or directory"} diff --git a/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/logs/debug.log b/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/logs/debug.log new file mode 100644 index 0000000000000000000000000000000000000000..d0c661847d7d864226c44b93fe43fa628cb292b7 --- /dev/null +++ b/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/logs/debug.log @@ -0,0 +1,22 @@ +2025-02-24 01:13:34,680 INFO MainThread:144 [wandb_setup.py:_flush():67] Current SDK version is 0.19.7 +2025-02-24 01:13:34,680 INFO MainThread:144 [wandb_setup.py:_flush():67] Configure stats pid to 144 +2025-02-24 01:13:34,680 INFO MainThread:144 [wandb_setup.py:_flush():67] Loading settings from /home/user/.config/wandb/settings +2025-02-24 01:13:34,680 INFO MainThread:144 [wandb_setup.py:_flush():67] Loading settings from /app/pytorch-image-models/wandb/settings +2025-02-24 01:13:34,680 INFO MainThread:144 [wandb_setup.py:_flush():67] Loading settings from environment variables +2025-02-24 01:13:34,680 INFO MainThread:144 [wandb_init.py:setup_run_log_directory():647] Logging user logs to /app/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/logs/debug.log +2025-02-24 01:13:34,680 INFO MainThread:144 [wandb_init.py:setup_run_log_directory():648] Logging internal logs to /app/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/logs/debug-internal.log +2025-02-24 01:13:34,680 INFO MainThread:144 [wandb_init.py:init():761] calling init triggers +2025-02-24 01:13:34,681 INFO MainThread:144 [wandb_init.py:init():766] wandb.init called with sweep_config: {} +config: {'data': None, 'data_dir': None, 'dataset': 'hfds/datacomp/imagenet-1k-random-20.0-frac-1over4', 'train_split': 'train', 'val_split': 'validation', 'train_num_samples': None, 'val_num_samples': None, 'dataset_download': False, 'class_map': '', 'input_img_mode': None, 'input_key': None, 'target_key': None, 'dataset_trust_remote_code': False, 'model': 'seresnet34', 'pretrained': False, 'pretrained_path': None, 'initial_checkpoint': '', 'resume': '', 'no_resume_opt': False, 'num_classes': 1000, 'gp': None, 'img_size': None, 'in_chans': None, 'input_size': None, 'crop_pct': None, 'mean': None, 'std': None, 'interpolation': '', 'batch_size': 256, 'validation_batch_size': None, 'channels_last': False, 'fuser': '', 'grad_accum_steps': 1, 'grad_checkpointing': False, 'fast_norm': False, 'model_kwargs': {}, 'head_init_scale': None, 'head_init_bias': None, 'torchcompile_mode': None, 'torchscript': False, 'torchcompile': None, 'device': 'cuda:0', 'amp': True, 'amp_dtype': 'float16', 'amp_impl': 'native', 'model_dtype': None, 'no_ddp_bb': False, 'synchronize_step': False, 'local_rank': 0, 'device_modules': None, 'opt': 'sgd', 'opt_eps': None, 'opt_betas': None, 'momentum': 0.9, 'weight_decay': 2e-05, 'clip_grad': None, 'clip_mode': 'norm', 'layer_decay': None, 'opt_kwargs': {}, 'sched': 'cosine', 'sched_on_updates': False, 'lr': 0.4, 'lr_base': 0.1, 'lr_base_size': 256, 'lr_base_scale': '', 'lr_noise': None, 'lr_noise_pct': 0.67, 'lr_noise_std': 1.0, 'lr_cycle_mul': 1.0, 'lr_cycle_decay': 0.5, 'lr_cycle_limit': 1, 'lr_k_decay': 1.0, 'warmup_lr': 1e-05, 'min_lr': 0, 'epochs': 150, 'epoch_repeats': 0.0, 'start_epoch': None, 'decay_milestones': [90, 180, 270], 'decay_epochs': 90, 'warmup_epochs': 5, 'warmup_prefix': False, 'cooldown_epochs': 0, 'patience_epochs': 10, 'decay_rate': 0.1, 'no_aug': False, 'train_crop_mode': None, 'scale': [0.08, 1.0], 'ratio': [0.75, 1.3333333333333333], 'hflip': 0.5, 'vflip': 0.0, 'color_jitter': 0.4, 'color_jitter_prob': None, 'grayscale_prob': None, 'gaussian_blur_prob': None, 'aa': None, 'aug_repeats': 0, 'aug_splits': 0, 'jsd_loss': False, 'bce_loss': False, 'bce_sum': False, 'bce_target_thresh': None, 'bce_pos_weight': None, 'reprob': 0.5, 'remode': 'pixel', 'recount': 1, 'resplit': False, 'mixup': 0.0, 'cutmix': 0.0, 'cutmix_minmax': None, 'mixup_prob': 1.0, 'mixup_switch_prob': 0.5, 'mixup_mode': 'batch', 'mixup_off_epoch': 0, 'smoothing': 0.1, 'train_interpolation': 'random', 'drop': 0.0, 'drop_connect': None, 'drop_path': None, 'drop_block': None, 'bn_momentum': None, 'bn_eps': None, 'sync_bn': False, 'dist_bn': 'reduce', 'split_bn': False, 'model_ema': False, 'model_ema_force_cpu': False, 'model_ema_decay': 0.9998, 'model_ema_warmup': False, 'seed': 42, 'worker_seeding': 'all', 'log_interval': 50, 'recovery_interval': 0, 'checkpoint_hist': 10, 'workers': 4, 'save_images': False, 'pin_mem': False, 'no_prefetcher': False, 'output': '', 'experiment': 'ImageNetTraining20.0-frac-1over4', 'eval_metric': 'top1', 'tta': 0, 'use_multi_epochs_loader': False, 'log_wandb': True, 'wandb_project': 'ImageNetTraining20.0-frac-1over4', 'wandb_tags': [], 'wandb_resume_id': '', 'prefetcher': True, 'distributed': True, 'world_size': 4, 'rank': 0, '_wandb': {}} +2025-02-24 01:13:34,681 INFO MainThread:144 [wandb_init.py:init():784] starting backend +2025-02-24 01:13:34,681 INFO MainThread:144 [wandb_init.py:init():788] sending inform_init request +2025-02-24 01:13:34,718 INFO MainThread:144 [backend.py:_multiprocessing_setup():97] multiprocessing start_methods=fork,spawn,forkserver, using: spawn +2025-02-24 01:13:34,719 INFO MainThread:144 [wandb_init.py:init():803] backend started and connected +2025-02-24 01:13:34,723 INFO MainThread:144 [wandb_init.py:init():896] updated telemetry +2025-02-24 01:13:34,764 INFO MainThread:144 [wandb_init.py:init():920] communicating run to backend with 90.0 second timeout +2025-02-24 01:13:35,013 INFO MainThread:144 [wandb_init.py:init():995] starting run threads in backend +2025-02-24 01:13:35,114 INFO MainThread:144 [wandb_run.py:_console_start():2377] atexit reg +2025-02-24 01:13:35,114 INFO MainThread:144 [wandb_run.py:_redirect():2227] redirect: wrap_raw +2025-02-24 01:13:35,114 INFO MainThread:144 [wandb_run.py:_redirect():2292] Wrapping output streams. +2025-02-24 01:13:35,114 INFO MainThread:144 [wandb_run.py:_redirect():2317] Redirects installed. +2025-02-24 01:13:35,117 INFO MainThread:144 [wandb_init.py:init():1037] run started, returning control to user process diff --git a/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/run-w1u5xl1c.wandb b/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/run-w1u5xl1c.wandb new file mode 100644 index 0000000000000000000000000000000000000000..5fd49f1fa7be0f6f93c59f45fd0475b2780f919f --- /dev/null +++ b/pytorch-image-models/wandb/run-20250224_011334-w1u5xl1c/run-w1u5xl1c.wandb @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8edb28b1da33893e29166d68c20bbe363a297c0f351659c47578844a8c214b27 +size 4980736 diff --git a/requirements.txt b/requirements.txt index 32191d5a0fb9f649cdf72c1ec245baac3c1c6212..3f839a7d886a627e58a4da5438bf7180761e5a1a 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,3 +1,4 @@ gradio datasets -wandb \ No newline at end of file +wandb +importlib_metadata \ No newline at end of file