File size: 1,930 Bytes
ce5cd7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sample Data: [4, 2, 5, 8, 6]\n",
"Standard Deviation : 2.23606797749979\n"
]
}
],
"source": [
"# Write a Python program to calculate the standard deviation of the following data.\n",
"# Input\n",
"# Sample Data: [4, 2, 5, 8, 6] \n",
"# Output\n",
"# Standard Deviation : 2.23606797749979\n",
"\n",
"import math\n",
"import sys\n",
"\n",
"def sd_calc(data):\n",
" n = len(data)\n",
"\n",
" if n <= 1:\n",
" return 0.0\n",
"\n",
" mean, sd = avg_calc(data), 0.0\n",
"\n",
" # calculate stan. dev.\n",
" for el in data:\n",
" sd += (float(el) - mean)**2\n",
" sd = math.sqrt(sd / float(n-1))\n",
"\n",
" return sd\n",
"\n",
"\n",
"def avg_calc(ls):\n",
" n, mean = len(ls), 0.0\n",
"\n",
" if n <= 1:\n",
" return ls[0]\n",
"\n",
" # calculate average\n",
" for el in ls:\n",
" mean = mean + float(el)\n",
" mean = mean / float(n)\n",
"\n",
" return mean\n",
"\n",
"data = [4, 2, 5, 8, 6]\n",
"print(\"Sample Data: \",data)\n",
"print(\"Standard Deviation : \",sd_calc(data))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|