Datasets:

Modalities:
Tabular
Text
Formats:
csv
Libraries:
Datasets
pandas
License:
ClueWeb-Reco / clueweb_reco.py
JingyuanHe1222
custom data loading
1c02e1f
raw
history blame
9.7 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
import csv
import json
import os
from decimal import Decimal
import datasets
# TODO: citation
# # Find for instance the citation on arxiv or on the dataset repo/website
# _CITATION = """\
# @InProceedings{huggingface:dataset,
# title = {A great new dataset},
# author={huggingface, Inc.
# },
# year={2020}
# }
# """
_CITATION = ""
#
_DESCRIPTION = """\
ClueWeb-Reco is a novel zero-shot test set derived from real, \
consented user browsing sequences,
aligning with modern recommendation scenarios while ensuring privacy.
"""
_HOMEPAGE = "https://huggingface.co/datasets/cx-cmu/ClueWeb-Reco"
_LICENSE = "mit"
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"input": "https://huggingface.co/datasets/cx-cmu/ClueWeb-Reco/tree/main/interaction_splits",
"target": "https://huggingface.co/datasets/cx-cmu/ClueWeb-Reco/tree/main/interaction_splits",
"mapping": "https://huggingface.co/datasets/cx-cmu/ClueWeb-Reco/tree/main",
}
class ClueWebRecoDataset(datasets.GeneratorBasedBuilder):
"""Process the ClueWeb-Reco zero-shot dataset"""
VERSION = datasets.Version("1.1.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="input", version=VERSION, description="This is the input parts of the dataset"),
datasets.BuilderConfig(name="target", version=VERSION, description="This is the target parts of the dataset"),
datasets.BuilderConfig(name="mapping", version=VERSION, description="This is the mapping between official ClueWeb ids and our internal ClueWeb ids"),
]
DEFAULT_CONFIG_NAME = "input"
def _info(self):
if self.config.name == "input": # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"session_id": datasets.Value("string"),
"cw_internal_id": datasets.Value("int32"),
"timestamp": datasets.Value("string")
}
)
elif self.config.name == "target":
features = datasets.Features(
{
"session_id": datasets.Value("string"),
"target_cw_internal_id": datasets.Value("int32"),
"timestamp": datasets.Value("string")
}
)
elif self.config.name == "mapping":
features = datasets.Features(
{
"cwid": datasets.Value("string"),
"cw_internal_id": datasets.Value("int32"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
urls = _URLS[self.config.name]
data_dir = dl_manager.download_and_extract(urls)
data_dir = self.config.data_dir
if self.config.name == "input":
return [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"input_path": os.path.join(data_dir, "interaction_splits/valid_inter_input.tsv"),
}
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"input_path": os.path.join(data_dir, "interaction_splits/test_inter_input.tsv"),
},
),
]
elif self.config.name == "target":
return [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"target_path": os.path.join(data_dir, "interaction_splits/valid_inter_target.tsv"),
},
),
]
elif self.config.name == "mapping":
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"mapping_path": os.path.join(data_dir, "cwid_to_id.tsv"),
},
),
]
def _generate_examples(self, input_path=None, target_path=None, mapping_path=None):
"""
Generates examples based on the input and (optionally) target files.
If the configuration is `input`, `target`, or `mapping`, this handles each separately.
"""
if self.config.name == "input":
if input_path is None:
raise ValueError("Input configuration requires an input_path.")
# Process the `input` configuration
with open(input_path, encoding="utf-8") as f:
input_lines = f.readlines()[1:]
for idx, line in enumerate(input_lines):
session_id, cw_internal_id, timestamp = line.strip().split("\t")
yield idx, {
"session_id": session_id.strip(),
"cw_internal_id": int(cw_internal_id.strip()),
"timestamp": str(Decimal(timestamp)),
}
elif self.config.name == "target":
# if target_path is None:
# # Test target is hidden; yield nothing
# return
if target_path is None:
raise ValueError("Target configuration requires an target_path.")
with open(target_path, encoding="utf-8") as f:
target_lines = f.readlines()[1:]
for idx, line in enumerate(target_lines):
session_id, target_cw_internal_id, timestamp = line.strip().split("\t")
yield idx, {
"session_id": session_id.strip(),
"target_cw_internal_id": int(target_cw_internal_id.strip()),
"timestamp": str(Decimal(timestamp)),
}
elif self.config.name == "mapping":
if mapping_path is None:
raise ValueError("Mapping configuration requires an mapping_path.")
# Process the `mapping` configuration
with open(mapping_path, encoding="utf-8") as f:
for idx, line in enumerate(f):
cwid, cw_internal_id = line.strip().split("\t")
yield idx, {
"cwid": cwid.strip(),
"cw_internal_id": int(cw_internal_id.strip()),
}