Datasets:
Convert dataset to Parquet (#4)
Browse files- Convert dataset to Parquet (a98b82af7d48b12ec3ef9f9fe5ebecdda3218965)
- Delete loading script (2f5bad6f56ff3760022f0ad5dbd0a057d47bf14a)
- README.md +13 -5
- glucose.py +0 -160
- glucose/test-00000-of-00001.parquet +3 -0
- glucose/train-00000-of-00001.parquet +3 -0
README.md
CHANGED
|
@@ -21,6 +21,7 @@ pretty_name: GLUCOSE
|
|
| 21 |
tags:
|
| 22 |
- commonsense-inference
|
| 23 |
dataset_info:
|
|
|
|
| 24 |
features:
|
| 25 |
- name: experiment_id
|
| 26 |
dtype: string
|
|
@@ -122,16 +123,23 @@ dataset_info:
|
|
| 122 |
dtype: string
|
| 123 |
- name: 10_generalStructured
|
| 124 |
dtype: string
|
| 125 |
-
config_name: glucose
|
| 126 |
splits:
|
| 127 |
- name: train
|
| 128 |
-
num_bytes:
|
| 129 |
num_examples: 65522
|
| 130 |
- name: test
|
| 131 |
-
num_bytes:
|
| 132 |
num_examples: 500
|
| 133 |
-
download_size:
|
| 134 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
---
|
| 136 |
|
| 137 |
# Dataset Card for [Dataset Name]
|
|
|
|
| 21 |
tags:
|
| 22 |
- commonsense-inference
|
| 23 |
dataset_info:
|
| 24 |
+
config_name: glucose
|
| 25 |
features:
|
| 26 |
- name: experiment_id
|
| 27 |
dtype: string
|
|
|
|
| 123 |
dtype: string
|
| 124 |
- name: 10_generalStructured
|
| 125 |
dtype: string
|
|
|
|
| 126 |
splits:
|
| 127 |
- name: train
|
| 128 |
+
num_bytes: 204604082
|
| 129 |
num_examples: 65522
|
| 130 |
- name: test
|
| 131 |
+
num_bytes: 355573
|
| 132 |
num_examples: 500
|
| 133 |
+
download_size: 78390868
|
| 134 |
+
dataset_size: 204959655
|
| 135 |
+
configs:
|
| 136 |
+
- config_name: glucose
|
| 137 |
+
data_files:
|
| 138 |
+
- split: train
|
| 139 |
+
path: glucose/train-*
|
| 140 |
+
- split: test
|
| 141 |
+
path: glucose/test-*
|
| 142 |
+
default: true
|
| 143 |
---
|
| 144 |
|
| 145 |
# Dataset Card for [Dataset Name]
|
glucose.py
DELETED
|
@@ -1,160 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
"""GLUCOSE: GeneraLized and COntextualized Story Explanations, is a novel conceptual framework and dataset for commonsense reasoning. Given a short story and a sentence X in the story, GLUCOSE captures ten dimensions of causal explanation related to X. These dimensions, inspired by human cognitive psychology, cover often-implicit causes and effects of X, including events, location, possession, and other attributes."""
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
import csv
|
| 19 |
-
import os
|
| 20 |
-
|
| 21 |
-
import datasets
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
# Find for instance the citation on arxiv or on the dataset repo/website
|
| 25 |
-
_CITATION = """\
|
| 26 |
-
@inproceedings{mostafazadeh2020glucose,
|
| 27 |
-
title={GLUCOSE: GeneraLized and COntextualized Story Explanations},
|
| 28 |
-
author={Nasrin Mostafazadeh and Aditya Kalyanpur and Lori Moon and David Buchanan and Lauren Berkowitz and Or Biran and Jennifer Chu-Carroll},
|
| 29 |
-
year={2020},
|
| 30 |
-
booktitle={The Conference on Empirical Methods in Natural Language Processing},
|
| 31 |
-
publisher={Association for Computational Linguistics}
|
| 32 |
-
}
|
| 33 |
-
"""
|
| 34 |
-
|
| 35 |
-
# You can copy an official description
|
| 36 |
-
_DESCRIPTION = """\
|
| 37 |
-
When humans read or listen, they make implicit commonsense inferences that frame their understanding of what happened and why. As a step toward AI systems that can build similar mental models, we introduce GLUCOSE, a large-scale dataset of implicit commonsense causal knowledge, encoded as causal mini-theories about the world, each grounded in a narrative context.
|
| 38 |
-
"""
|
| 39 |
-
|
| 40 |
-
_HOMEPAGE = "https://github.com/ElementalCognition/glucose"
|
| 41 |
-
|
| 42 |
-
_LICENSE = "Creative Commons Attribution-NonCommercial 4.0 International Public License"
|
| 43 |
-
|
| 44 |
-
_URLs = {
|
| 45 |
-
"glucose": {
|
| 46 |
-
"test": "https://raw.githubusercontent.com/ElementalCognition/glucose/master/test/test_set_no_answers.csv",
|
| 47 |
-
"train": "https://github.com/TevenLeScao/glucose/blob/master/GLUCOSE_training_data.zip?raw=true",
|
| 48 |
-
}
|
| 49 |
-
}
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
class Glucose(datasets.GeneratorBasedBuilder):
|
| 53 |
-
"""GLUCOSE: GeneraLized and COntextualized Story Explanations, is a novel conceptual framework and dataset for commonsense reasoning."""
|
| 54 |
-
|
| 55 |
-
VERSION = datasets.Version("1.1.0")
|
| 56 |
-
BUILDER_CONFIGS = [
|
| 57 |
-
datasets.BuilderConfig(name="glucose", description="Main dataset"),
|
| 58 |
-
]
|
| 59 |
-
|
| 60 |
-
def _info(self):
|
| 61 |
-
feature_dict = {
|
| 62 |
-
"experiment_id": datasets.Value("string"),
|
| 63 |
-
"story_id": datasets.Value("string"),
|
| 64 |
-
# The train set contains only one ID in numeric form
|
| 65 |
-
"worker_id": datasets.Value("int64"),
|
| 66 |
-
# The test set contains several IDs in string form
|
| 67 |
-
"worker_ids": datasets.Value("string"),
|
| 68 |
-
"submission_time_normalized": datasets.Value("string"),
|
| 69 |
-
"worker_quality_assessment": datasets.Value("int64"),
|
| 70 |
-
"selected_sentence_index": datasets.Value("int64"),
|
| 71 |
-
"story": datasets.Value("string"),
|
| 72 |
-
"selected_sentence": datasets.Value("string"),
|
| 73 |
-
"number_filled_in": datasets.Value("int64"),
|
| 74 |
-
}
|
| 75 |
-
for i in range(1, 11):
|
| 76 |
-
feature_dict[f"{i}_specificNL"] = datasets.Value("string")
|
| 77 |
-
feature_dict[f"{i}_specificStructured"] = datasets.Value("string")
|
| 78 |
-
feature_dict[f"{i}_generalNL"] = datasets.Value("string")
|
| 79 |
-
feature_dict[f"{i}_generalStructured"] = datasets.Value("string")
|
| 80 |
-
features = datasets.Features(feature_dict)
|
| 81 |
-
return datasets.DatasetInfo(
|
| 82 |
-
description=_DESCRIPTION,
|
| 83 |
-
features=features,
|
| 84 |
-
supervised_keys=None,
|
| 85 |
-
homepage=_HOMEPAGE,
|
| 86 |
-
license=_LICENSE,
|
| 87 |
-
citation=_CITATION,
|
| 88 |
-
)
|
| 89 |
-
|
| 90 |
-
def _split_generators(self, dl_manager):
|
| 91 |
-
"""Returns SplitGenerators."""
|
| 92 |
-
train_url = _URLs[self.config.name]["train"]
|
| 93 |
-
test_url = _URLs[self.config.name]["test"]
|
| 94 |
-
train_data = dl_manager.download_and_extract(train_url)
|
| 95 |
-
test_data = dl_manager.download_and_extract(test_url)
|
| 96 |
-
return [
|
| 97 |
-
datasets.SplitGenerator(
|
| 98 |
-
name=datasets.Split.TRAIN,
|
| 99 |
-
gen_kwargs={
|
| 100 |
-
"filepath": os.path.join(train_data, "GLUCOSE_training_data_final.csv"),
|
| 101 |
-
"split": "train",
|
| 102 |
-
},
|
| 103 |
-
),
|
| 104 |
-
datasets.SplitGenerator(
|
| 105 |
-
name=datasets.Split.TEST,
|
| 106 |
-
gen_kwargs={"filepath": test_data, "split": "test"},
|
| 107 |
-
),
|
| 108 |
-
]
|
| 109 |
-
|
| 110 |
-
def _generate_examples(self, filepath, split):
|
| 111 |
-
with open(filepath, encoding="utf8") as f:
|
| 112 |
-
data = csv.reader(f)
|
| 113 |
-
next(data)
|
| 114 |
-
for id_, row in enumerate(data):
|
| 115 |
-
if split == "train":
|
| 116 |
-
yield id_, train_dict_from_row(row)
|
| 117 |
-
else:
|
| 118 |
-
yield id_, test_dict_from_row(row)
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
def train_dict_from_row(row):
|
| 122 |
-
return_dict = {
|
| 123 |
-
"experiment_id": row[0],
|
| 124 |
-
"story_id": row[1],
|
| 125 |
-
"worker_id": row[2],
|
| 126 |
-
"worker_ids": "",
|
| 127 |
-
"submission_time_normalized": row[3],
|
| 128 |
-
"worker_quality_assessment": row[4],
|
| 129 |
-
"selected_sentence_index": row[5],
|
| 130 |
-
"story": row[6],
|
| 131 |
-
"selected_sentence": row[7],
|
| 132 |
-
"number_filled_in": row[48],
|
| 133 |
-
}
|
| 134 |
-
for i in range(1, 11):
|
| 135 |
-
return_dict[f"{i}_specificNL"] = row[4 * i + 4]
|
| 136 |
-
return_dict[f"{i}_specificStructured"] = row[4 * i + 5]
|
| 137 |
-
return_dict[f"{i}_generalNL"] = row[4 * i + 6]
|
| 138 |
-
return_dict[f"{i}_generalStructured"] = row[4 * i + 7]
|
| 139 |
-
return return_dict
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
def test_dict_from_row(row):
|
| 143 |
-
return_dict = {
|
| 144 |
-
"experiment_id": "",
|
| 145 |
-
"story_id": row[0],
|
| 146 |
-
"worker_id": -1,
|
| 147 |
-
"worker_ids": row[3],
|
| 148 |
-
"submission_time_normalized": "",
|
| 149 |
-
"worker_quality_assessment": -1,
|
| 150 |
-
"selected_sentence_index": -1,
|
| 151 |
-
"story": row[1],
|
| 152 |
-
"selected_sentence": row[2],
|
| 153 |
-
"number_filled_in": -1,
|
| 154 |
-
}
|
| 155 |
-
for i in range(1, 11):
|
| 156 |
-
return_dict[f"{i}_specificNL"] = row[2 * i + 2]
|
| 157 |
-
return_dict[f"{i}_generalNL"] = row[2 * i + 3]
|
| 158 |
-
return_dict[f"{i}_specificStructured"] = ""
|
| 159 |
-
return_dict[f"{i}_generalStructured"] = ""
|
| 160 |
-
return return_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
glucose/test-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:82e78254dd7c7d12a2a70559c75bb6b7488cfc072522cc78e8e25dd57322e0b3
|
| 3 |
+
size 99546
|
glucose/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:81afb6ba06c7d10d3366a5d6cd278f7e821f3f1fa14f9ff6f2c8d02a1ae79d83
|
| 3 |
+
size 78291322
|