|  | import gzip | 
					
						
						|  | import multiprocessing | 
					
						
						|  | import os | 
					
						
						|  | import shutil | 
					
						
						|  | import time | 
					
						
						|  | from argparse import Namespace | 
					
						
						|  | from collections import Counter | 
					
						
						|  | import numpy as np | 
					
						
						|  | from datasets import load_dataset, utils | 
					
						
						|  | import re | 
					
						
						|  | from huggingface_hub import Repository | 
					
						
						|  | from multiprocessing import Pool | 
					
						
						|  | from tqdm import tqdm | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | config = { | 
					
						
						|  | "dataset_name": "./data/github", | 
					
						
						|  | "num_workers": 96, | 
					
						
						|  | "line_max": 1000, | 
					
						
						|  | "out_path": "./data/github-code", | 
					
						
						|  | "repo_name": "github-code", | 
					
						
						|  | "org": "lvwerra", | 
					
						
						|  | "shard_size": 1000 << 20} | 
					
						
						|  |  | 
					
						
						|  | args = Namespace(**config) | 
					
						
						|  |  | 
					
						
						|  | PATTERN = re.compile(r'\s+') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def hash_func(text): | 
					
						
						|  | return hashlib.md5(re.sub(PATTERN, '', text).encode("utf-8")).hexdigest() | 
					
						
						|  |  | 
					
						
						|  | def get_hash(example): | 
					
						
						|  | """Get hash of content field.""" | 
					
						
						|  | return {"hash": hash_func(example["content"])} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def line_stats(example): | 
					
						
						|  | """Calculates mean and max line length of file.""" | 
					
						
						|  | line_lengths = [len(line) for line in example["content"].splitlines()] | 
					
						
						|  | return {"line_mean": np.mean(line_lengths), "line_max": max(line_lengths)} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def alpha_stats(example): | 
					
						
						|  | """Calculates mean and max line length of file.""" | 
					
						
						|  | alpha_frac = np.mean([c.isalnum() for c in example["content"]]) | 
					
						
						|  | return {"alpha_frac": alpha_frac} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def check_uniques(example, uniques): | 
					
						
						|  | """Check if current hash is still in set of unique hashes and remove if true.""" | 
					
						
						|  | if example["hash"] in uniques: | 
					
						
						|  | uniques.remove(example["hash"]) | 
					
						
						|  | return True | 
					
						
						|  | else: | 
					
						
						|  | return False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def is_autogenerated(example, scan_width=5): | 
					
						
						|  | """Check if file is autogenerated by looking for keywords in the first few lines of the file.""" | 
					
						
						|  | keywords = ["auto-generated", "autogenerated", "automatically generated"] | 
					
						
						|  | lines = example["content"].splitlines() | 
					
						
						|  | for _, line in zip(range(scan_width), lines): | 
					
						
						|  | for keyword in keywords: | 
					
						
						|  | if keyword in line.lower(): | 
					
						
						|  | return {"autogenerated": True} | 
					
						
						|  | else: | 
					
						
						|  | return {"autogenerated": False} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def preprocess(example): | 
					
						
						|  | """Chain all preprocessing steps into one function to not fill cache.""" | 
					
						
						|  | results = dict() | 
					
						
						|  | results.update(get_hash(example)) | 
					
						
						|  | results.update(line_stats(example)) | 
					
						
						|  | return results | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def filter(example, uniques, args): | 
					
						
						|  | """Filter dataset with heuristics.""" | 
					
						
						|  | if not check_uniques(example, uniques): | 
					
						
						|  | return False | 
					
						
						|  | elif example["line_max"] > args.line_max: | 
					
						
						|  | return False | 
					
						
						|  | else: | 
					
						
						|  | return True | 
					
						
						|  |  | 
					
						
						|  | def save_shard(shard_tuple): | 
					
						
						|  | """Save shard""" | 
					
						
						|  | filename, shard = shard_tuple | 
					
						
						|  | shard.to_parquet(filename) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | t_start = time.time() | 
					
						
						|  | ds = load_dataset(args.dataset_name, split="train", chunksize=40<<20) | 
					
						
						|  | print(f"Time to load dataset: {time.time()-t_start:.2f}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | t_start = time.time() | 
					
						
						|  | ds = ds.map(preprocess, num_proc=args.num_workers) | 
					
						
						|  | print(f"Time to preprocess dataset: {time.time()-t_start:.2f}") | 
					
						
						|  | print(ds) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | uniques = set(ds.unique("hash")) | 
					
						
						|  | frac = len(uniques) / len(ds) | 
					
						
						|  | print(f"Fraction of duplicates: {1-frac:.2%}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | t_start = time.time() | 
					
						
						|  | ds = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) | 
					
						
						|  | ds = ds.remove_columns(["line_mean", "line_max", "copies", "hash"]) | 
					
						
						|  | print(f"Time to filter dataset: {time.time()-t_start:.2f}") | 
					
						
						|  | print(f"Size of filtered dataset: {len(ds)}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | repo = Repository( | 
					
						
						|  | local_dir=args.out_path, | 
					
						
						|  | clone_from=args.org + "/" + args.repo_name, | 
					
						
						|  | repo_type="dataset", | 
					
						
						|  | private=True, | 
					
						
						|  | use_auth_token=True, | 
					
						
						|  | git_user="lvwerra", | 
					
						
						|  | git_email="[email protected]", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | os.mkdir(args.out_path + "/data") | 
					
						
						|  |  | 
					
						
						|  | if ds._indices is not None: | 
					
						
						|  | dataset_nbytes = ds.data.nbytes * len(ds._indices) / len(ds.data) | 
					
						
						|  | else: | 
					
						
						|  | dataset_nbytes = ds.data.nbytes | 
					
						
						|  |  | 
					
						
						|  | num_shards = int(dataset_nbytes / args.shard_size) + 1 | 
					
						
						|  | print(f"Number of shards: {num_shards}") | 
					
						
						|  |  | 
					
						
						|  | t_start = time.time() | 
					
						
						|  | shards = (ds.shard(num_shards=num_shards, index=i, contiguous=True) for i in range(num_shards)) | 
					
						
						|  | filenames = (f"{args.out_path}/data/train-{index:05d}-of-{num_shards:05d}.parquet" for index in range(num_shards)) | 
					
						
						|  |  | 
					
						
						|  | with Pool(16) as p: | 
					
						
						|  | list(tqdm(p.imap_unordered(save_shard, zip(filenames, shards), chunksize=4), total=num_shards)) | 
					
						
						|  | print(f"Time to save dataset: {time.time()-t_start:.2f}") | 
					
						
						|  |  | 
					
						
						|  |  |