#!/usr/bin/env python3 """ Test the wine dataset before uploading to HuggingFace. This script validates the data quality and structure. """ import pandas as pd from datasets import Dataset, Features, Value def test_dataset(): """Test the dataset structure and quality.""" print("šŸ· Testing Wine Text Dataset") print("=" * 40) # Load the parquet file print("šŸ“ Loading dataset...") df = pd.read_parquet("wine_text_126k.parquet") # Basic structure validation print(f"āœ… Dataset loaded: {len(df):,} records") print(f"āœ… Columns: {list(df.columns)}") # Check schema matches expected expected_columns = ['id', 'name', 'description', 'price', 'category', 'region', 'image_id'] if list(df.columns) == expected_columns: print("āœ… Schema matches expected structure") else: print(f"āŒ Schema mismatch. Expected: {expected_columns}") return False # Data quality checks print("\nšŸ“Š Data Quality Report:") # Check for missing values missing = df.isnull().sum() if missing.any(): print("āŒ Missing values found:") for col, count in missing.items(): if count > 0: print(f" {col}: {count:,} missing") return False else: print("āœ… No missing values") # Check ID format id_pattern_valid = df['id'].str.match(r'^wine_\d{6}$').all() if id_pattern_valid: print("āœ… ID format is correct (wine_XXXXXX)") else: print("āŒ Invalid ID format found") return False # Check price range price_min, price_max = df['price'].min(), df['price'].max() print(f"āœ… Price range: ${price_min:.2f} - ${price_max:.2f}") # Check categories categories = df['category'].value_counts() print(f"āœ… Wine categories ({len(categories)} types):") for cat, count in categories.head().items(): print(f" {cat}: {count:,}") # Check regions regions = df['region'].value_counts() print(f"āœ… Regions ({len(regions)} types):") for region, count in regions.items(): print(f" {region}: {count:,}") # Test HuggingFace Dataset creation print("\nšŸ¤— Testing HuggingFace Dataset creation...") try: features = Features({ "id": Value("string"), "name": Value("string"), "description": Value("string"), "price": Value("float32"), "category": Value("string"), "region": Value("string"), "image_id": Value("string"), }) dataset = Dataset.from_pandas(df, features=features, preserve_index=False) print(f"āœ… HuggingFace Dataset created successfully") print(f"āœ… Dataset info: {dataset}") # Sample a few records print("\nšŸ“‹ Sample records:") for i in range(min(3, len(dataset))): record = dataset[i] print(f" ID: {record['id']}") print(f" Name: {record['name'][:50]}...") print(f" Price: ${record['price']:.2f}") print(f" Category: {record['category']}") print() return True except Exception as e: print(f"āŒ HuggingFace Dataset creation failed: {e}") return False if __name__ == "__main__": success = test_dataset() if success: print("šŸŽ‰ All tests passed! Dataset is ready for upload.") print("\nšŸ“¤ To upload to HuggingFace Hub:") print("1. pip install datasets huggingface_hub pyarrow") print("2. huggingface-cli login") print("3. python upload_to_hf.py --username YOUR_USERNAME") else: print("āŒ Tests failed. Please fix the issues above before uploading.")