File size: 4,722 Bytes
58cb8a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/usr/bin/env python3
"""
Upload the wine text dataset to HuggingFace Hub.

Prerequisites:
1. Install required packages: pip install datasets huggingface_hub pyarrow
2. Login to HF Hub: huggingface-cli login
3. Replace YOUR_USERNAME with your actual HF username

Usage:
    python upload_to_hf.py --username YOUR_USERNAME [--private]
"""

import argparse
import pandas as pd
from datasets import Dataset, Features, Value
from huggingface_hub import HfApi
import os

def create_dataset_features():
    """Define the dataset schema."""
    return Features({
        "id": Value("string"),
        "name": Value("string"),
        "description": Value("string"),
        "price": Value("float32"),
        "category": Value("string"),
        "region": Value("string"),
        "image_id": Value("string"),
    })

def load_and_prepare_dataset(parquet_file="wine_text_126k.parquet"):
    """Load the parquet file and create a HuggingFace Dataset."""

    print(f"Loading dataset from {parquet_file}...")
    df = pd.read_parquet(parquet_file)

    # Verify data quality
    print(f"Dataset shape: {df.shape}")
    print(f"Columns: {list(df.columns)}")

    # Check for any missing values
    missing = df.isnull().sum()
    if missing.any():
        print("Warning: Missing values found:")
        print(missing[missing > 0])
    else:
        print("โœ… No missing values found")

    # Create HuggingFace Dataset with proper features
    features = create_dataset_features()
    dataset = Dataset.from_pandas(df, features=features, preserve_index=False)

    print(f"โœ… Created HuggingFace Dataset with {len(dataset):,} records")
    return dataset

def upload_dataset(dataset, username, repo_name="wine-text-126k", private=False):
    """Upload the dataset to HuggingFace Hub."""

    full_repo_name = f"{username}/{repo_name}"

    print(f"\n๐Ÿš€ Uploading to HuggingFace Hub: {full_repo_name}")
    print(f"Privacy: {'Private' if private else 'Public'}")

    try:
        # Create the repository (this will fail gracefully if it already exists)
        api = HfApi()
        try:
            api.create_repo(
                repo_id=full_repo_name,
                repo_type="dataset",
                private=private
            )
            print(f"โœ… Created repository: {full_repo_name}")
        except Exception as e:
            if "already exists" in str(e).lower():
                print(f"โ„น๏ธ  Repository already exists: {full_repo_name}")
            else:
                print(f"โš ๏ธ  Repository creation warning: {e}")

        # Upload the dataset
        print("๐Ÿ“ค Uploading dataset files...")
        dataset.push_to_hub(
            full_repo_name,
            private=private,
            commit_message="Initial upload of wine text dataset"
        )

        print(f"\n๐ŸŽ‰ Upload completed successfully!")
        print(f"๐Ÿ”— Dataset URL: https://huggingface.co/datasets/{full_repo_name}")
        print(f"\n๐Ÿ“– Usage:")
        print(f'from datasets import load_dataset')
        print(f'dataset = load_dataset("{full_repo_name}")')

        return True

    except Exception as e:
        print(f"โŒ Upload failed: {e}")
        print("\nTroubleshooting:")
        print("1. Make sure you're logged in: huggingface-cli login")
        print("2. Check your internet connection")
        print("3. Verify the username is correct")
        print("4. Ensure you have write permissions")
        return False

def main():
    parser = argparse.ArgumentParser(description="Upload wine dataset to HuggingFace Hub")
    parser.add_argument("--username", required=True, help="Your HuggingFace username")
    parser.add_argument("--private", action="store_true", help="Make the dataset private")
    parser.add_argument("--parquet-file", default="wine_text_126k.parquet",
                       help="Path to the parquet file")

    args = parser.parse_args()

    # Check if parquet file exists
    if not os.path.exists(args.parquet_file):
        print(f"โŒ Error: Parquet file not found: {args.parquet_file}")
        print("Make sure you're running this script from the wine-text-126k directory")
        return

    print("๐Ÿท Wine Text Dataset - HuggingFace Upload")
    print("=" * 50)

    # Load and prepare dataset
    dataset = load_and_prepare_dataset(args.parquet_file)

    # Upload to HuggingFace
    success = upload_dataset(dataset, args.username, private=args.private)

    if success:
        print("\nโœ… All done! Your dataset is now live on HuggingFace Hub.")
        print("Don't forget to update the README.md with your actual username!")
    else:
        print("\nโŒ Upload failed. Please check the error messages above.")

if __name__ == "__main__":
    main()