|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """The SPIDER dataset contains (human) lumbar spine magnetic resonance images | 
					
						
						|  | (MRI) and segmentation masks described in the following paper: | 
					
						
						|  |  | 
					
						
						|  | van der Graaf, J.W., van Hooff, M.L., Buckens, C.F.M. et al. Lumbar spine | 
					
						
						|  | segmentation in MR images: a dataset and a public benchmark. | 
					
						
						|  | Sci Data 11, 264 (2024). https://doi.org/10.1038/s41597-024-03090-w | 
					
						
						|  |  | 
					
						
						|  | The dataset includes 447 sagittal T1 and T2 MRI series collected from 218 | 
					
						
						|  | patients across four hospitals. Segmentation masks indicating the vertebrae, | 
					
						
						|  | intervertebral discs (IVDs), and spinal canal are also included. Segmentation | 
					
						
						|  | masks were created manually by a medical trainee under the supervision of a | 
					
						
						|  | medical imaging expert and an experienced musculoskeletal radiologist. | 
					
						
						|  |  | 
					
						
						|  | In addition to MR images and segmentation masks, additional metadata | 
					
						
						|  | (e.g., scanner manufacturer, pixel bandwidth, etc.), limited patient | 
					
						
						|  | characteristics (biological sex and age, when available), and radiological | 
					
						
						|  | gradings indicating specific degenerative changes can be loaded with the | 
					
						
						|  | corresponding image data. | 
					
						
						|  |  | 
					
						
						|  | HuggingFace repository: https://huggingface.co/datasets/cdoswald/SPIDER | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import csv | 
					
						
						|  | import json | 
					
						
						|  | import os | 
					
						
						|  | import urllib.request | 
					
						
						|  | from typing import Dict, List, Mapping, Optional, Sequence, Set, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import pandas as pd | 
					
						
						|  |  | 
					
						
						|  | import datasets | 
					
						
						|  | import skimage | 
					
						
						|  | import SimpleITK as sitk | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def import_csv_data(filepath: str) -> List[Dict[str, str]]: | 
					
						
						|  | """Import all rows of CSV file.""" | 
					
						
						|  | results = [] | 
					
						
						|  | with open(filepath, encoding='utf-8') as f: | 
					
						
						|  | reader = csv.DictReader(f) | 
					
						
						|  | for line in reader: | 
					
						
						|  | results.append(line) | 
					
						
						|  | return results | 
					
						
						|  |  | 
					
						
						|  | def subset_file_list(all_files: List[str], subset_ids: Set[int]): | 
					
						
						|  | """Subset files pertaining to individuals in person_ids arg.""" | 
					
						
						|  | return ([ | 
					
						
						|  | file for file in all_files | 
					
						
						|  | if any(str(id_val) == file.split('_')[0] for id_val in subset_ids) | 
					
						
						|  | ]) | 
					
						
						|  |  | 
					
						
						|  | def standardize_3D_image( | 
					
						
						|  | image: np.ndarray, | 
					
						
						|  | resize_shape: Tuple[int, int], | 
					
						
						|  | ) -> np.ndarray: | 
					
						
						|  | """Aligns dimensions of image to be (height, width, channels); resizes | 
					
						
						|  | images to height/width values specified in resize_shape; and rescales | 
					
						
						|  | pixel values to Uint8.""" | 
					
						
						|  |  | 
					
						
						|  | if image.shape[0] < image.shape[2]: | 
					
						
						|  | image = np.transpose(image, axes=[1, 2, 0]) | 
					
						
						|  |  | 
					
						
						|  | image = skimage.transform.resize(image, resize_shape) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image = skimage.img_as_uint(image) | 
					
						
						|  | return image | 
					
						
						|  |  | 
					
						
						|  | def standardize_3D_mask( | 
					
						
						|  | mask: np.ndarray, | 
					
						
						|  | resize_shape: Tuple[int, int, int], | 
					
						
						|  | ) -> np.ndarray: | 
					
						
						|  | """Aligns dimensions of image to be (height, width, channels); resizes | 
					
						
						|  | images to values specified in resize_shape using nearest neighbor interpolation; | 
					
						
						|  | and rescales pixel values to Uint8.""" | 
					
						
						|  |  | 
					
						
						|  | if mask.shape[0] < mask.shape[2]: | 
					
						
						|  | mask = np.transpose(mask, axes=[1, 2, 0]) | 
					
						
						|  |  | 
					
						
						|  | mask = skimage.transform.resize( | 
					
						
						|  | mask, | 
					
						
						|  | resize_shape, | 
					
						
						|  | order=0, | 
					
						
						|  | preserve_range=True, | 
					
						
						|  | mode='constant', | 
					
						
						|  | cval=0, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | mask = skimage.img_as_ubyte(mask) | 
					
						
						|  | return mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | MIN_IVD = 0 | 
					
						
						|  | MAX_IVD = 9 | 
					
						
						|  | DEFAULT_SCAN_TYPES = ['t1', 't2', 't2_SPACE'] | 
					
						
						|  | DEFAULT_RESIZE = (512, 512) | 
					
						
						|  | DEMO_SUBSET_N = 10 | 
					
						
						|  |  | 
					
						
						|  | _CITATION = """\ | 
					
						
						|  | @misc{vandergraaf2023lumbar, | 
					
						
						|  | title={Lumbar spine segmentation in MR images: a dataset and a public benchmark}, | 
					
						
						|  | author={Jasper W. van der Graaf and Miranda L. van Hooff and \ | 
					
						
						|  | Constantinus F. M. Buckens and Matthieu Rutten and \ | 
					
						
						|  | Job L. C. van Susante and Robert Jan Kroeze and \ | 
					
						
						|  | Marinus de Kleuver and Bram van Ginneken and Nikolas Lessmann}, | 
					
						
						|  | year={2023}, | 
					
						
						|  | eprint={2306.12217}, | 
					
						
						|  | archivePrefix={arXiv}, | 
					
						
						|  | primaryClass={eess.IV} | 
					
						
						|  | } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _DESCRIPTION = """\ | 
					
						
						|  | This is a large publicly available multi-center lumbar spine magnetic resonance \ | 
					
						
						|  | imaging (MRI) dataset with reference segmentations of vertebrae, intervertebral \ | 
					
						
						|  | discs (IVDs), and spinal canal. The dataset includes 447 sagittal T1 and T2 \ | 
					
						
						|  | MRI series from 218 studies of 218 patients with a history of low back pain. \ | 
					
						
						|  | The data was collected from four different hospitals. There is an additional \ | 
					
						
						|  | hidden test set, not available here, used in the accompanying SPIDER challenge \ | 
					
						
						|  | on spider.grand-challenge.org. We share this data to encourage wider \ | 
					
						
						|  | participation and collaboration in the field of spine segmentation, and \ | 
					
						
						|  | ultimately improve the diagnostic value of lumbar spine MRI. | 
					
						
						|  |  | 
					
						
						|  | This file also provides the biological sex for all patients and the age for \ | 
					
						
						|  | the patients for which this was available. It also includes a number of \ | 
					
						
						|  | scanner and acquisition parameters for each individual MRI study. The dataset \ | 
					
						
						|  | also comes with radiological gradings found in a separate file for the \ | 
					
						
						|  | following degenerative changes: | 
					
						
						|  |  | 
					
						
						|  | 1.    Modic changes (type I, II or III) | 
					
						
						|  |  | 
					
						
						|  | 2.    Upper and lower endplate changes / Schmorl nodes (binary) | 
					
						
						|  |  | 
					
						
						|  | 3.    Spondylolisthesis (binary) | 
					
						
						|  |  | 
					
						
						|  | 4.    Disc herniation (binary) | 
					
						
						|  |  | 
					
						
						|  | 5.    Disc narrowing (binary) | 
					
						
						|  |  | 
					
						
						|  | 6.    Disc bulging (binary) | 
					
						
						|  |  | 
					
						
						|  | 7.    Pfirrman grade (grade 1 to 5). | 
					
						
						|  |  | 
					
						
						|  | All radiological gradings are provided per IVD level. | 
					
						
						|  |  | 
					
						
						|  | Repository: https://zenodo.org/records/10159290 | 
					
						
						|  | Paper: https://www.nature.com/articles/s41597-024-03090-w | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _HOMEPAGE = "https://zenodo.org/records/10159290" | 
					
						
						|  |  | 
					
						
						|  | _LICENSE = """Creative Commons Attribution 4.0 International License \ | 
					
						
						|  | (https://creativecommons.org/licenses/by/4.0/legalcode)""" | 
					
						
						|  |  | 
					
						
						|  | _URLS = { | 
					
						
						|  | "images":"https://zenodo.org/records/10159290/files/images.zip", | 
					
						
						|  | "masks":"https://zenodo.org/records/10159290/files/masks.zip", | 
					
						
						|  | "overview":"https://zenodo.org/records/10159290/files/overview.csv", | 
					
						
						|  | "gradings":"https://zenodo.org/records/10159290/files/radiological_gradings.csv", | 
					
						
						|  | "var_types": "https://huggingface.co/datasets/cdoswald/SPIDER/raw/main/textfiles/var_types.json", | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | class CustomBuilderConfig(datasets.BuilderConfig): | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | name: str = 'default', | 
					
						
						|  | version: str = '0.0.0', | 
					
						
						|  | data_dir: Optional[str] = None, | 
					
						
						|  | data_files: Optional[Union[str, Sequence, Mapping]] = None, | 
					
						
						|  | description: Optional[str] = None, | 
					
						
						|  | scan_types: List[str] = DEFAULT_SCAN_TYPES, | 
					
						
						|  | resize_shape: Tuple[int, int, int] = DEFAULT_RESIZE, | 
					
						
						|  | shuffle: bool = True, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__(name, version, data_dir, data_files, description) | 
					
						
						|  | self.scan_types = self._validate_scan_types(scan_types) | 
					
						
						|  | self.resize_shape = resize_shape | 
					
						
						|  | self.shuffle = shuffle | 
					
						
						|  | self.var_types = self._import_var_types() | 
					
						
						|  |  | 
					
						
						|  | def _validate_scan_types(self, scan_types): | 
					
						
						|  | for item in scan_types: | 
					
						
						|  | if item not in ['t1', 't2', 't2_SPACE']: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | 'Scan type "{item}" not recognized as valid scan type.\ | 
					
						
						|  | Verify scan type argument.' | 
					
						
						|  | ) | 
					
						
						|  | return scan_types | 
					
						
						|  |  | 
					
						
						|  | def _import_var_types(self): | 
					
						
						|  | """Import variable types from HuggingFace repository subfolder.""" | 
					
						
						|  | with urllib.request.urlopen(_URLS['var_types']) as url: | 
					
						
						|  | var_types = json.load(url) | 
					
						
						|  | return var_types | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SPIDER(datasets.GeneratorBasedBuilder): | 
					
						
						|  | """Resized/rescaled 3-dimensional volumetric arrays of lumbar spine MRIs \ | 
					
						
						|  | with corresponding scanner/patient metadata and radiological gradings.""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | DEFAULT_WRITER_BATCH_SIZE = 16 | 
					
						
						|  | VERSION = datasets.Version("1.1.0") | 
					
						
						|  | BUILDER_CONFIG_CLASS = CustomBuilderConfig | 
					
						
						|  | BUILDER_CONFIGS = [ | 
					
						
						|  | CustomBuilderConfig( | 
					
						
						|  | name="default", | 
					
						
						|  | description="Load the full dataset", | 
					
						
						|  | ), | 
					
						
						|  | CustomBuilderConfig( | 
					
						
						|  | name="demo", | 
					
						
						|  | description="Generate 10 examples for demonstration", | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  | DEFAULT_CONFIG_NAME = "default" | 
					
						
						|  |  | 
					
						
						|  | def _info(self): | 
					
						
						|  | """Specify datasets.DatasetInfo object containing information and typing | 
					
						
						|  | for the dataset.""" | 
					
						
						|  |  | 
					
						
						|  | features = datasets.Features({ | 
					
						
						|  | "patient_id": datasets.Value("string"), | 
					
						
						|  | "scan_type": datasets.Value("string"), | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | "image": datasets.Sequence(datasets.Image()), | 
					
						
						|  | "mask": datasets.Sequence(datasets.Image()), | 
					
						
						|  | "image_path": datasets.Value("string"), | 
					
						
						|  | "mask_path": datasets.Value("string"), | 
					
						
						|  | "metadata": { | 
					
						
						|  | k:datasets.Value(v) for k,v in | 
					
						
						|  | self.config.var_types['metadata'].items() | 
					
						
						|  | }, | 
					
						
						|  | "rad_gradings": { | 
					
						
						|  | "IVD label": datasets.Sequence(datasets.Value("string")), | 
					
						
						|  | "Modic": datasets.Sequence(datasets.Value("string")), | 
					
						
						|  | "UP endplate": datasets.Sequence(datasets.Value("string")), | 
					
						
						|  | "LOW endplate": datasets.Sequence(datasets.Value("string")), | 
					
						
						|  | "Spondylolisthesis": datasets.Sequence(datasets.Value("string")), | 
					
						
						|  | "Disc herniation": datasets.Sequence(datasets.Value("string")), | 
					
						
						|  | "Disc narrowing": datasets.Sequence(datasets.Value("string")), | 
					
						
						|  | "Disc bulging": datasets.Sequence(datasets.Value("string")), | 
					
						
						|  | "Pfirrman grade": datasets.Sequence(datasets.Value("string")), | 
					
						
						|  | } | 
					
						
						|  | }) | 
					
						
						|  |  | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  | description=_DESCRIPTION, | 
					
						
						|  | features=features, | 
					
						
						|  | homepage=_HOMEPAGE, | 
					
						
						|  | license=_LICENSE, | 
					
						
						|  | citation=_CITATION, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _split_generators( | 
					
						
						|  | self, | 
					
						
						|  | dl_manager, | 
					
						
						|  | validate_share: float = 0.2, | 
					
						
						|  | test_share: float = 0.2, | 
					
						
						|  | random_seed: int = 9999, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Download and extract data and define splits based on configuration. | 
					
						
						|  |  | 
					
						
						|  | Args | 
					
						
						|  | dl_manager: HuggingFace datasets download manager (automatically supplied) | 
					
						
						|  | validate_share: float indicating share of data to use for validation; | 
					
						
						|  | must be in range (0.0, 1.0); note that training share is | 
					
						
						|  | calculated as (1 - validate_share - test_share) | 
					
						
						|  | test_share: float indicating share of data to use for testing; | 
					
						
						|  | must be in range (0.0, 1.0); note that training share is | 
					
						
						|  | calculated as (1 - validate_share - test_share) | 
					
						
						|  | random_seed: seed for random draws of train/validate/test patient ids | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | train_share = (1.0 - validate_share - test_share) | 
					
						
						|  | np.random.seed(int(random_seed)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if train_share <= 0.0: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f'Training share is calculated as (1 - validate_share - test_share) \ | 
					
						
						|  | and must be greater than 0. Current calculated value is \ | 
					
						
						|  | {round(train_share, 3)}. Adjust validate_share and/or \ | 
					
						
						|  | test_share parameters.' | 
					
						
						|  | ) | 
					
						
						|  | if validate_share > 1.0 or validate_share < 0.0: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f'Validation share must be between (0, 1). Current value is \ | 
					
						
						|  | {validate_share}.' | 
					
						
						|  | ) | 
					
						
						|  | if test_share > 1.0 or test_share < 0.0: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f'Testing share must be between (0, 1). Current value is \ | 
					
						
						|  | {test_share}.' | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | paths_dict = dl_manager.download_and_extract(_URLS) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image_files = [ | 
					
						
						|  | file for file in os.listdir(os.path.join(paths_dict['images'], 'images')) | 
					
						
						|  | if file.endswith('.mha') | 
					
						
						|  | ] | 
					
						
						|  | assert len(image_files) > 0, "No image files found--check directory path." | 
					
						
						|  |  | 
					
						
						|  | mask_files = [ | 
					
						
						|  | file for file in os.listdir(os.path.join(paths_dict['masks'], 'masks')) | 
					
						
						|  | if file.endswith('.mha') | 
					
						
						|  | ] | 
					
						
						|  | assert len(mask_files) > 0, "No mask files found--check directory path." | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image_files = [ | 
					
						
						|  | file for file in image_files | 
					
						
						|  | if any(f'{scan_type}.mha' in file for scan_type in self.config.scan_types) | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | mask_files = [ | 
					
						
						|  | file for file in mask_files | 
					
						
						|  | if any(f'{scan_type}.mha' in file for scan_type in self.config.scan_types) | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | patient_ids = np.unique([file.split('_')[0] for file in image_files]) | 
					
						
						|  | partition = np.random.choice( | 
					
						
						|  | ['train', 'dev', 'test'], | 
					
						
						|  | p=[train_share, validate_share, test_share], | 
					
						
						|  | size=len(patient_ids), | 
					
						
						|  | ) | 
					
						
						|  | train_ids = set(patient_ids[partition == 'train']) | 
					
						
						|  | validate_ids = set(patient_ids[partition == 'dev']) | 
					
						
						|  | test_ids = set(patient_ids[partition == 'test']) | 
					
						
						|  | assert len(train_ids.union(validate_ids, test_ids)) == len(patient_ids) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | train_image_files = subset_file_list(image_files, train_ids) | 
					
						
						|  | validate_image_files = subset_file_list(image_files, validate_ids) | 
					
						
						|  | test_image_files = subset_file_list(image_files, test_ids) | 
					
						
						|  |  | 
					
						
						|  | train_mask_files = subset_file_list(mask_files, train_ids) | 
					
						
						|  | validate_mask_files = subset_file_list(mask_files, validate_ids) | 
					
						
						|  | test_mask_files = subset_file_list(mask_files, test_ids) | 
					
						
						|  |  | 
					
						
						|  | assert len(train_image_files) == len(train_mask_files) | 
					
						
						|  | assert len(validate_image_files) == len(validate_mask_files) | 
					
						
						|  | assert len(test_image_files) == len(test_mask_files) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | overview_data = import_csv_data(paths_dict['overview']) | 
					
						
						|  | grades_data = import_csv_data(paths_dict['gradings']) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | exclude_vars = ['new_file_name', 'subset'] | 
					
						
						|  | overview_dict = {} | 
					
						
						|  | for item in overview_data: | 
					
						
						|  | key = item['new_file_name'] | 
					
						
						|  | overview_dict[key] = { | 
					
						
						|  | k:v for k,v in item.items() if k not in exclude_vars | 
					
						
						|  | } | 
					
						
						|  | overview_dict[key]['OrigSubset'] = item['subset'] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cast_overview_dict = {} | 
					
						
						|  | for scan_id, scan_metadata in overview_dict.items(): | 
					
						
						|  | cast_dict = {} | 
					
						
						|  | for key, value in scan_metadata.items(): | 
					
						
						|  | if key in self.config.var_types['metadata']: | 
					
						
						|  | new_type = self.config.var_types['metadata'][key] | 
					
						
						|  | if new_type != "string": | 
					
						
						|  | cast_dict[key] = eval(f'np.{new_type}({value})') | 
					
						
						|  | else: | 
					
						
						|  | cast_dict[key] = str(value) | 
					
						
						|  | else: | 
					
						
						|  | cast_dict[key] = value | 
					
						
						|  | cast_overview_dict[scan_id] = cast_dict | 
					
						
						|  | overview_dict = cast_overview_dict | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | grades_dict = {} | 
					
						
						|  | for patient_id in patient_ids: | 
					
						
						|  | patient_grades = [ | 
					
						
						|  | x for x in grades_data if x['Patient'] == str(patient_id) | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | IVD_values = [x['IVD label'] for x in patient_grades] | 
					
						
						|  | for i in range(MIN_IVD, MAX_IVD + 1): | 
					
						
						|  | if str(i) not in IVD_values: | 
					
						
						|  | patient_grades.append({ | 
					
						
						|  | "Patient": f"{patient_id}", | 
					
						
						|  | "IVD label": f"{i}", | 
					
						
						|  | "Modic": "", | 
					
						
						|  | "UP endplate": "", | 
					
						
						|  | "LOW endplate": "", | 
					
						
						|  | "Spondylolisthesis": "", | 
					
						
						|  | "Disc herniation": "", | 
					
						
						|  | "Disc narrowing": "", | 
					
						
						|  | "Disc bulging": "", | 
					
						
						|  | "Pfirrman grade": "", | 
					
						
						|  | }) | 
					
						
						|  | assert len(patient_grades) == (MAX_IVD - MIN_IVD + 1), "Radiological\ | 
					
						
						|  | gradings not padded correctly" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | df = ( | 
					
						
						|  | pd.DataFrame(patient_grades) | 
					
						
						|  | .sort_values("IVD label") | 
					
						
						|  | .reset_index(drop=True) | 
					
						
						|  | ) | 
					
						
						|  | grades_dict[str(patient_id)] = { | 
					
						
						|  | col:df[col].tolist() for col in df.columns | 
					
						
						|  | if col not in ['Patient'] | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.config.name == "demo": | 
					
						
						|  | train_image_files = train_image_files[:DEMO_SUBSET_N] | 
					
						
						|  | train_mask_files = train_mask_files[:DEMO_SUBSET_N] | 
					
						
						|  | validate_image_files = validate_image_files[:DEMO_SUBSET_N] | 
					
						
						|  | validate_mask_files = validate_mask_files[:DEMO_SUBSET_N] | 
					
						
						|  | test_image_files = test_image_files[:DEMO_SUBSET_N] | 
					
						
						|  | test_mask_files = test_mask_files[:DEMO_SUBSET_N] | 
					
						
						|  |  | 
					
						
						|  | return [ | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.TRAIN, | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "paths_dict": paths_dict, | 
					
						
						|  | "image_files": train_image_files, | 
					
						
						|  | "mask_files": train_mask_files, | 
					
						
						|  | "overview_dict": overview_dict, | 
					
						
						|  | "grades_dict": grades_dict, | 
					
						
						|  | "resize_shape": self.config.resize_shape, | 
					
						
						|  | "shuffle": self.config.shuffle, | 
					
						
						|  | }, | 
					
						
						|  | ), | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.VALIDATION, | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "paths_dict": paths_dict, | 
					
						
						|  | "image_files": validate_image_files, | 
					
						
						|  | "mask_files": validate_mask_files, | 
					
						
						|  | "overview_dict": overview_dict, | 
					
						
						|  | "grades_dict": grades_dict, | 
					
						
						|  | "resize_shape": self.config.resize_shape, | 
					
						
						|  | "shuffle": self.config.shuffle, | 
					
						
						|  | }, | 
					
						
						|  | ), | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.TEST, | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "paths_dict": paths_dict, | 
					
						
						|  | "image_files": test_image_files, | 
					
						
						|  | "mask_files": test_mask_files, | 
					
						
						|  | "overview_dict": overview_dict, | 
					
						
						|  | "grades_dict": grades_dict, | 
					
						
						|  | "resize_shape": self.config.resize_shape, | 
					
						
						|  | "shuffle": self.config.shuffle, | 
					
						
						|  | }, | 
					
						
						|  | ), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples( | 
					
						
						|  | self, | 
					
						
						|  | paths_dict: Dict[str, str], | 
					
						
						|  | image_files: List[str], | 
					
						
						|  | mask_files: List[str], | 
					
						
						|  | overview_dict: Dict, | 
					
						
						|  | grades_dict: Dict, | 
					
						
						|  | resize_shape: Tuple[int, int, int], | 
					
						
						|  | shuffle: bool, | 
					
						
						|  | ) -> Tuple[str, Dict]: | 
					
						
						|  | """ | 
					
						
						|  | This method handles input defined in _split_generators to yield | 
					
						
						|  | (key, example) tuples from the dataset. The `key` is for legacy reasons | 
					
						
						|  | (tfds) and is not important in itself, but must be unique for each example. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if shuffle: | 
					
						
						|  | np.random.shuffle(image_files) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for idx, example in enumerate(image_files): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | scan_id = example.replace('.mha', '') | 
					
						
						|  | patient_id = scan_id.split('_')[0] | 
					
						
						|  | scan_type = '_'.join(scan_id.split('_')[1:]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image_path = os.path.join(paths_dict['images'], 'images', example) | 
					
						
						|  | image = sitk.ReadImage(image_path) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image_array_original = sitk.GetArrayFromImage(image) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image_array_standardized = standardize_3D_image( | 
					
						
						|  | image_array_original, | 
					
						
						|  | resize_shape, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | split_len = image_array_standardized.shape[-1] | 
					
						
						|  | images_seq = [ | 
					
						
						|  | np.squeeze(arr) for arr in np.split( | 
					
						
						|  | image_array_standardized, | 
					
						
						|  | split_len, | 
					
						
						|  | axis=-1, | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mask_path = os.path.join(paths_dict['masks'], 'masks', example) | 
					
						
						|  | mask = sitk.ReadImage(mask_path) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mask_array_original = sitk.GetArrayFromImage(mask) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mask_array_standardized = np.array(mask_array_original, dtype='uint8') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mask_array_standardized = standardize_3D_mask( | 
					
						
						|  | mask_array_standardized, | 
					
						
						|  | resize_shape, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | split_len = mask_array_standardized.shape[-1] | 
					
						
						|  | masks_seq = [ | 
					
						
						|  | np.squeeze(arr) for arr in np.split( | 
					
						
						|  | mask_array_standardized, | 
					
						
						|  | split_len, | 
					
						
						|  | axis=-1, | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | image_overview = overview_dict[scan_id] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | patient_grades_dict = grades_dict[patient_id] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return_dict = { | 
					
						
						|  | 'patient_id':patient_id, | 
					
						
						|  | 'scan_type':scan_type, | 
					
						
						|  | 'image':images_seq, | 
					
						
						|  | 'mask':masks_seq, | 
					
						
						|  | 'image_path':image_path, | 
					
						
						|  | 'mask_path':mask_path, | 
					
						
						|  | 'metadata':image_overview, | 
					
						
						|  | 'rad_gradings':patient_grades_dict, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | yield scan_id, return_dict | 
					
						
						|  |  |