add speaker prompts
Browse files- libritts-r-aligned.py +58 -16
libritts-r-aligned.py
CHANGED
|
@@ -15,6 +15,7 @@ from multiprocessing import cpu_count
|
|
| 15 |
from phones.convert import Converter
|
| 16 |
import torchaudio
|
| 17 |
import torchaudio.transforms as AT
|
|
|
|
| 18 |
|
| 19 |
logger = datasets.logging.get_logger(__name__)
|
| 20 |
|
|
@@ -64,6 +65,12 @@ _URLS = {
|
|
| 64 |
"train-other-500": _URL + "train_other_500.tar.gz",
|
| 65 |
}
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
class LibriTTSAlignConfig(datasets.BuilderConfig):
|
| 69 |
"""BuilderConfig for LibriTTSAlign."""
|
|
@@ -106,7 +113,8 @@ class LibriTTSAlign(datasets.GeneratorBasedBuilder):
|
|
| 106 |
"phones": datasets.Sequence(datasets.Value("string")),
|
| 107 |
"phone_durations": datasets.Sequence(datasets.Value("int32")),
|
| 108 |
# audio feature
|
| 109 |
-
"audio": datasets.Value("string")
|
|
|
|
| 110 |
}
|
| 111 |
|
| 112 |
return datasets.DatasetInfo(
|
|
@@ -159,19 +167,25 @@ class LibriTTSAlign(datasets.GeneratorBasedBuilder):
|
|
| 159 |
speakers = data_all["speaker"].unique()
|
| 160 |
# seed for reproducibility
|
| 161 |
np.random.seed(42)
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
data_all = data_all[data_all["speaker"].isin(data_dev_all["speaker"].unique())]
|
|
|
|
|
|
|
| 175 |
self.speaker2idxs = {}
|
| 176 |
self.speaker2idxs["all"] = {speaker: idx for idx, speaker in enumerate(sorted(list(data_dev_all["speaker"].unique())))}
|
| 177 |
self.speaker2idxs["train"] = {speaker: idx for idx, speaker in enumerate(sorted(list(data_train["speaker"].unique())))}
|
|
@@ -194,6 +208,15 @@ class LibriTTSAlign(datasets.GeneratorBasedBuilder):
|
|
| 194 |
self.alignments_ds = None
|
| 195 |
self.data = None
|
| 196 |
return splits
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
def _create_alignments_ds(self, name, url):
|
| 199 |
self.empty_textgrids = 0
|
|
@@ -251,7 +274,7 @@ class LibriTTSAlign(datasets.GeneratorBasedBuilder):
|
|
| 251 |
if self.empty_textgrids > 0:
|
| 252 |
logger.warning(f"Found {self.empty_textgrids} empty textgrids")
|
| 253 |
del self.ds, self.phone_cache, self.phone_converter
|
| 254 |
-
|
| 255 |
entries,
|
| 256 |
columns=[
|
| 257 |
"phones",
|
|
@@ -264,6 +287,7 @@ class LibriTTSAlign(datasets.GeneratorBasedBuilder):
|
|
| 264 |
"basename",
|
| 265 |
],
|
| 266 |
)
|
|
|
|
| 267 |
|
| 268 |
def _create_entry(self, dsi_idx):
|
| 269 |
dsi, idx = dsi_idx
|
|
@@ -298,7 +322,7 @@ class LibriTTSAlign(datasets.GeneratorBasedBuilder):
|
|
| 298 |
if start >= end:
|
| 299 |
self.empty_textgrids += 1
|
| 300 |
return None
|
| 301 |
-
|
| 302 |
return (
|
| 303 |
phones,
|
| 304 |
durations,
|
|
@@ -312,10 +336,13 @@ class LibriTTSAlign(datasets.GeneratorBasedBuilder):
|
|
| 312 |
|
| 313 |
def _generate_examples(self, ds):
|
| 314 |
j = 0
|
|
|
|
|
|
|
| 315 |
for i, row in ds.iterrows():
|
| 316 |
# 10kB is the minimum size of a wav file for our purposes
|
| 317 |
if Path(row["audio"]).stat().st_size >= 10_000:
|
| 318 |
if len(row["phones"]) < 384:
|
|
|
|
| 319 |
result = {
|
| 320 |
"id": row["basename"],
|
| 321 |
"speaker": row["speaker"],
|
|
@@ -325,6 +352,21 @@ class LibriTTSAlign(datasets.GeneratorBasedBuilder):
|
|
| 325 |
"phones": row["phones"],
|
| 326 |
"phone_durations": row["duration"],
|
| 327 |
"audio": str(row["audio"]),
|
|
|
|
| 328 |
}
|
| 329 |
yield j, result
|
| 330 |
-
j += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
from phones.convert import Converter
|
| 16 |
import torchaudio
|
| 17 |
import torchaudio.transforms as AT
|
| 18 |
+
from functools import lru_cache
|
| 19 |
|
| 20 |
logger = datasets.logging.get_logger(__name__)
|
| 21 |
|
|
|
|
| 65 |
"train-other-500": _URL + "train_other_500.tar.gz",
|
| 66 |
}
|
| 67 |
|
| 68 |
+
@lru_cache(maxsize=1000)
|
| 69 |
+
def get_speaker_prompts(speaker, hash_ds):
|
| 70 |
+
ds = hash_ds.df
|
| 71 |
+
speaker_prompts = ds[ds["speaker"] == speaker]
|
| 72 |
+
speaker_prompts = tuple(speaker_prompts["audio"])
|
| 73 |
+
return speaker_prompts
|
| 74 |
|
| 75 |
class LibriTTSAlignConfig(datasets.BuilderConfig):
|
| 76 |
"""BuilderConfig for LibriTTSAlign."""
|
|
|
|
| 113 |
"phones": datasets.Sequence(datasets.Value("string")),
|
| 114 |
"phone_durations": datasets.Sequence(datasets.Value("int32")),
|
| 115 |
# audio feature
|
| 116 |
+
"audio": datasets.Value("string"),
|
| 117 |
+
"audio_speaker_prompt": datasets.Sequence(datasets.Value("string")),
|
| 118 |
}
|
| 119 |
|
| 120 |
return datasets.DatasetInfo(
|
|
|
|
| 167 |
speakers = data_all["speaker"].unique()
|
| 168 |
# seed for reproducibility
|
| 169 |
np.random.seed(42)
|
| 170 |
+
self.data_all = data_all
|
| 171 |
+
del data_all
|
| 172 |
+
data_dev_all = [
|
| 173 |
+
x for x in
|
| 174 |
+
process_map(
|
| 175 |
+
self._create_dev_split,
|
| 176 |
+
speakers,
|
| 177 |
+
chunksize=1000,
|
| 178 |
+
max_workers=_MAX_WORKERS,
|
| 179 |
+
desc="creating dev split",
|
| 180 |
+
tqdm_class=tqdm,
|
| 181 |
+
)
|
| 182 |
+
if x is not None
|
| 183 |
+
]
|
| 184 |
+
data_dev_all = pd.concat(data_dev_all)
|
| 185 |
+
data_all = self.data_all
|
| 186 |
data_all = data_all[data_all["speaker"].isin(data_dev_all["speaker"].unique())]
|
| 187 |
+
data_all = data_all[~data_all["basename"].isin(data_dev_all["basename"].unique())]
|
| 188 |
+
del self.data_all
|
| 189 |
self.speaker2idxs = {}
|
| 190 |
self.speaker2idxs["all"] = {speaker: idx for idx, speaker in enumerate(sorted(list(data_dev_all["speaker"].unique())))}
|
| 191 |
self.speaker2idxs["train"] = {speaker: idx for idx, speaker in enumerate(sorted(list(data_train["speaker"].unique())))}
|
|
|
|
| 208 |
self.alignments_ds = None
|
| 209 |
self.data = None
|
| 210 |
return splits
|
| 211 |
+
|
| 212 |
+
def _create_dev_split(self, speaker):
|
| 213 |
+
data_speaker = self.data_all[self.data_all["speaker"] == speaker]
|
| 214 |
+
if len(data_speaker) < 10:
|
| 215 |
+
print(f"Speaker {speaker} has only {len(data_speaker)} samples, skipping")
|
| 216 |
+
return None
|
| 217 |
+
else:
|
| 218 |
+
data_speaker = data_speaker.sample(2)
|
| 219 |
+
return data_speaker
|
| 220 |
|
| 221 |
def _create_alignments_ds(self, name, url):
|
| 222 |
self.empty_textgrids = 0
|
|
|
|
| 274 |
if self.empty_textgrids > 0:
|
| 275 |
logger.warning(f"Found {self.empty_textgrids} empty textgrids")
|
| 276 |
del self.ds, self.phone_cache, self.phone_converter
|
| 277 |
+
df = pd.DataFrame(
|
| 278 |
entries,
|
| 279 |
columns=[
|
| 280 |
"phones",
|
|
|
|
| 287 |
"basename",
|
| 288 |
],
|
| 289 |
)
|
| 290 |
+
return df
|
| 291 |
|
| 292 |
def _create_entry(self, dsi_idx):
|
| 293 |
dsi, idx = dsi_idx
|
|
|
|
| 322 |
if start >= end:
|
| 323 |
self.empty_textgrids += 1
|
| 324 |
return None
|
| 325 |
+
|
| 326 |
return (
|
| 327 |
phones,
|
| 328 |
durations,
|
|
|
|
| 336 |
|
| 337 |
def _generate_examples(self, ds):
|
| 338 |
j = 0
|
| 339 |
+
hash_col = "audio"
|
| 340 |
+
hash_ds = HashableDataFrame(ds, hash_col)
|
| 341 |
for i, row in ds.iterrows():
|
| 342 |
# 10kB is the minimum size of a wav file for our purposes
|
| 343 |
if Path(row["audio"]).stat().st_size >= 10_000:
|
| 344 |
if len(row["phones"]) < 384:
|
| 345 |
+
speaker_prompts = get_speaker_prompts(row["speaker"], hash_ds)
|
| 346 |
result = {
|
| 347 |
"id": row["basename"],
|
| 348 |
"speaker": row["speaker"],
|
|
|
|
| 352 |
"phones": row["phones"],
|
| 353 |
"phone_durations": row["duration"],
|
| 354 |
"audio": str(row["audio"]),
|
| 355 |
+
"audio_speaker_prompt": speaker_prompts,
|
| 356 |
}
|
| 357 |
yield j, result
|
| 358 |
+
j += 1
|
| 359 |
+
|
| 360 |
+
class HashableDataFrame():
|
| 361 |
+
def __init__(self, df, hash_col):
|
| 362 |
+
self.df = df
|
| 363 |
+
self.hash_col = hash_col
|
| 364 |
+
self.hash = hashlib.md5(self.df[self.hash_col].values).hexdigest()
|
| 365 |
+
# to integer
|
| 366 |
+
self.hash = int(self.hash, 16)
|
| 367 |
+
|
| 368 |
+
def __hash__(self):
|
| 369 |
+
return self.hash
|
| 370 |
+
|
| 371 |
+
def __eq__(self, other):
|
| 372 |
+
return self.hash == other.hash
|