| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						"""Script for reading 'Object Detection for Chess Pieces' dataset.""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import os | 
					
					
						
						| 
							 | 
						from glob import glob | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import datasets | 
					
					
						
						| 
							 | 
						from PIL import Image | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_CITATION = """\ | 
					
					
						
						| 
							 | 
						@dataset{clerice_thibault_2022_6814770, | 
					
					
						
						| 
							 | 
						  author       = {Clérice, Thibault}, | 
					
					
						
						| 
							 | 
						  title        = {{YALTAi: Segmonto Manuscript and Early Printed Book | 
					
					
						
						| 
							 | 
						                   Dataset}}, | 
					
					
						
						| 
							 | 
						  month        = jul, | 
					
					
						
						| 
							 | 
						  year         = 2022, | 
					
					
						
						| 
							 | 
						  publisher    = {Zenodo}, | 
					
					
						
						| 
							 | 
						  version      = {1.0.0}, | 
					
					
						
						| 
							 | 
						  doi          = {10.5281/zenodo.6814770}, | 
					
					
						
						| 
							 | 
						  url          = {https://doi.org/10.5281/zenodo.6814770} | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_DESCRIPTION = """YALTAi: Segmonto Manuscript and Early Printed Book Dataset""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_HOMEPAGE = "https://doi.org/10.5281/zenodo.6814770" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_LICENSE = "Creative Commons Attribution 4.0 International" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_URL = "https://zenodo.org/record/6814770/files/yaltai-segmonto-dataset.zip?download=1" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_CATEGORIES = [ | 
					
					
						
						| 
							 | 
						    "DamageZone", | 
					
					
						
						| 
							 | 
						    "DigitizationArtefactZone", | 
					
					
						
						| 
							 | 
						    "DropCapitalZone", | 
					
					
						
						| 
							 | 
						    "GraphicZone", | 
					
					
						
						| 
							 | 
						    "MainZone", | 
					
					
						
						| 
							 | 
						    "MarginTextZone", | 
					
					
						
						| 
							 | 
						    "MusicZone", | 
					
					
						
						| 
							 | 
						    "NumberingZone", | 
					
					
						
						| 
							 | 
						    "QuireMarksZone", | 
					
					
						
						| 
							 | 
						    "RunningTitleZone", | 
					
					
						
						| 
							 | 
						    "SealZone", | 
					
					
						
						| 
							 | 
						    "StampZone", | 
					
					
						
						| 
							 | 
						    "TableZone", | 
					
					
						
						| 
							 | 
						    "TitlePageZone", | 
					
					
						
						| 
							 | 
						] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class YaltAiTabularDatasetConfig(datasets.BuilderConfig): | 
					
					
						
						| 
							 | 
						    """BuilderConfig for YaltAiTabularDataset.""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, name, **kwargs): | 
					
					
						
						| 
							 | 
						        """BuilderConfig for YaltAiTabularDataset.""" | 
					
					
						
						| 
							 | 
						        super(YaltAiTabularDatasetConfig, self).__init__( | 
					
					
						
						| 
							 | 
						            version=datasets.Version("1.0.0"), name=name, description=None, **kwargs | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class YaltAiTabularDataset(datasets.GeneratorBasedBuilder): | 
					
					
						
						| 
							 | 
						    """Object Detection for historic manuscripts""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    BUILDER_CONFIGS = [ | 
					
					
						
						| 
							 | 
						        YaltAiTabularDatasetConfig("YOLO"), | 
					
					
						
						| 
							 | 
						        YaltAiTabularDatasetConfig("COCO"), | 
					
					
						
						| 
							 | 
						    ] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _info(self): | 
					
					
						
						| 
							 | 
						        if self.config.name == "COCO": | 
					
					
						
						| 
							 | 
						            features = datasets.Features( | 
					
					
						
						| 
							 | 
						                { | 
					
					
						
						| 
							 | 
						                    "image_id": datasets.Value("int64"), | 
					
					
						
						| 
							 | 
						                    "image": datasets.Image(), | 
					
					
						
						| 
							 | 
						                    "width": datasets.Value("int32"), | 
					
					
						
						| 
							 | 
						                    "height": datasets.Value("int32"), | 
					
					
						
						| 
							 | 
						                } | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            object_dict = { | 
					
					
						
						| 
							 | 
						                "category_id": datasets.ClassLabel(names=_CATEGORIES), | 
					
					
						
						| 
							 | 
						                "image_id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                "id": datasets.Value("int64"), | 
					
					
						
						| 
							 | 
						                "area": datasets.Value("int64"), | 
					
					
						
						| 
							 | 
						                "bbox": datasets.Sequence(datasets.Value("float32"), length=4), | 
					
					
						
						| 
							 | 
						                "segmentation": [[datasets.Value("float32")]], | 
					
					
						
						| 
							 | 
						                "iscrowd": datasets.Value("bool"), | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						            features["objects"] = [object_dict] | 
					
					
						
						| 
							 | 
						        if self.config.name == "YOLO": | 
					
					
						
						| 
							 | 
						            features = datasets.Features( | 
					
					
						
						| 
							 | 
						                { | 
					
					
						
						| 
							 | 
						                    "image": datasets.Image(), | 
					
					
						
						| 
							 | 
						                    "objects": datasets.Sequence( | 
					
					
						
						| 
							 | 
						                        { | 
					
					
						
						| 
							 | 
						                            "label": datasets.ClassLabel(names=_CATEGORIES), | 
					
					
						
						| 
							 | 
						                            "bbox": datasets.Sequence( | 
					
					
						
						| 
							 | 
						                                datasets.Value("int32"), length=4 | 
					
					
						
						| 
							 | 
						                            ), | 
					
					
						
						| 
							 | 
						                        } | 
					
					
						
						| 
							 | 
						                    ), | 
					
					
						
						| 
							 | 
						                } | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        return datasets.DatasetInfo( | 
					
					
						
						| 
							 | 
						            features=features, | 
					
					
						
						| 
							 | 
						            supervised_keys=None, | 
					
					
						
						| 
							 | 
						            description=_DESCRIPTION, | 
					
					
						
						| 
							 | 
						            homepage=_HOMEPAGE, | 
					
					
						
						| 
							 | 
						            license=_LICENSE, | 
					
					
						
						| 
							 | 
						            citation=_CITATION, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _split_generators(self, dl_manager): | 
					
					
						
						| 
							 | 
						        data_dir = dl_manager.download_and_extract(_URL) | 
					
					
						
						| 
							 | 
						        return [ | 
					
					
						
						| 
							 | 
						            datasets.SplitGenerator( | 
					
					
						
						| 
							 | 
						                name=datasets.Split.TRAIN, | 
					
					
						
						| 
							 | 
						                gen_kwargs={ | 
					
					
						
						| 
							 | 
						                    "data_dir": os.path.join( | 
					
					
						
						| 
							 | 
						                        data_dir, "yaltai-segmonto-dataset", "train" | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						                }, | 
					
					
						
						| 
							 | 
						            ), | 
					
					
						
						| 
							 | 
						            datasets.SplitGenerator( | 
					
					
						
						| 
							 | 
						                name=datasets.Split.VALIDATION, | 
					
					
						
						| 
							 | 
						                gen_kwargs={ | 
					
					
						
						| 
							 | 
						                    "data_dir": os.path.join(data_dir, "yaltai-segmonto-dataset", "val") | 
					
					
						
						| 
							 | 
						                }, | 
					
					
						
						| 
							 | 
						            ), | 
					
					
						
						| 
							 | 
						            datasets.SplitGenerator( | 
					
					
						
						| 
							 | 
						                name=datasets.Split.TEST, | 
					
					
						
						| 
							 | 
						                gen_kwargs={ | 
					
					
						
						| 
							 | 
						                    "data_dir": os.path.join( | 
					
					
						
						| 
							 | 
						                        data_dir, "yaltai-segmonto-dataset", "test" | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						                }, | 
					
					
						
						| 
							 | 
						            ), | 
					
					
						
						| 
							 | 
						        ] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _generate_examples(self, data_dir): | 
					
					
						
						| 
							 | 
						        def create_annotation_from_yolo_format( | 
					
					
						
						| 
							 | 
						            min_x, | 
					
					
						
						| 
							 | 
						            min_y, | 
					
					
						
						| 
							 | 
						            width, | 
					
					
						
						| 
							 | 
						            height, | 
					
					
						
						| 
							 | 
						            image_id, | 
					
					
						
						| 
							 | 
						            category_id, | 
					
					
						
						| 
							 | 
						            annotation_id, | 
					
					
						
						| 
							 | 
						            segmentation=False, | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            bbox = (float(min_x), float(min_y), float(width), float(height)) | 
					
					
						
						| 
							 | 
						            area = width * height | 
					
					
						
						| 
							 | 
						            max_x = min_x + width | 
					
					
						
						| 
							 | 
						            max_y = min_y + height | 
					
					
						
						| 
							 | 
						            if segmentation: | 
					
					
						
						| 
							 | 
						                seg = [[min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y]] | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                seg = [] | 
					
					
						
						| 
							 | 
						            return { | 
					
					
						
						| 
							 | 
						                "id": annotation_id, | 
					
					
						
						| 
							 | 
						                "image_id": image_id, | 
					
					
						
						| 
							 | 
						                "bbox": bbox, | 
					
					
						
						| 
							 | 
						                "area": area, | 
					
					
						
						| 
							 | 
						                "iscrowd": 0, | 
					
					
						
						| 
							 | 
						                "category_id": category_id, | 
					
					
						
						| 
							 | 
						                "segmentation": seg, | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        image_dir = os.path.join(data_dir, "images") | 
					
					
						
						| 
							 | 
						        label_dir = os.path.join(data_dir, "labels") | 
					
					
						
						| 
							 | 
						        image_paths = sorted(glob(f"{image_dir}/*.jpg")) | 
					
					
						
						| 
							 | 
						        label_paths = sorted(glob(f"{label_dir}/*.txt")) | 
					
					
						
						| 
							 | 
						        if self.config.name == "COCO": | 
					
					
						
						| 
							 | 
						            for idx, (image_path, label_path) in enumerate( | 
					
					
						
						| 
							 | 
						                zip(image_paths, label_paths) | 
					
					
						
						| 
							 | 
						            ): | 
					
					
						
						| 
							 | 
						                image_id = idx | 
					
					
						
						| 
							 | 
						                annotations = [] | 
					
					
						
						| 
							 | 
						                image = Image.open(image_path)   | 
					
					
						
						| 
							 | 
						                w, h = image.size | 
					
					
						
						| 
							 | 
						                with open(label_path, "r") as f: | 
					
					
						
						| 
							 | 
						                    lines = f.readlines() | 
					
					
						
						| 
							 | 
						                for line in lines: | 
					
					
						
						| 
							 | 
						                    line = line.strip().split() | 
					
					
						
						| 
							 | 
						                    category_id = line[0] | 
					
					
						
						| 
							 | 
						                    x_center = float(line[1]) | 
					
					
						
						| 
							 | 
						                    y_center = float(line[2]) | 
					
					
						
						| 
							 | 
						                    width = float(line[3]) | 
					
					
						
						| 
							 | 
						                    height = float(line[4]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                    float_x_center = w * x_center | 
					
					
						
						| 
							 | 
						                    float_y_center = h * y_center | 
					
					
						
						| 
							 | 
						                    float_width = w * width | 
					
					
						
						| 
							 | 
						                    float_height = h * height | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                    min_x = int(float_x_center - float_width / 2) | 
					
					
						
						| 
							 | 
						                    min_y = int(float_y_center - float_height / 2) | 
					
					
						
						| 
							 | 
						                    width = int(float_width) | 
					
					
						
						| 
							 | 
						                    height = int(float_height) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                    annotation = create_annotation_from_yolo_format( | 
					
					
						
						| 
							 | 
						                        min_x, | 
					
					
						
						| 
							 | 
						                        min_y, | 
					
					
						
						| 
							 | 
						                        width, | 
					
					
						
						| 
							 | 
						                        height, | 
					
					
						
						| 
							 | 
						                        image_id, | 
					
					
						
						| 
							 | 
						                        category_id, | 
					
					
						
						| 
							 | 
						                        image_id, | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						                    annotations.append(annotation) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                example = { | 
					
					
						
						| 
							 | 
						                    "image_id": image_id, | 
					
					
						
						| 
							 | 
						                    "image": image, | 
					
					
						
						| 
							 | 
						                    "width": w, | 
					
					
						
						| 
							 | 
						                    "height": h, | 
					
					
						
						| 
							 | 
						                    "objects": annotations, | 
					
					
						
						| 
							 | 
						                } | 
					
					
						
						| 
							 | 
						                yield idx, example | 
					
					
						
						| 
							 | 
						        if self.config.name == "YOLO": | 
					
					
						
						| 
							 | 
						            for idx, (image_path, label_path) in enumerate( | 
					
					
						
						| 
							 | 
						                zip(image_paths, label_paths) | 
					
					
						
						| 
							 | 
						            ): | 
					
					
						
						| 
							 | 
						                image = Image.open(image_path) | 
					
					
						
						| 
							 | 
						                width, height = image.size | 
					
					
						
						| 
							 | 
						                image_id = idx | 
					
					
						
						| 
							 | 
						                annotations = [] | 
					
					
						
						| 
							 | 
						                with open(label_path, "r") as f: | 
					
					
						
						| 
							 | 
						                    lines = f.readlines() | 
					
					
						
						| 
							 | 
						                objects = [] | 
					
					
						
						| 
							 | 
						                for line in lines: | 
					
					
						
						| 
							 | 
						                    line = line.strip().split() | 
					
					
						
						| 
							 | 
						                    bbox_class = int(line[0]) | 
					
					
						
						| 
							 | 
						                    bbox_xcenter = int(float(line[1]) * width) | 
					
					
						
						| 
							 | 
						                    bbox_ycenter = int(float(line[2]) * height) | 
					
					
						
						| 
							 | 
						                    bbox_width = int(float(line[3]) * width) | 
					
					
						
						| 
							 | 
						                    bbox_height = int(float(line[4]) * height) | 
					
					
						
						| 
							 | 
						                    objects.append( | 
					
					
						
						| 
							 | 
						                        { | 
					
					
						
						| 
							 | 
						                            "label": bbox_class, | 
					
					
						
						| 
							 | 
						                            "bbox": [ | 
					
					
						
						| 
							 | 
						                                bbox_xcenter, | 
					
					
						
						| 
							 | 
						                                bbox_ycenter, | 
					
					
						
						| 
							 | 
						                                bbox_width, | 
					
					
						
						| 
							 | 
						                                bbox_height, | 
					
					
						
						| 
							 | 
						                            ], | 
					
					
						
						| 
							 | 
						                        } | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                yield idx, { | 
					
					
						
						| 
							 | 
						                    "image": image, | 
					
					
						
						| 
							 | 
						                    "objects": objects, | 
					
					
						
						| 
							 | 
						                } | 
					
					
						
						| 
							 | 
						
 |