|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | This dataset contains annotations for a small corpus of full text journal | 
					
						
						|  | publications on the subject of inherited colorectal cancer. It is suitable for | 
					
						
						|  | Named Entity Recognition and Relation Extraction tasks. It uses the Variome | 
					
						
						|  | Annotation Schema,  a schema that aims to capture the core concepts and | 
					
						
						|  | relations relevant to cataloguing  and interpreting human genetic variation and | 
					
						
						|  | its relationship to disease, as described in the published literature. The | 
					
						
						|  | schema was inspired by the needs of the database curators of the International | 
					
						
						|  | Society for Gastrointestinal Hereditary Tumours (InSiGHT) database, but is | 
					
						
						|  | intended to have application to genetic variation information in a range of | 
					
						
						|  | diseases. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | from pathlib import Path | 
					
						
						|  | from shutil import rmtree | 
					
						
						|  | from typing import Dict, List, Tuple | 
					
						
						|  |  | 
					
						
						|  | import datasets | 
					
						
						|  |  | 
					
						
						|  | from .bigbiohub import kb_features | 
					
						
						|  | from .bigbiohub import BigBioConfig | 
					
						
						|  | from .bigbiohub import Tasks | 
					
						
						|  | from .bigbiohub import parse_brat_file | 
					
						
						|  | from .bigbiohub import brat_parse_to_bigbio_kb | 
					
						
						|  |  | 
					
						
						|  | _LANGUAGES = ['English'] | 
					
						
						|  | _PUBMED = True | 
					
						
						|  | _LOCAL = False | 
					
						
						|  | _CITATION = """\ | 
					
						
						|  | @article{verspoor2013annotating, | 
					
						
						|  | title        = {Annotating the biomedical literature for the human variome}, | 
					
						
						|  | author       = { | 
					
						
						|  | Verspoor, Karin and Jimeno Yepes, Antonio and Cavedon, Lawrence and | 
					
						
						|  | McIntosh, Tara and Herten-Crabb, Asha and Thomas, Zo{"e} and Plazzer, | 
					
						
						|  | John-Paul | 
					
						
						|  | }, | 
					
						
						|  | year         = 2013, | 
					
						
						|  | journal      = {Database}, | 
					
						
						|  | publisher    = {Oxford Academic}, | 
					
						
						|  | volume       = 2013 | 
					
						
						|  | } | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _DATASETNAME = "verspoor_2013" | 
					
						
						|  | _DISPLAYNAME = "Verspoor 2013" | 
					
						
						|  |  | 
					
						
						|  | _DESCRIPTION = """\ | 
					
						
						|  | This dataset contains annotations for a small corpus of full text journal \ | 
					
						
						|  | publications on the subject of inherited colorectal cancer. It is suitable for \ | 
					
						
						|  | Named Entity Recognition and Relation Extraction tasks. It uses the Variome \ | 
					
						
						|  | Annotation Schema,  a schema that aims to capture the core concepts and \ | 
					
						
						|  | relations relevant to cataloguing  and interpreting human genetic variation and \ | 
					
						
						|  | its relationship to disease, as described in the published literature. The \ | 
					
						
						|  | schema was inspired by the needs of the database curators of the International \ | 
					
						
						|  | Society for Gastrointestinal Hereditary Tumours (InSiGHT) database, but is \ | 
					
						
						|  | intended to have application to genetic variation information in a range of \ | 
					
						
						|  | diseases. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _HOMEPAGE = "NA" | 
					
						
						|  |  | 
					
						
						|  | _LICENSE = 'License information unavailable' | 
					
						
						|  |  | 
					
						
						|  | _URLS = ["http://github.com/rockt/SETH/zipball/master/"] | 
					
						
						|  |  | 
					
						
						|  | _SUPPORTED_TASKS = [ | 
					
						
						|  | Tasks.NAMED_ENTITY_RECOGNITION, | 
					
						
						|  | Tasks.RELATION_EXTRACTION, | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | _SOURCE_VERSION = "1.0.0" | 
					
						
						|  |  | 
					
						
						|  | _BIGBIO_VERSION = "1.0.0" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Verspoor2013Dataset(datasets.GeneratorBasedBuilder): | 
					
						
						|  | """\ | 
					
						
						|  | This dataset contains annotations for a small corpus of full text journal publications | 
					
						
						|  | on the subject of inherited colorectal cancer. It is suitable for Named Entity Recognition and | 
					
						
						|  | Relation Extraction tasks. It uses the Variome Annotation Schema,  a schema that aims to | 
					
						
						|  | capture the core concepts and relations relevant to cataloguing  and interpreting human | 
					
						
						|  | genetic variation and its relationship to disease, as described in the published literature. | 
					
						
						|  | The schema was inspired by the needs of the database curators of the International Society | 
					
						
						|  | for Gastrointestinal Hereditary Tumours (InSiGHT) database, but is intended to have | 
					
						
						|  | application to genetic variation information in a range of diseases. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | 
					
						
						|  | BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) | 
					
						
						|  |  | 
					
						
						|  | BUILDER_CONFIGS = [ | 
					
						
						|  | BigBioConfig( | 
					
						
						|  | name="verspoor_2013_source", | 
					
						
						|  | version=SOURCE_VERSION, | 
					
						
						|  | description="verspoor_2013 source schema", | 
					
						
						|  | schema="source", | 
					
						
						|  | subset_id="verspoor_2013", | 
					
						
						|  | ), | 
					
						
						|  | BigBioConfig( | 
					
						
						|  | name="verspoor_2013_bigbio_kb", | 
					
						
						|  | version=BIGBIO_VERSION, | 
					
						
						|  | description="verspoor_2013 BigBio schema", | 
					
						
						|  | schema="bigbio_kb", | 
					
						
						|  | subset_id="verspoor_2013", | 
					
						
						|  | ), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | DEFAULT_CONFIG_NAME = "verspoor_2013_source" | 
					
						
						|  |  | 
					
						
						|  | def _info(self) -> datasets.DatasetInfo: | 
					
						
						|  |  | 
					
						
						|  | if self.config.schema == "source": | 
					
						
						|  | features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "document_id": datasets.Value("string"), | 
					
						
						|  | "text": datasets.Value("string"), | 
					
						
						|  | "text_bound_annotations": [ | 
					
						
						|  | { | 
					
						
						|  | "offsets": datasets.Sequence([datasets.Value("int32")]), | 
					
						
						|  | "text": datasets.Sequence(datasets.Value("string")), | 
					
						
						|  | "type": datasets.Value("string"), | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ], | 
					
						
						|  | "events": [ | 
					
						
						|  | { | 
					
						
						|  | "trigger": datasets.Value( | 
					
						
						|  | "string" | 
					
						
						|  | ), | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "type": datasets.Value("string"), | 
					
						
						|  | "arguments": datasets.Sequence( | 
					
						
						|  | { | 
					
						
						|  | "role": datasets.Value("string"), | 
					
						
						|  | "ref_id": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ), | 
					
						
						|  | } | 
					
						
						|  | ], | 
					
						
						|  | "relations": [ | 
					
						
						|  | { | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "head": { | 
					
						
						|  | "ref_id": datasets.Value("string"), | 
					
						
						|  | "role": datasets.Value("string"), | 
					
						
						|  | }, | 
					
						
						|  | "tail": { | 
					
						
						|  | "ref_id": datasets.Value("string"), | 
					
						
						|  | "role": datasets.Value("string"), | 
					
						
						|  | }, | 
					
						
						|  | "type": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ], | 
					
						
						|  | "equivalences": [ | 
					
						
						|  | { | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "ref_ids": datasets.Sequence(datasets.Value("string")), | 
					
						
						|  | } | 
					
						
						|  | ], | 
					
						
						|  | "attributes": [ | 
					
						
						|  | { | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "type": datasets.Value("string"), | 
					
						
						|  | "ref_id": datasets.Value("string"), | 
					
						
						|  | "value": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ], | 
					
						
						|  | "normalizations": [ | 
					
						
						|  | { | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "type": datasets.Value("string"), | 
					
						
						|  | "ref_id": datasets.Value("string"), | 
					
						
						|  | "resource_name": datasets.Value( | 
					
						
						|  | "string" | 
					
						
						|  | ), | 
					
						
						|  | "cuid": datasets.Value( | 
					
						
						|  | "string" | 
					
						
						|  | ), | 
					
						
						|  | "text": datasets.Value( | 
					
						
						|  | "string" | 
					
						
						|  | ), | 
					
						
						|  | } | 
					
						
						|  | ], | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | elif self.config.schema == "bigbio_kb": | 
					
						
						|  | features = kb_features | 
					
						
						|  |  | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  | description=_DESCRIPTION, | 
					
						
						|  | features=features, | 
					
						
						|  | homepage=_HOMEPAGE, | 
					
						
						|  | license=str(_LICENSE), | 
					
						
						|  | citation=_CITATION, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: | 
					
						
						|  | """Returns SplitGenerators.""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | repo_dir = Path(dl_manager.download_and_extract(_URLS[0])) | 
					
						
						|  | data_dir = repo_dir / "data" | 
					
						
						|  | data_dir.mkdir(exist_ok=True) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | verspoor_files = repo_dir.glob("*/*/*Verspoor2013/**/*") | 
					
						
						|  | for file in verspoor_files: | 
					
						
						|  | if file.is_file() and "readme" not in str(file): | 
					
						
						|  | file.rename(data_dir / file.name) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for x in repo_dir.glob("[!data]*"): | 
					
						
						|  | if x.is_file(): | 
					
						
						|  | x.unlink() | 
					
						
						|  | elif x.is_dir(): | 
					
						
						|  | rmtree(x) | 
					
						
						|  |  | 
					
						
						|  | data_files = {"text_files": list(data_dir.glob("*.txt"))} | 
					
						
						|  |  | 
					
						
						|  | return [ | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.TRAIN, | 
					
						
						|  |  | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "data_files": data_files, | 
					
						
						|  | "split": "train", | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples(self, data_files, split: str) -> Tuple[int, Dict]: | 
					
						
						|  | """Yields examples as (key, example) tuples.""" | 
					
						
						|  |  | 
					
						
						|  | if self.config.schema == "source": | 
					
						
						|  | txt_files = data_files["text_files"] | 
					
						
						|  | for guid, txt_file in enumerate(txt_files): | 
					
						
						|  | example = parse_brat_file(txt_file) | 
					
						
						|  | example["id"] = str(guid) | 
					
						
						|  | yield guid, example | 
					
						
						|  |  | 
					
						
						|  | elif self.config.schema == "bigbio_kb": | 
					
						
						|  | txt_files = data_files["text_files"] | 
					
						
						|  | for guid, txt_file in enumerate(txt_files): | 
					
						
						|  | example = brat_parse_to_bigbio_kb( | 
					
						
						|  | parse_brat_file(txt_file) | 
					
						
						|  | ) | 
					
						
						|  | example["id"] = str(guid) | 
					
						
						|  | yield guid, example | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Invalid config: {self.config.name}") | 
					
						
						|  |  |