Commit
·
8e78222
1
Parent(s):
a8c1391
upload hubscripts/pico_extraction_hub.py to hub from bigbio repo
Browse files- pico_extraction.py +291 -0
pico_extraction.py
ADDED
|
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
"""
|
| 17 |
+
This dataset contains annotations for Participants, Interventions, and Outcomes (referred to as PICO task).
|
| 18 |
+
For 423 sentences, annotations collected by 3 medical experts are available.
|
| 19 |
+
To get the final annotations, we perform the majority voting.
|
| 20 |
+
The script loads dataset in bigbio schema (using knowledgebase schema: schemas/kb) AND/OR source (default) schema
|
| 21 |
+
"""
|
| 22 |
+
import json
|
| 23 |
+
from typing import Dict, List, Tuple, Union
|
| 24 |
+
|
| 25 |
+
import datasets
|
| 26 |
+
import numpy as np
|
| 27 |
+
|
| 28 |
+
from .bigbiohub import kb_features
|
| 29 |
+
from .bigbiohub import BigBioConfig
|
| 30 |
+
from .bigbiohub import Tasks
|
| 31 |
+
|
| 32 |
+
_LANGUAGES = ['English']
|
| 33 |
+
_PUBMED = True
|
| 34 |
+
_LOCAL = False
|
| 35 |
+
_CITATION = """\
|
| 36 |
+
@inproceedings{zlabinger-etal-2020-effective,
|
| 37 |
+
title = "Effective Crowd-Annotation of Participants, Interventions, and Outcomes in the Text of Clinical Trial Reports",
|
| 38 |
+
author = {Zlabinger, Markus and
|
| 39 |
+
Sabou, Marta and
|
| 40 |
+
Hofst{\"a}tter, Sebastian and
|
| 41 |
+
Hanbury, Allan},
|
| 42 |
+
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
|
| 43 |
+
month = nov,
|
| 44 |
+
year = "2020",
|
| 45 |
+
address = "Online",
|
| 46 |
+
publisher = "Association for Computational Linguistics",
|
| 47 |
+
url = "https://aclanthology.org/2020.findings-emnlp.274",
|
| 48 |
+
doi = "10.18653/v1/2020.findings-emnlp.274",
|
| 49 |
+
pages = "3064--3074",
|
| 50 |
+
}
|
| 51 |
+
"""
|
| 52 |
+
|
| 53 |
+
_DATASETNAME = "pico_extraction"
|
| 54 |
+
_DISPLAYNAME = "PICO Annotation"
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
_DESCRIPTION = """\
|
| 58 |
+
This dataset contains annotations for Participants, Interventions, and Outcomes (referred to as PICO task).
|
| 59 |
+
For 423 sentences, annotations collected by 3 medical experts are available.
|
| 60 |
+
To get the final annotations, we perform the majority voting.
|
| 61 |
+
"""
|
| 62 |
+
|
| 63 |
+
_HOMEPAGE = "https://github.com/Markus-Zlabinger/pico-annotation"
|
| 64 |
+
|
| 65 |
+
_LICENSE = 'License information unavailable'
|
| 66 |
+
|
| 67 |
+
_DATA_PATH = (
|
| 68 |
+
"https://raw.githubusercontent.com/Markus-Zlabinger/pico-annotation/master/data"
|
| 69 |
+
)
|
| 70 |
+
_URLS = {
|
| 71 |
+
_DATASETNAME: {
|
| 72 |
+
"sentence_file": f"{_DATA_PATH}/sentences.json",
|
| 73 |
+
"annotation_files": {
|
| 74 |
+
"intervention": f"{_DATA_PATH}/annotations/interventions_expert.json",
|
| 75 |
+
"outcome": f"{_DATA_PATH}/annotations/outcomes_expert.json",
|
| 76 |
+
"participant": f"{_DATA_PATH}/annotations/participants_expert.json",
|
| 77 |
+
},
|
| 78 |
+
}
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
|
| 82 |
+
_SOURCE_VERSION = "1.0.0"
|
| 83 |
+
_BIGBIO_VERSION = "1.0.0"
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def _pico_extraction_data_loader(
|
| 87 |
+
sentence_file: str, annotation_files: Dict[str, str]
|
| 88 |
+
) -> Tuple[Dict[str, str], Dict[str, Dict[str, Dict[str, List[int]]]]]:
|
| 89 |
+
"""Loads four files with PICO extraction dataset:
|
| 90 |
+
- one json file with sentences
|
| 91 |
+
- three json files with annotations for PIO
|
| 92 |
+
"""
|
| 93 |
+
# load sentences
|
| 94 |
+
with open(sentence_file) as fp:
|
| 95 |
+
sentences = json.load(fp)
|
| 96 |
+
|
| 97 |
+
# load annotations
|
| 98 |
+
annotation_dict = {}
|
| 99 |
+
for annotation_type, _file in annotation_files.items():
|
| 100 |
+
with open(_file) as fp:
|
| 101 |
+
annotations = json.load(fp)
|
| 102 |
+
annotation_dict[annotation_type] = annotations
|
| 103 |
+
|
| 104 |
+
return sentences, annotation_dict
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def _get_entities_pico(
|
| 108 |
+
annotation_dict: Dict[str, Dict[str, Dict[str, List[int]]]],
|
| 109 |
+
sentence: str,
|
| 110 |
+
sentence_id: str,
|
| 111 |
+
) -> List[Dict[str, Union[int, str]]]:
|
| 112 |
+
"""extract entities from sentences using annotation_dict"""
|
| 113 |
+
|
| 114 |
+
def _partition(alist, indices):
|
| 115 |
+
return [alist[i:j] for i, j in zip([0] + indices, indices + [None])]
|
| 116 |
+
|
| 117 |
+
ents = []
|
| 118 |
+
for annotation_type, annotations in annotation_dict.items():
|
| 119 |
+
# get indices from three annotators by majority voting
|
| 120 |
+
indices = np.where(
|
| 121 |
+
np.round(np.mean(annotations[sentence_id]["annotations"], axis=0)) == 1
|
| 122 |
+
)[0]
|
| 123 |
+
|
| 124 |
+
if len(indices) > 0: # if annotations exist for this sentence
|
| 125 |
+
split_indices = []
|
| 126 |
+
# if there are two annotations of one type in one sentence
|
| 127 |
+
for item_index, item in enumerate(indices):
|
| 128 |
+
if item_index + 1 == len(indices):
|
| 129 |
+
break
|
| 130 |
+
if indices[item_index] + 1 != indices[item_index + 1]:
|
| 131 |
+
split_indices.append(item_index + 1)
|
| 132 |
+
multiple_indices = _partition(indices, split_indices)
|
| 133 |
+
|
| 134 |
+
for _indices in multiple_indices:
|
| 135 |
+
|
| 136 |
+
annotation_text = " ".join([sentence.split()[ind] for ind in _indices])
|
| 137 |
+
|
| 138 |
+
char_start = sentence.find(annotation_text)
|
| 139 |
+
char_end = char_start + len(annotation_text)
|
| 140 |
+
|
| 141 |
+
ent = {
|
| 142 |
+
"annotation_text": annotation_text,
|
| 143 |
+
"annotation_type": annotation_type,
|
| 144 |
+
"char_start": char_start,
|
| 145 |
+
"char_end": char_end,
|
| 146 |
+
}
|
| 147 |
+
|
| 148 |
+
ents.append(ent)
|
| 149 |
+
return ents
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class PicoExtractionDataset(datasets.GeneratorBasedBuilder):
|
| 153 |
+
"""PICO Extraction dataset with annotations for
|
| 154 |
+
Participants, Interventions, and Outcomes."""
|
| 155 |
+
|
| 156 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
| 157 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
| 158 |
+
|
| 159 |
+
BUILDER_CONFIGS = [
|
| 160 |
+
BigBioConfig(
|
| 161 |
+
name="pico_extraction_source",
|
| 162 |
+
version=SOURCE_VERSION,
|
| 163 |
+
description="pico_extraction source schema",
|
| 164 |
+
schema="source",
|
| 165 |
+
subset_id="pico_extraction",
|
| 166 |
+
),
|
| 167 |
+
BigBioConfig(
|
| 168 |
+
name="pico_extraction_bigbio_kb",
|
| 169 |
+
version=BIGBIO_VERSION,
|
| 170 |
+
description="pico_extraction BigBio schema",
|
| 171 |
+
schema="bigbio_kb",
|
| 172 |
+
subset_id="pico_extraction",
|
| 173 |
+
),
|
| 174 |
+
]
|
| 175 |
+
|
| 176 |
+
DEFAULT_CONFIG_NAME = "pico_extraction_source"
|
| 177 |
+
|
| 178 |
+
def _info(self) -> datasets.DatasetInfo:
|
| 179 |
+
|
| 180 |
+
if self.config.schema == "source":
|
| 181 |
+
features = datasets.Features(
|
| 182 |
+
{
|
| 183 |
+
"doc_id": datasets.Value("string"),
|
| 184 |
+
"text": datasets.Value("string"),
|
| 185 |
+
"entities": [
|
| 186 |
+
{
|
| 187 |
+
"text": datasets.Value("string"),
|
| 188 |
+
"type": datasets.Value("string"),
|
| 189 |
+
"start": datasets.Value("int64"),
|
| 190 |
+
"end": datasets.Value("int64"),
|
| 191 |
+
}
|
| 192 |
+
],
|
| 193 |
+
}
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
elif self.config.schema == "bigbio_kb":
|
| 197 |
+
features = kb_features
|
| 198 |
+
|
| 199 |
+
return datasets.DatasetInfo(
|
| 200 |
+
description=_DESCRIPTION,
|
| 201 |
+
features=features,
|
| 202 |
+
homepage=_HOMEPAGE,
|
| 203 |
+
license=str(_LICENSE),
|
| 204 |
+
citation=_CITATION,
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
| 208 |
+
"""Returns SplitGenerators."""
|
| 209 |
+
|
| 210 |
+
urls = _URLS[_DATASETNAME]
|
| 211 |
+
data_dir = dl_manager.download_and_extract(urls)
|
| 212 |
+
|
| 213 |
+
return [
|
| 214 |
+
datasets.SplitGenerator(
|
| 215 |
+
name=datasets.Split.TRAIN,
|
| 216 |
+
gen_kwargs={
|
| 217 |
+
"split": "train",
|
| 218 |
+
"sentence_file": data_dir["sentence_file"],
|
| 219 |
+
"annotation_files": data_dir["annotation_files"],
|
| 220 |
+
},
|
| 221 |
+
),
|
| 222 |
+
]
|
| 223 |
+
|
| 224 |
+
def _generate_examples(self, split, sentence_file, annotation_files):
|
| 225 |
+
"""Yields examples as (key, example) tuples."""
|
| 226 |
+
|
| 227 |
+
sentences, annotation_dict = _pico_extraction_data_loader(
|
| 228 |
+
sentence_file=sentence_file, annotation_files=annotation_files
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
if self.config.schema == "source":
|
| 232 |
+
for uid, sentence_tuple in enumerate(sentences.items()):
|
| 233 |
+
sentence_id, sentence = sentence_tuple
|
| 234 |
+
ents = _get_entities_pico(annotation_dict, sentence, sentence_id)
|
| 235 |
+
|
| 236 |
+
data = {
|
| 237 |
+
"doc_id": sentence_id,
|
| 238 |
+
"text": sentence,
|
| 239 |
+
"entities": [
|
| 240 |
+
{
|
| 241 |
+
"text": ent["annotation_text"],
|
| 242 |
+
"type": ent["annotation_type"],
|
| 243 |
+
"start": ent["char_start"],
|
| 244 |
+
"end": ent["char_end"],
|
| 245 |
+
}
|
| 246 |
+
for ent in ents
|
| 247 |
+
],
|
| 248 |
+
}
|
| 249 |
+
yield uid, data
|
| 250 |
+
|
| 251 |
+
elif self.config.schema == "bigbio_kb":
|
| 252 |
+
uid = 0
|
| 253 |
+
for id_, sentence_tuple in enumerate(sentences.items()):
|
| 254 |
+
if id_ < 2:
|
| 255 |
+
continue
|
| 256 |
+
sentence_id, sentence = sentence_tuple
|
| 257 |
+
ents = _get_entities_pico(annotation_dict, sentence, sentence_id)
|
| 258 |
+
|
| 259 |
+
data = {
|
| 260 |
+
"id": str(uid),
|
| 261 |
+
"document_id": sentence_id,
|
| 262 |
+
"passages": [],
|
| 263 |
+
"entities": [],
|
| 264 |
+
"relations": [],
|
| 265 |
+
"events": [],
|
| 266 |
+
"coreferences": [],
|
| 267 |
+
}
|
| 268 |
+
uid += 1
|
| 269 |
+
|
| 270 |
+
data["passages"] = [
|
| 271 |
+
{
|
| 272 |
+
"id": str(uid),
|
| 273 |
+
"type": "sentence",
|
| 274 |
+
"text": [sentence],
|
| 275 |
+
"offsets": [[0, len(sentence)]],
|
| 276 |
+
}
|
| 277 |
+
]
|
| 278 |
+
uid += 1
|
| 279 |
+
|
| 280 |
+
for ent in ents:
|
| 281 |
+
entity = {
|
| 282 |
+
"id": uid,
|
| 283 |
+
"type": ent["annotation_type"],
|
| 284 |
+
"text": [ent["annotation_text"]],
|
| 285 |
+
"offsets": [[ent["char_start"], ent["char_end"]]],
|
| 286 |
+
"normalized": [],
|
| 287 |
+
}
|
| 288 |
+
data["entities"].append(entity)
|
| 289 |
+
uid += 1
|
| 290 |
+
|
| 291 |
+
yield uid, data
|