Commit
·
cd87c0c
1
Parent(s):
416c77a
upload bigbiohub.py to hub from bigbio repo
Browse files- bigbiohub.py +403 -1
bigbiohub.py
CHANGED
|
@@ -1,7 +1,16 @@
|
|
|
|
|
| 1 |
from dataclasses import dataclass
|
| 2 |
from enum import Enum
|
| 3 |
-
import
|
|
|
|
| 4 |
from types import SimpleNamespace
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>")
|
|
@@ -151,3 +160,396 @@ kb_features = datasets.Features(
|
|
| 151 |
],
|
| 152 |
}
|
| 153 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import defaultdict
|
| 2 |
from dataclasses import dataclass
|
| 3 |
from enum import Enum
|
| 4 |
+
import logging
|
| 5 |
+
from pathlib import Path
|
| 6 |
from types import SimpleNamespace
|
| 7 |
+
from typing import Dict, Iterable, List, Tuple
|
| 8 |
+
|
| 9 |
+
import bioc
|
| 10 |
+
import datasets
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
logger = logging.getLogger(__name__)
|
| 14 |
|
| 15 |
|
| 16 |
BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>")
|
|
|
|
| 160 |
],
|
| 161 |
}
|
| 162 |
)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def get_texts_and_offsets_from_bioc_ann(ann: bioc.BioCAnnotation) -> Tuple:
|
| 166 |
+
|
| 167 |
+
offsets = [(loc.offset, loc.offset + loc.length) for loc in ann.locations]
|
| 168 |
+
|
| 169 |
+
text = ann.text
|
| 170 |
+
|
| 171 |
+
if len(offsets) > 1:
|
| 172 |
+
i = 0
|
| 173 |
+
texts = []
|
| 174 |
+
for start, end in offsets:
|
| 175 |
+
chunk_len = end - start
|
| 176 |
+
texts.append(text[i : chunk_len + i])
|
| 177 |
+
i += chunk_len
|
| 178 |
+
while i < len(text) and text[i] == " ":
|
| 179 |
+
i += 1
|
| 180 |
+
else:
|
| 181 |
+
texts = [text]
|
| 182 |
+
|
| 183 |
+
return offsets, texts
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def remove_prefix(a: str, prefix: str) -> str:
|
| 187 |
+
if a.startswith(prefix):
|
| 188 |
+
a = a[len(prefix) :]
|
| 189 |
+
return a
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def parse_brat_file(
|
| 193 |
+
txt_file: Path,
|
| 194 |
+
annotation_file_suffixes: List[str] = None,
|
| 195 |
+
parse_notes: bool = False,
|
| 196 |
+
) -> Dict:
|
| 197 |
+
"""
|
| 198 |
+
Parse a brat file into the schema defined below.
|
| 199 |
+
`txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt'
|
| 200 |
+
Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files,
|
| 201 |
+
e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'.
|
| 202 |
+
Will include annotator notes, when `parse_notes == True`.
|
| 203 |
+
brat_features = datasets.Features(
|
| 204 |
+
{
|
| 205 |
+
"id": datasets.Value("string"),
|
| 206 |
+
"document_id": datasets.Value("string"),
|
| 207 |
+
"text": datasets.Value("string"),
|
| 208 |
+
"text_bound_annotations": [ # T line in brat, e.g. type or event trigger
|
| 209 |
+
{
|
| 210 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
| 211 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
| 212 |
+
"type": datasets.Value("string"),
|
| 213 |
+
"id": datasets.Value("string"),
|
| 214 |
+
}
|
| 215 |
+
],
|
| 216 |
+
"events": [ # E line in brat
|
| 217 |
+
{
|
| 218 |
+
"trigger": datasets.Value(
|
| 219 |
+
"string"
|
| 220 |
+
), # refers to the text_bound_annotation of the trigger,
|
| 221 |
+
"id": datasets.Value("string"),
|
| 222 |
+
"type": datasets.Value("string"),
|
| 223 |
+
"arguments": datasets.Sequence(
|
| 224 |
+
{
|
| 225 |
+
"role": datasets.Value("string"),
|
| 226 |
+
"ref_id": datasets.Value("string"),
|
| 227 |
+
}
|
| 228 |
+
),
|
| 229 |
+
}
|
| 230 |
+
],
|
| 231 |
+
"relations": [ # R line in brat
|
| 232 |
+
{
|
| 233 |
+
"id": datasets.Value("string"),
|
| 234 |
+
"head": {
|
| 235 |
+
"ref_id": datasets.Value("string"),
|
| 236 |
+
"role": datasets.Value("string"),
|
| 237 |
+
},
|
| 238 |
+
"tail": {
|
| 239 |
+
"ref_id": datasets.Value("string"),
|
| 240 |
+
"role": datasets.Value("string"),
|
| 241 |
+
},
|
| 242 |
+
"type": datasets.Value("string"),
|
| 243 |
+
}
|
| 244 |
+
],
|
| 245 |
+
"equivalences": [ # Equiv line in brat
|
| 246 |
+
{
|
| 247 |
+
"id": datasets.Value("string"),
|
| 248 |
+
"ref_ids": datasets.Sequence(datasets.Value("string")),
|
| 249 |
+
}
|
| 250 |
+
],
|
| 251 |
+
"attributes": [ # M or A lines in brat
|
| 252 |
+
{
|
| 253 |
+
"id": datasets.Value("string"),
|
| 254 |
+
"type": datasets.Value("string"),
|
| 255 |
+
"ref_id": datasets.Value("string"),
|
| 256 |
+
"value": datasets.Value("string"),
|
| 257 |
+
}
|
| 258 |
+
],
|
| 259 |
+
"normalizations": [ # N lines in brat
|
| 260 |
+
{
|
| 261 |
+
"id": datasets.Value("string"),
|
| 262 |
+
"type": datasets.Value("string"),
|
| 263 |
+
"ref_id": datasets.Value("string"),
|
| 264 |
+
"resource_name": datasets.Value(
|
| 265 |
+
"string"
|
| 266 |
+
), # Name of the resource, e.g. "Wikipedia"
|
| 267 |
+
"cuid": datasets.Value(
|
| 268 |
+
"string"
|
| 269 |
+
), # ID in the resource, e.g. 534366
|
| 270 |
+
"text": datasets.Value(
|
| 271 |
+
"string"
|
| 272 |
+
), # Human readable description/name of the entity, e.g. "Barack Obama"
|
| 273 |
+
}
|
| 274 |
+
],
|
| 275 |
+
### OPTIONAL: Only included when `parse_notes == True`
|
| 276 |
+
"notes": [ # # lines in brat
|
| 277 |
+
{
|
| 278 |
+
"id": datasets.Value("string"),
|
| 279 |
+
"type": datasets.Value("string"),
|
| 280 |
+
"ref_id": datasets.Value("string"),
|
| 281 |
+
"text": datasets.Value("string"),
|
| 282 |
+
}
|
| 283 |
+
],
|
| 284 |
+
},
|
| 285 |
+
)
|
| 286 |
+
"""
|
| 287 |
+
|
| 288 |
+
example = {}
|
| 289 |
+
example["document_id"] = txt_file.with_suffix("").name
|
| 290 |
+
with txt_file.open() as f:
|
| 291 |
+
example["text"] = f.read()
|
| 292 |
+
|
| 293 |
+
# If no specific suffixes of the to-be-read annotation files are given - take standard suffixes
|
| 294 |
+
# for event extraction
|
| 295 |
+
if annotation_file_suffixes is None:
|
| 296 |
+
annotation_file_suffixes = [".a1", ".a2", ".ann"]
|
| 297 |
+
|
| 298 |
+
if len(annotation_file_suffixes) == 0:
|
| 299 |
+
raise AssertionError(
|
| 300 |
+
"At least one suffix for the to-be-read annotation files should be given!"
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
ann_lines = []
|
| 304 |
+
for suffix in annotation_file_suffixes:
|
| 305 |
+
annotation_file = txt_file.with_suffix(suffix)
|
| 306 |
+
if annotation_file.exists():
|
| 307 |
+
with annotation_file.open() as f:
|
| 308 |
+
ann_lines.extend(f.readlines())
|
| 309 |
+
|
| 310 |
+
example["text_bound_annotations"] = []
|
| 311 |
+
example["events"] = []
|
| 312 |
+
example["relations"] = []
|
| 313 |
+
example["equivalences"] = []
|
| 314 |
+
example["attributes"] = []
|
| 315 |
+
example["normalizations"] = []
|
| 316 |
+
|
| 317 |
+
if parse_notes:
|
| 318 |
+
example["notes"] = []
|
| 319 |
+
|
| 320 |
+
for line in ann_lines:
|
| 321 |
+
line = line.strip()
|
| 322 |
+
if not line:
|
| 323 |
+
continue
|
| 324 |
+
|
| 325 |
+
if line.startswith("T"): # Text bound
|
| 326 |
+
ann = {}
|
| 327 |
+
fields = line.split("\t")
|
| 328 |
+
|
| 329 |
+
ann["id"] = fields[0]
|
| 330 |
+
ann["type"] = fields[1].split()[0]
|
| 331 |
+
ann["offsets"] = []
|
| 332 |
+
span_str = remove_prefix(fields[1], (ann["type"] + " "))
|
| 333 |
+
text = fields[2]
|
| 334 |
+
for span in span_str.split(";"):
|
| 335 |
+
start, end = span.split()
|
| 336 |
+
ann["offsets"].append([int(start), int(end)])
|
| 337 |
+
|
| 338 |
+
# Heuristically split text of discontiguous entities into chunks
|
| 339 |
+
ann["text"] = []
|
| 340 |
+
if len(ann["offsets"]) > 1:
|
| 341 |
+
i = 0
|
| 342 |
+
for start, end in ann["offsets"]:
|
| 343 |
+
chunk_len = end - start
|
| 344 |
+
ann["text"].append(text[i : chunk_len + i])
|
| 345 |
+
i += chunk_len
|
| 346 |
+
while i < len(text) and text[i] == " ":
|
| 347 |
+
i += 1
|
| 348 |
+
else:
|
| 349 |
+
ann["text"] = [text]
|
| 350 |
+
|
| 351 |
+
example["text_bound_annotations"].append(ann)
|
| 352 |
+
|
| 353 |
+
elif line.startswith("E"):
|
| 354 |
+
ann = {}
|
| 355 |
+
fields = line.split("\t")
|
| 356 |
+
|
| 357 |
+
ann["id"] = fields[0]
|
| 358 |
+
|
| 359 |
+
ann["type"], ann["trigger"] = fields[1].split()[0].split(":")
|
| 360 |
+
|
| 361 |
+
ann["arguments"] = []
|
| 362 |
+
for role_ref_id in fields[1].split()[1:]:
|
| 363 |
+
argument = {
|
| 364 |
+
"role": (role_ref_id.split(":"))[0],
|
| 365 |
+
"ref_id": (role_ref_id.split(":"))[1],
|
| 366 |
+
}
|
| 367 |
+
ann["arguments"].append(argument)
|
| 368 |
+
|
| 369 |
+
example["events"].append(ann)
|
| 370 |
+
|
| 371 |
+
elif line.startswith("R"):
|
| 372 |
+
ann = {}
|
| 373 |
+
fields = line.split("\t")
|
| 374 |
+
|
| 375 |
+
ann["id"] = fields[0]
|
| 376 |
+
ann["type"] = fields[1].split()[0]
|
| 377 |
+
|
| 378 |
+
ann["head"] = {
|
| 379 |
+
"role": fields[1].split()[1].split(":")[0],
|
| 380 |
+
"ref_id": fields[1].split()[1].split(":")[1],
|
| 381 |
+
}
|
| 382 |
+
ann["tail"] = {
|
| 383 |
+
"role": fields[1].split()[2].split(":")[0],
|
| 384 |
+
"ref_id": fields[1].split()[2].split(":")[1],
|
| 385 |
+
}
|
| 386 |
+
|
| 387 |
+
example["relations"].append(ann)
|
| 388 |
+
|
| 389 |
+
# '*' seems to be the legacy way to mark equivalences,
|
| 390 |
+
# but I couldn't find any info on the current way
|
| 391 |
+
# this might have to be adapted dependent on the brat version
|
| 392 |
+
# of the annotation
|
| 393 |
+
elif line.startswith("*"):
|
| 394 |
+
ann = {}
|
| 395 |
+
fields = line.split("\t")
|
| 396 |
+
|
| 397 |
+
ann["id"] = fields[0]
|
| 398 |
+
ann["ref_ids"] = fields[1].split()[1:]
|
| 399 |
+
|
| 400 |
+
example["equivalences"].append(ann)
|
| 401 |
+
|
| 402 |
+
elif line.startswith("A") or line.startswith("M"):
|
| 403 |
+
ann = {}
|
| 404 |
+
fields = line.split("\t")
|
| 405 |
+
|
| 406 |
+
ann["id"] = fields[0]
|
| 407 |
+
|
| 408 |
+
info = fields[1].split()
|
| 409 |
+
ann["type"] = info[0]
|
| 410 |
+
ann["ref_id"] = info[1]
|
| 411 |
+
|
| 412 |
+
if len(info) > 2:
|
| 413 |
+
ann["value"] = info[2]
|
| 414 |
+
else:
|
| 415 |
+
ann["value"] = ""
|
| 416 |
+
|
| 417 |
+
example["attributes"].append(ann)
|
| 418 |
+
|
| 419 |
+
elif line.startswith("N"):
|
| 420 |
+
ann = {}
|
| 421 |
+
fields = line.split("\t")
|
| 422 |
+
|
| 423 |
+
ann["id"] = fields[0]
|
| 424 |
+
ann["text"] = fields[2]
|
| 425 |
+
|
| 426 |
+
info = fields[1].split()
|
| 427 |
+
|
| 428 |
+
ann["type"] = info[0]
|
| 429 |
+
ann["ref_id"] = info[1]
|
| 430 |
+
ann["resource_name"] = info[2].split(":")[0]
|
| 431 |
+
ann["cuid"] = info[2].split(":")[1]
|
| 432 |
+
example["normalizations"].append(ann)
|
| 433 |
+
|
| 434 |
+
elif parse_notes and line.startswith("#"):
|
| 435 |
+
ann = {}
|
| 436 |
+
fields = line.split("\t")
|
| 437 |
+
|
| 438 |
+
ann["id"] = fields[0]
|
| 439 |
+
ann["text"] = fields[2] if len(fields) == 3 else BigBioValues.NULL
|
| 440 |
+
|
| 441 |
+
info = fields[1].split()
|
| 442 |
+
|
| 443 |
+
ann["type"] = info[0]
|
| 444 |
+
ann["ref_id"] = info[1]
|
| 445 |
+
example["notes"].append(ann)
|
| 446 |
+
|
| 447 |
+
return example
|
| 448 |
+
|
| 449 |
+
|
| 450 |
+
def brat_parse_to_bigbio_kb(brat_parse: Dict) -> Dict:
|
| 451 |
+
"""
|
| 452 |
+
Transform a brat parse (conforming to the standard brat schema) obtained with
|
| 453 |
+
`parse_brat_file` into a dictionary conforming to the `bigbio-kb` schema (as defined in ../schemas/kb.py)
|
| 454 |
+
:param brat_parse:
|
| 455 |
+
"""
|
| 456 |
+
|
| 457 |
+
unified_example = {}
|
| 458 |
+
|
| 459 |
+
# Prefix all ids with document id to ensure global uniqueness,
|
| 460 |
+
# because brat ids are only unique within their document
|
| 461 |
+
id_prefix = brat_parse["document_id"] + "_"
|
| 462 |
+
|
| 463 |
+
# identical
|
| 464 |
+
unified_example["document_id"] = brat_parse["document_id"]
|
| 465 |
+
unified_example["passages"] = [
|
| 466 |
+
{
|
| 467 |
+
"id": id_prefix + "_text",
|
| 468 |
+
"type": "abstract",
|
| 469 |
+
"text": [brat_parse["text"]],
|
| 470 |
+
"offsets": [[0, len(brat_parse["text"])]],
|
| 471 |
+
}
|
| 472 |
+
]
|
| 473 |
+
|
| 474 |
+
# get normalizations
|
| 475 |
+
ref_id_to_normalizations = defaultdict(list)
|
| 476 |
+
for normalization in brat_parse["normalizations"]:
|
| 477 |
+
ref_id_to_normalizations[normalization["ref_id"]].append(
|
| 478 |
+
{
|
| 479 |
+
"db_name": normalization["resource_name"],
|
| 480 |
+
"db_id": normalization["cuid"],
|
| 481 |
+
}
|
| 482 |
+
)
|
| 483 |
+
|
| 484 |
+
# separate entities and event triggers
|
| 485 |
+
unified_example["events"] = []
|
| 486 |
+
non_event_ann = brat_parse["text_bound_annotations"].copy()
|
| 487 |
+
for event in brat_parse["events"]:
|
| 488 |
+
event = event.copy()
|
| 489 |
+
event["id"] = id_prefix + event["id"]
|
| 490 |
+
trigger = next(
|
| 491 |
+
tr
|
| 492 |
+
for tr in brat_parse["text_bound_annotations"]
|
| 493 |
+
if tr["id"] == event["trigger"]
|
| 494 |
+
)
|
| 495 |
+
if trigger in non_event_ann:
|
| 496 |
+
non_event_ann.remove(trigger)
|
| 497 |
+
event["trigger"] = {
|
| 498 |
+
"text": trigger["text"].copy(),
|
| 499 |
+
"offsets": trigger["offsets"].copy(),
|
| 500 |
+
}
|
| 501 |
+
for argument in event["arguments"]:
|
| 502 |
+
argument["ref_id"] = id_prefix + argument["ref_id"]
|
| 503 |
+
|
| 504 |
+
unified_example["events"].append(event)
|
| 505 |
+
|
| 506 |
+
unified_example["entities"] = []
|
| 507 |
+
anno_ids = [ref_id["id"] for ref_id in non_event_ann]
|
| 508 |
+
for ann in non_event_ann:
|
| 509 |
+
entity_ann = ann.copy()
|
| 510 |
+
entity_ann["id"] = id_prefix + entity_ann["id"]
|
| 511 |
+
entity_ann["normalized"] = ref_id_to_normalizations[ann["id"]]
|
| 512 |
+
unified_example["entities"].append(entity_ann)
|
| 513 |
+
|
| 514 |
+
# massage relations
|
| 515 |
+
unified_example["relations"] = []
|
| 516 |
+
skipped_relations = set()
|
| 517 |
+
for ann in brat_parse["relations"]:
|
| 518 |
+
if (
|
| 519 |
+
ann["head"]["ref_id"] not in anno_ids
|
| 520 |
+
or ann["tail"]["ref_id"] not in anno_ids
|
| 521 |
+
):
|
| 522 |
+
skipped_relations.add(ann["id"])
|
| 523 |
+
continue
|
| 524 |
+
unified_example["relations"].append(
|
| 525 |
+
{
|
| 526 |
+
"arg1_id": id_prefix + ann["head"]["ref_id"],
|
| 527 |
+
"arg2_id": id_prefix + ann["tail"]["ref_id"],
|
| 528 |
+
"id": id_prefix + ann["id"],
|
| 529 |
+
"type": ann["type"],
|
| 530 |
+
"normalized": [],
|
| 531 |
+
}
|
| 532 |
+
)
|
| 533 |
+
if len(skipped_relations) > 0:
|
| 534 |
+
example_id = brat_parse["document_id"]
|
| 535 |
+
logger.info(
|
| 536 |
+
f"Example:{example_id}: The `bigbio_kb` schema allows `relations` only between entities."
|
| 537 |
+
f" Skip (for now): "
|
| 538 |
+
f"{list(skipped_relations)}"
|
| 539 |
+
)
|
| 540 |
+
|
| 541 |
+
# get coreferences
|
| 542 |
+
unified_example["coreferences"] = []
|
| 543 |
+
for i, ann in enumerate(brat_parse["equivalences"], start=1):
|
| 544 |
+
is_entity_cluster = True
|
| 545 |
+
for ref_id in ann["ref_ids"]:
|
| 546 |
+
if not ref_id.startswith("T"): # not textbound -> no entity
|
| 547 |
+
is_entity_cluster = False
|
| 548 |
+
elif ref_id not in anno_ids: # event trigger -> no entity
|
| 549 |
+
is_entity_cluster = False
|
| 550 |
+
if is_entity_cluster:
|
| 551 |
+
entity_ids = [id_prefix + i for i in ann["ref_ids"]]
|
| 552 |
+
unified_example["coreferences"].append(
|
| 553 |
+
{"id": id_prefix + str(i), "entity_ids": entity_ids}
|
| 554 |
+
)
|
| 555 |
+
return unified_example
|