Commit
·
fe23b87
1
Parent(s):
5b87902
upload hubscripts/mediqa_rqe_hub.py to hub from bigbio repo
Browse files- mediqa_rqe.py +155 -0
mediqa_rqe.py
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
import glob
|
| 16 |
+
import json
|
| 17 |
+
import os
|
| 18 |
+
from dataclasses import dataclass
|
| 19 |
+
from pathlib import Path
|
| 20 |
+
from typing import Dict, Iterator, Tuple
|
| 21 |
+
from xml.etree import ElementTree as ET
|
| 22 |
+
|
| 23 |
+
import datasets
|
| 24 |
+
|
| 25 |
+
from .bigbiohub import pairs_features
|
| 26 |
+
from .bigbiohub import BigBioConfig
|
| 27 |
+
from .bigbiohub import Tasks
|
| 28 |
+
|
| 29 |
+
_LANGUAGES = ['English']
|
| 30 |
+
_PUBMED = False
|
| 31 |
+
_LOCAL = False
|
| 32 |
+
_CITATION = """\
|
| 33 |
+
@inproceedings{MEDIQA2019,
|
| 34 |
+
author = {Asma {Ben Abacha} and Chaitanya Shivade and Dina Demner{-}Fushman},
|
| 35 |
+
title = {Overview of the MEDIQA 2019 Shared Task on Textual Inference, Question Entailment and Question Answering},
|
| 36 |
+
booktitle = {ACL-BioNLP 2019},
|
| 37 |
+
year = {2019}
|
| 38 |
+
}
|
| 39 |
+
"""
|
| 40 |
+
|
| 41 |
+
_DATASETNAME = "mediqa_rqe"
|
| 42 |
+
_DISPLAYNAME = "MEDIQA RQE"
|
| 43 |
+
|
| 44 |
+
_DESCRIPTION = """\
|
| 45 |
+
The MEDIQA challenge is an ACL-BioNLP 2019 shared task aiming to attract further research efforts in Natural Language Inference (NLI), Recognizing Question Entailment (RQE), and their applications in medical Question Answering (QA).
|
| 46 |
+
Mailing List: https://groups.google.com/forum/#!forum/bionlp-mediqa
|
| 47 |
+
|
| 48 |
+
The objective of the RQE task is to identify entailment between two questions in the context of QA. We use the following definition of question entailment: “a question A entails a question B if every answer to B is also a complete or partial answer to A” [1]
|
| 49 |
+
[1] A. Ben Abacha & D. Demner-Fushman. “Recognizing Question Entailment for Medical Question Answering”. AMIA 2016.
|
| 50 |
+
"""
|
| 51 |
+
|
| 52 |
+
_HOMEPAGE = "https://sites.google.com/view/mediqa2019"
|
| 53 |
+
_LICENSE = 'License information unavailable'
|
| 54 |
+
_URLS = {
|
| 55 |
+
_DATASETNAME: "https://github.com/abachaa/MEDIQA2019/archive/refs/heads/master.zip"
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
_SUPPORTED_TASKS = [Tasks.TEXT_PAIRS_CLASSIFICATION]
|
| 59 |
+
_SOURCE_VERSION = "1.0.0"
|
| 60 |
+
_BIGBIO_VERSION = "1.0.0"
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class MediqaRQEDataset(datasets.GeneratorBasedBuilder):
|
| 64 |
+
"""MediqaRQE Dataset"""
|
| 65 |
+
|
| 66 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
| 67 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
| 68 |
+
|
| 69 |
+
BUILDER_CONFIGS = [
|
| 70 |
+
# Source Schema
|
| 71 |
+
BigBioConfig(
|
| 72 |
+
name="mediqa_rqe_source",
|
| 73 |
+
version=SOURCE_VERSION,
|
| 74 |
+
description="MEDIQA RQE source schema",
|
| 75 |
+
schema="source",
|
| 76 |
+
subset_id="mediqa_rqe_source",
|
| 77 |
+
),
|
| 78 |
+
# BigBio Schema
|
| 79 |
+
BigBioConfig(
|
| 80 |
+
name="mediqa_rqe_bigbio_pairs",
|
| 81 |
+
version=BIGBIO_VERSION,
|
| 82 |
+
description="MEDIQA RQE BigBio schema",
|
| 83 |
+
schema="bigbio_pairs",
|
| 84 |
+
subset_id="mediqa_rqe_bigbio_pairs",
|
| 85 |
+
),
|
| 86 |
+
]
|
| 87 |
+
|
| 88 |
+
DEFAULT_CONFIG_NAME = "mediqa_rqe_source"
|
| 89 |
+
|
| 90 |
+
def _info(self):
|
| 91 |
+
if self.config.schema == "source":
|
| 92 |
+
features = datasets.Features(
|
| 93 |
+
{
|
| 94 |
+
"pid": datasets.Value("string"),
|
| 95 |
+
"value": datasets.Value("string"),
|
| 96 |
+
"chq": datasets.Value("string"),
|
| 97 |
+
"faq": datasets.Value("string"),
|
| 98 |
+
}
|
| 99 |
+
)
|
| 100 |
+
elif self.config.schema == "bigbio_pairs":
|
| 101 |
+
features = pairs_features
|
| 102 |
+
|
| 103 |
+
return datasets.DatasetInfo(
|
| 104 |
+
description=_DESCRIPTION,
|
| 105 |
+
features=features,
|
| 106 |
+
homepage=_HOMEPAGE,
|
| 107 |
+
license=str(_LICENSE),
|
| 108 |
+
citation=_CITATION,
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
def _split_generators(self, dl_manager):
|
| 112 |
+
data_dir = Path(dl_manager.download_and_extract(_URLS[_DATASETNAME]))
|
| 113 |
+
|
| 114 |
+
return [
|
| 115 |
+
datasets.SplitGenerator(
|
| 116 |
+
name=datasets.Split.TRAIN,
|
| 117 |
+
gen_kwargs={
|
| 118 |
+
"filepath": data_dir
|
| 119 |
+
/ "MEDIQA2019-master/MEDIQA_Task2_RQE/MEDIQA2019-Task2-RQE-TrainingSet-AMIA2016.xml"
|
| 120 |
+
},
|
| 121 |
+
),
|
| 122 |
+
datasets.SplitGenerator(
|
| 123 |
+
name=datasets.Split.VALIDATION,
|
| 124 |
+
gen_kwargs={
|
| 125 |
+
"filepath": data_dir
|
| 126 |
+
/ "MEDIQA2019-master/MEDIQA_Task2_RQE/MEDIQA2019-Task2-RQE-ValidationSet-AMIA2016.xml"
|
| 127 |
+
},
|
| 128 |
+
),
|
| 129 |
+
datasets.SplitGenerator(
|
| 130 |
+
name=datasets.Split.TEST,
|
| 131 |
+
gen_kwargs={
|
| 132 |
+
"filepath": data_dir
|
| 133 |
+
/ "MEDIQA2019-master/MEDIQA_Task2_RQE/MEDIQA2019-Task2-RQE-TestSet-wLabels.xml"
|
| 134 |
+
},
|
| 135 |
+
),
|
| 136 |
+
]
|
| 137 |
+
|
| 138 |
+
def _generate_examples(self, filepath: Path) -> Iterator[Tuple[str, Dict]]:
|
| 139 |
+
dom = ET.parse(filepath).getroot()
|
| 140 |
+
for row in dom.iterfind("pair"):
|
| 141 |
+
pid = row.attrib["pid"]
|
| 142 |
+
value = row.attrib["value"]
|
| 143 |
+
chq = row.find("chq").text.strip()
|
| 144 |
+
faq = row.find("faq").text.strip()
|
| 145 |
+
|
| 146 |
+
if self.config.schema == "source":
|
| 147 |
+
yield pid, {"pid": pid, "value": value, "chq": chq, "faq": faq}
|
| 148 |
+
elif self.config.schema == "bigbio_pairs":
|
| 149 |
+
yield pid, {
|
| 150 |
+
"id": pid,
|
| 151 |
+
"document_id": pid,
|
| 152 |
+
"text_1": chq,
|
| 153 |
+
"text_2": faq,
|
| 154 |
+
"label": value,
|
| 155 |
+
}
|