| 
							 | 
						from collections import defaultdict | 
					
					
						
						| 
							 | 
						from dataclasses import dataclass | 
					
					
						
						| 
							 | 
						from enum import Enum | 
					
					
						
						| 
							 | 
						import logging | 
					
					
						
						| 
							 | 
						from pathlib import Path | 
					
					
						
						| 
							 | 
						from types import SimpleNamespace | 
					
					
						
						| 
							 | 
						from typing import TYPE_CHECKING, Dict, Iterable, List, Tuple | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import datasets | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						if TYPE_CHECKING: | 
					
					
						
						| 
							 | 
						    import bioc | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.getLogger(__name__) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@dataclass | 
					
					
						
						| 
							 | 
						class BigBioConfig(datasets.BuilderConfig): | 
					
					
						
						| 
							 | 
						    """BuilderConfig for BigBio.""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    name: str = None | 
					
					
						
						| 
							 | 
						    version: datasets.Version = None | 
					
					
						
						| 
							 | 
						    description: str = None | 
					
					
						
						| 
							 | 
						    schema: str = None | 
					
					
						
						| 
							 | 
						    subset_id: str = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class Tasks(Enum): | 
					
					
						
						| 
							 | 
						    NAMED_ENTITY_RECOGNITION = "NER" | 
					
					
						
						| 
							 | 
						    NAMED_ENTITY_DISAMBIGUATION = "NED" | 
					
					
						
						| 
							 | 
						    EVENT_EXTRACTION = "EE" | 
					
					
						
						| 
							 | 
						    RELATION_EXTRACTION = "RE" | 
					
					
						
						| 
							 | 
						    COREFERENCE_RESOLUTION = "COREF" | 
					
					
						
						| 
							 | 
						    QUESTION_ANSWERING = "QA" | 
					
					
						
						| 
							 | 
						    TEXTUAL_ENTAILMENT = "TE" | 
					
					
						
						| 
							 | 
						    SEMANTIC_SIMILARITY = "STS" | 
					
					
						
						| 
							 | 
						    TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS" | 
					
					
						
						| 
							 | 
						    PARAPHRASING = "PARA" | 
					
					
						
						| 
							 | 
						    TRANSLATION = "TRANSL" | 
					
					
						
						| 
							 | 
						    SUMMARIZATION = "SUM" | 
					
					
						
						| 
							 | 
						    TEXT_CLASSIFICATION = "TXTCLASS" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						entailment_features = datasets.Features( | 
					
					
						
						| 
							 | 
						    { | 
					
					
						
						| 
							 | 
						        "id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						        "premise": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						        "hypothesis": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						        "label": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						pairs_features = datasets.Features( | 
					
					
						
						| 
							 | 
						    { | 
					
					
						
						| 
							 | 
						        "id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						        "document_id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						        "text_1": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						        "text_2": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						        "label": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						qa_features = datasets.Features( | 
					
					
						
						| 
							 | 
						    { | 
					
					
						
						| 
							 | 
						        "id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						        "question_id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						        "document_id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						        "question": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						        "type": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						        "choices": [datasets.Value("string")], | 
					
					
						
						| 
							 | 
						        "context": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						        "answer": datasets.Sequence(datasets.Value("string")), | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						text_features = datasets.Features( | 
					
					
						
						| 
							 | 
						    { | 
					
					
						
						| 
							 | 
						        "id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						        "document_id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						        "text": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						        "labels": [datasets.Value("string")], | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						text2text_features = datasets.Features( | 
					
					
						
						| 
							 | 
						    { | 
					
					
						
						| 
							 | 
						        "id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						        "document_id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						        "text_1": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						        "text_2": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						        "text_1_name": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						        "text_2_name": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						kb_features = datasets.Features( | 
					
					
						
						| 
							 | 
						    { | 
					
					
						
						| 
							 | 
						        "id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						        "document_id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						        "passages": [ | 
					
					
						
						| 
							 | 
						            { | 
					
					
						
						| 
							 | 
						                "id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                "type": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                "text": datasets.Sequence(datasets.Value("string")), | 
					
					
						
						| 
							 | 
						                "offsets": datasets.Sequence([datasets.Value("int32")]), | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						        ], | 
					
					
						
						| 
							 | 
						        "entities": [ | 
					
					
						
						| 
							 | 
						            { | 
					
					
						
						| 
							 | 
						                "id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                "type": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                "text": datasets.Sequence(datasets.Value("string")), | 
					
					
						
						| 
							 | 
						                "offsets": datasets.Sequence([datasets.Value("int32")]), | 
					
					
						
						| 
							 | 
						                "normalized": [ | 
					
					
						
						| 
							 | 
						                    { | 
					
					
						
						| 
							 | 
						                        "db_name": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                        "db_id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    } | 
					
					
						
						| 
							 | 
						                ], | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						        ], | 
					
					
						
						| 
							 | 
						        "events": [ | 
					
					
						
						| 
							 | 
						            { | 
					
					
						
						| 
							 | 
						                "id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                "type": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                "trigger": { | 
					
					
						
						| 
							 | 
						                    "text": datasets.Sequence(datasets.Value("string")), | 
					
					
						
						| 
							 | 
						                    "offsets": datasets.Sequence([datasets.Value("int32")]), | 
					
					
						
						| 
							 | 
						                }, | 
					
					
						
						| 
							 | 
						                "arguments": [ | 
					
					
						
						| 
							 | 
						                    { | 
					
					
						
						| 
							 | 
						                        "role": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                        "ref_id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    } | 
					
					
						
						| 
							 | 
						                ], | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						        ], | 
					
					
						
						| 
							 | 
						        "coreferences": [ | 
					
					
						
						| 
							 | 
						            { | 
					
					
						
						| 
							 | 
						                "id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                "entity_ids": datasets.Sequence(datasets.Value("string")), | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						        ], | 
					
					
						
						| 
							 | 
						        "relations": [ | 
					
					
						
						| 
							 | 
						            { | 
					
					
						
						| 
							 | 
						                "id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                "type": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                "arg1_id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                "arg2_id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                "normalized": [ | 
					
					
						
						| 
							 | 
						                    { | 
					
					
						
						| 
							 | 
						                        "db_name": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                        "db_id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    } | 
					
					
						
						| 
							 | 
						                ], | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						        ], | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						TASK_TO_SCHEMA = { | 
					
					
						
						| 
							 | 
						    Tasks.NAMED_ENTITY_RECOGNITION.name: "KB", | 
					
					
						
						| 
							 | 
						    Tasks.NAMED_ENTITY_DISAMBIGUATION.name: "KB", | 
					
					
						
						| 
							 | 
						    Tasks.EVENT_EXTRACTION.name: "KB", | 
					
					
						
						| 
							 | 
						    Tasks.RELATION_EXTRACTION.name: "KB", | 
					
					
						
						| 
							 | 
						    Tasks.COREFERENCE_RESOLUTION.name: "KB", | 
					
					
						
						| 
							 | 
						    Tasks.QUESTION_ANSWERING.name: "QA", | 
					
					
						
						| 
							 | 
						    Tasks.TEXTUAL_ENTAILMENT.name: "TE", | 
					
					
						
						| 
							 | 
						    Tasks.SEMANTIC_SIMILARITY.name: "PAIRS", | 
					
					
						
						| 
							 | 
						    Tasks.TEXT_PAIRS_CLASSIFICATION.name: "PAIRS", | 
					
					
						
						| 
							 | 
						    Tasks.PARAPHRASING.name: "T2T", | 
					
					
						
						| 
							 | 
						    Tasks.TRANSLATION.name: "T2T", | 
					
					
						
						| 
							 | 
						    Tasks.SUMMARIZATION.name: "T2T", | 
					
					
						
						| 
							 | 
						    Tasks.TEXT_CLASSIFICATION.name: "TEXT", | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						SCHEMA_TO_TASKS = defaultdict(set) | 
					
					
						
						| 
							 | 
						for task, schema in TASK_TO_SCHEMA.items(): | 
					
					
						
						| 
							 | 
						    SCHEMA_TO_TASKS[schema].add(task) | 
					
					
						
						| 
							 | 
						SCHEMA_TO_TASKS = dict(SCHEMA_TO_TASKS) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						VALID_TASKS = set(TASK_TO_SCHEMA.keys()) | 
					
					
						
						| 
							 | 
						VALID_SCHEMAS = set(TASK_TO_SCHEMA.values()) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						SCHEMA_TO_FEATURES = { | 
					
					
						
						| 
							 | 
						    "KB": kb_features, | 
					
					
						
						| 
							 | 
						    "QA": qa_features, | 
					
					
						
						| 
							 | 
						    "TE": entailment_features, | 
					
					
						
						| 
							 | 
						    "T2T": text2text_features, | 
					
					
						
						| 
							 | 
						    "TEXT": text_features, | 
					
					
						
						| 
							 | 
						    "PAIRS": pairs_features, | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def get_texts_and_offsets_from_bioc_ann(ann: "bioc.BioCAnnotation") -> Tuple: | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    offsets = [(loc.offset, loc.offset + loc.length) for loc in ann.locations] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    text = ann.text | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if len(offsets) > 1: | 
					
					
						
						| 
							 | 
						        i = 0 | 
					
					
						
						| 
							 | 
						        texts = [] | 
					
					
						
						| 
							 | 
						        for start, end in offsets: | 
					
					
						
						| 
							 | 
						            chunk_len = end - start | 
					
					
						
						| 
							 | 
						            texts.append(text[i : chunk_len + i]) | 
					
					
						
						| 
							 | 
						            i += chunk_len | 
					
					
						
						| 
							 | 
						            while i < len(text) and text[i] == " ": | 
					
					
						
						| 
							 | 
						                i += 1 | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        texts = [text] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return offsets, texts | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def remove_prefix(a: str, prefix: str) -> str: | 
					
					
						
						| 
							 | 
						    if a.startswith(prefix): | 
					
					
						
						| 
							 | 
						        a = a[len(prefix) :] | 
					
					
						
						| 
							 | 
						    return a | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def parse_brat_file( | 
					
					
						
						| 
							 | 
						    txt_file: Path, | 
					
					
						
						| 
							 | 
						    annotation_file_suffixes: List[str] = None, | 
					
					
						
						| 
							 | 
						    parse_notes: bool = False, | 
					
					
						
						| 
							 | 
						) -> Dict: | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Parse a brat file into the schema defined below. | 
					
					
						
						| 
							 | 
						    `txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt' | 
					
					
						
						| 
							 | 
						    Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files, | 
					
					
						
						| 
							 | 
						    e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'. | 
					
					
						
						| 
							 | 
						    Will include annotator notes, when `parse_notes == True`. | 
					
					
						
						| 
							 | 
						    brat_features = datasets.Features( | 
					
					
						
						| 
							 | 
						        { | 
					
					
						
						| 
							 | 
						            "id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						            "document_id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						            "text": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						            "text_bound_annotations": [  # T line in brat, e.g. type or event trigger | 
					
					
						
						| 
							 | 
						                { | 
					
					
						
						| 
							 | 
						                    "offsets": datasets.Sequence([datasets.Value("int32")]), | 
					
					
						
						| 
							 | 
						                    "text": datasets.Sequence(datasets.Value("string")), | 
					
					
						
						| 
							 | 
						                    "type": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    "id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                } | 
					
					
						
						| 
							 | 
						            ], | 
					
					
						
						| 
							 | 
						            "events": [  # E line in brat | 
					
					
						
						| 
							 | 
						                { | 
					
					
						
						| 
							 | 
						                    "trigger": datasets.Value( | 
					
					
						
						| 
							 | 
						                        "string" | 
					
					
						
						| 
							 | 
						                    ),  # refers to the text_bound_annotation of the trigger, | 
					
					
						
						| 
							 | 
						                    "id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    "type": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    "arguments": datasets.Sequence( | 
					
					
						
						| 
							 | 
						                        { | 
					
					
						
						| 
							 | 
						                            "role": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                            "ref_id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                        } | 
					
					
						
						| 
							 | 
						                    ), | 
					
					
						
						| 
							 | 
						                } | 
					
					
						
						| 
							 | 
						            ], | 
					
					
						
						| 
							 | 
						            "relations": [  # R line in brat | 
					
					
						
						| 
							 | 
						                { | 
					
					
						
						| 
							 | 
						                    "id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    "head": { | 
					
					
						
						| 
							 | 
						                        "ref_id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                        "role": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    }, | 
					
					
						
						| 
							 | 
						                    "tail": { | 
					
					
						
						| 
							 | 
						                        "ref_id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                        "role": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    }, | 
					
					
						
						| 
							 | 
						                    "type": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                } | 
					
					
						
						| 
							 | 
						            ], | 
					
					
						
						| 
							 | 
						            "equivalences": [  # Equiv line in brat | 
					
					
						
						| 
							 | 
						                { | 
					
					
						
						| 
							 | 
						                    "id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    "ref_ids": datasets.Sequence(datasets.Value("string")), | 
					
					
						
						| 
							 | 
						                } | 
					
					
						
						| 
							 | 
						            ], | 
					
					
						
						| 
							 | 
						            "attributes": [  # M or A lines in brat | 
					
					
						
						| 
							 | 
						                { | 
					
					
						
						| 
							 | 
						                    "id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    "type": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    "ref_id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    "value": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                } | 
					
					
						
						| 
							 | 
						            ], | 
					
					
						
						| 
							 | 
						            "normalizations": [  # N lines in brat | 
					
					
						
						| 
							 | 
						                { | 
					
					
						
						| 
							 | 
						                    "id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    "type": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    "ref_id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    "resource_name": datasets.Value( | 
					
					
						
						| 
							 | 
						                        "string" | 
					
					
						
						| 
							 | 
						                    ),  # Name of the resource, e.g. "Wikipedia" | 
					
					
						
						| 
							 | 
						                    "cuid": datasets.Value( | 
					
					
						
						| 
							 | 
						                        "string" | 
					
					
						
						| 
							 | 
						                    ),  # ID in the resource, e.g. 534366 | 
					
					
						
						| 
							 | 
						                    "text": datasets.Value( | 
					
					
						
						| 
							 | 
						                        "string" | 
					
					
						
						| 
							 | 
						                    ),  # Human readable description/name of the entity, e.g. "Barack Obama" | 
					
					
						
						| 
							 | 
						                } | 
					
					
						
						| 
							 | 
						            ], | 
					
					
						
						| 
							 | 
						            ### OPTIONAL: Only included when `parse_notes == True` | 
					
					
						
						| 
							 | 
						            "notes": [  # # lines in brat | 
					
					
						
						| 
							 | 
						                { | 
					
					
						
						| 
							 | 
						                    "id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    "type": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    "ref_id": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                    "text": datasets.Value("string"), | 
					
					
						
						| 
							 | 
						                } | 
					
					
						
						| 
							 | 
						            ], | 
					
					
						
						| 
							 | 
						        }, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    example = {} | 
					
					
						
						| 
							 | 
						    example["document_id"] = txt_file.with_suffix("").name | 
					
					
						
						| 
							 | 
						    with txt_file.open() as f: | 
					
					
						
						| 
							 | 
						        example["text"] = f.read() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if annotation_file_suffixes is None: | 
					
					
						
						| 
							 | 
						        annotation_file_suffixes = [".a1", ".a2", ".ann"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if len(annotation_file_suffixes) == 0: | 
					
					
						
						| 
							 | 
						        raise AssertionError( | 
					
					
						
						| 
							 | 
						            "At least one suffix for the to-be-read annotation files should be given!" | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    ann_lines = [] | 
					
					
						
						| 
							 | 
						    for suffix in annotation_file_suffixes: | 
					
					
						
						| 
							 | 
						        annotation_file = txt_file.with_suffix(suffix) | 
					
					
						
						| 
							 | 
						        try: | 
					
					
						
						| 
							 | 
						            with annotation_file.open() as f: | 
					
					
						
						| 
							 | 
						                ann_lines.extend(f.readlines()) | 
					
					
						
						| 
							 | 
						        except Exception: | 
					
					
						
						| 
							 | 
						            continue | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    example["text_bound_annotations"] = [] | 
					
					
						
						| 
							 | 
						    example["events"] = [] | 
					
					
						
						| 
							 | 
						    example["relations"] = [] | 
					
					
						
						| 
							 | 
						    example["equivalences"] = [] | 
					
					
						
						| 
							 | 
						    example["attributes"] = [] | 
					
					
						
						| 
							 | 
						    example["normalizations"] = [] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if parse_notes: | 
					
					
						
						| 
							 | 
						        example["notes"] = [] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    for line in ann_lines: | 
					
					
						
						| 
							 | 
						        line = line.strip() | 
					
					
						
						| 
							 | 
						        if not line: | 
					
					
						
						| 
							 | 
						            continue | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if line.startswith("T"):   | 
					
					
						
						| 
							 | 
						            ann = {} | 
					
					
						
						| 
							 | 
						            fields = line.split("\t") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            ann["id"] = fields[0] | 
					
					
						
						| 
							 | 
						            ann["type"] = fields[1].split()[0] | 
					
					
						
						| 
							 | 
						            ann["offsets"] = [] | 
					
					
						
						| 
							 | 
						            span_str = remove_prefix(fields[1], (ann["type"] + " ")) | 
					
					
						
						| 
							 | 
						            text = fields[2] | 
					
					
						
						| 
							 | 
						            for span in span_str.split(";"): | 
					
					
						
						| 
							 | 
						                start, end = span.split() | 
					
					
						
						| 
							 | 
						                ann["offsets"].append([int(start), int(end)]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            ann["text"] = [] | 
					
					
						
						| 
							 | 
						            if len(ann["offsets"]) > 1: | 
					
					
						
						| 
							 | 
						                i = 0 | 
					
					
						
						| 
							 | 
						                for start, end in ann["offsets"]: | 
					
					
						
						| 
							 | 
						                    chunk_len = end - start | 
					
					
						
						| 
							 | 
						                    ann["text"].append(text[i : chunk_len + i]) | 
					
					
						
						| 
							 | 
						                    i += chunk_len | 
					
					
						
						| 
							 | 
						                    while i < len(text) and text[i] == " ": | 
					
					
						
						| 
							 | 
						                        i += 1 | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                ann["text"] = [text] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            example["text_bound_annotations"].append(ann) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        elif line.startswith("E"): | 
					
					
						
						| 
							 | 
						            ann = {} | 
					
					
						
						| 
							 | 
						            fields = line.split("\t") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            ann["id"] = fields[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            ann["type"], ann["trigger"] = fields[1].split()[0].split(":") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            ann["arguments"] = [] | 
					
					
						
						| 
							 | 
						            for role_ref_id in fields[1].split()[1:]: | 
					
					
						
						| 
							 | 
						                argument = { | 
					
					
						
						| 
							 | 
						                    "role": (role_ref_id.split(":"))[0], | 
					
					
						
						| 
							 | 
						                    "ref_id": (role_ref_id.split(":"))[1], | 
					
					
						
						| 
							 | 
						                } | 
					
					
						
						| 
							 | 
						                ann["arguments"].append(argument) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            example["events"].append(ann) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        elif line.startswith("R"): | 
					
					
						
						| 
							 | 
						            ann = {} | 
					
					
						
						| 
							 | 
						            fields = line.split("\t") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            ann["id"] = fields[0] | 
					
					
						
						| 
							 | 
						            ann["type"] = fields[1].split()[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            ann["head"] = { | 
					
					
						
						| 
							 | 
						                "role": fields[1].split()[1].split(":")[0], | 
					
					
						
						| 
							 | 
						                "ref_id": fields[1].split()[1].split(":")[1], | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						            ann["tail"] = { | 
					
					
						
						| 
							 | 
						                "role": fields[1].split()[2].split(":")[0], | 
					
					
						
						| 
							 | 
						                "ref_id": fields[1].split()[2].split(":")[1], | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            example["relations"].append(ann) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        elif line.startswith("*"): | 
					
					
						
						| 
							 | 
						            ann = {} | 
					
					
						
						| 
							 | 
						            fields = line.split("\t") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            ann["id"] = fields[0] | 
					
					
						
						| 
							 | 
						            ann["ref_ids"] = fields[1].split()[1:] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            example["equivalences"].append(ann) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        elif line.startswith("A") or line.startswith("M"): | 
					
					
						
						| 
							 | 
						            ann = {} | 
					
					
						
						| 
							 | 
						            fields = line.split("\t") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            ann["id"] = fields[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            info = fields[1].split() | 
					
					
						
						| 
							 | 
						            ann["type"] = info[0] | 
					
					
						
						| 
							 | 
						            ann["ref_id"] = info[1] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if len(info) > 2: | 
					
					
						
						| 
							 | 
						                ann["value"] = info[2] | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                ann["value"] = "" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            example["attributes"].append(ann) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        elif line.startswith("N"): | 
					
					
						
						| 
							 | 
						            ann = {} | 
					
					
						
						| 
							 | 
						            fields = line.split("\t") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            ann["id"] = fields[0] | 
					
					
						
						| 
							 | 
						            ann["text"] = fields[2] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            info = fields[1].split() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            ann["type"] = info[0] | 
					
					
						
						| 
							 | 
						            ann["ref_id"] = info[1] | 
					
					
						
						| 
							 | 
						            ann["resource_name"] = info[2].split(":")[0] | 
					
					
						
						| 
							 | 
						            ann["cuid"] = info[2].split(":")[1] | 
					
					
						
						| 
							 | 
						            example["normalizations"].append(ann) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        elif parse_notes and line.startswith("#"): | 
					
					
						
						| 
							 | 
						            ann = {} | 
					
					
						
						| 
							 | 
						            fields = line.split("\t") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            ann["id"] = fields[0] | 
					
					
						
						| 
							 | 
						            ann["text"] = fields[2] if len(fields) == 3 else BigBioValues.NULL | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            info = fields[1].split() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            ann["type"] = info[0] | 
					
					
						
						| 
							 | 
						            ann["ref_id"] = info[1] | 
					
					
						
						| 
							 | 
						            example["notes"].append(ann) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return example | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def brat_parse_to_bigbio_kb(brat_parse: Dict) -> Dict: | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Transform a brat parse (conforming to the standard brat schema) obtained with | 
					
					
						
						| 
							 | 
						    `parse_brat_file` into a dictionary conforming to the `bigbio-kb` schema (as defined in ../schemas/kb.py) | 
					
					
						
						| 
							 | 
						    :param brat_parse: | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    unified_example = {} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    id_prefix = brat_parse["document_id"] + "_" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    unified_example["document_id"] = brat_parse["document_id"] | 
					
					
						
						| 
							 | 
						    unified_example["passages"] = [ | 
					
					
						
						| 
							 | 
						        { | 
					
					
						
						| 
							 | 
						            "id": id_prefix + "_text", | 
					
					
						
						| 
							 | 
						            "type": "abstract", | 
					
					
						
						| 
							 | 
						            "text": [brat_parse["text"]], | 
					
					
						
						| 
							 | 
						            "offsets": [[0, len(brat_parse["text"])]], | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						    ] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    ref_id_to_normalizations = defaultdict(list) | 
					
					
						
						| 
							 | 
						    for normalization in brat_parse["normalizations"]: | 
					
					
						
						| 
							 | 
						        ref_id_to_normalizations[normalization["ref_id"]].append( | 
					
					
						
						| 
							 | 
						            { | 
					
					
						
						| 
							 | 
						                "db_name": normalization["resource_name"], | 
					
					
						
						| 
							 | 
						                "db_id": normalization["cuid"], | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    unified_example["events"] = [] | 
					
					
						
						| 
							 | 
						    non_event_ann = brat_parse["text_bound_annotations"].copy() | 
					
					
						
						| 
							 | 
						    for event in brat_parse["events"]: | 
					
					
						
						| 
							 | 
						        event = event.copy() | 
					
					
						
						| 
							 | 
						        event["id"] = id_prefix + event["id"] | 
					
					
						
						| 
							 | 
						        trigger = next( | 
					
					
						
						| 
							 | 
						            tr | 
					
					
						
						| 
							 | 
						            for tr in brat_parse["text_bound_annotations"] | 
					
					
						
						| 
							 | 
						            if tr["id"] == event["trigger"] | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        if trigger in non_event_ann: | 
					
					
						
						| 
							 | 
						            non_event_ann.remove(trigger) | 
					
					
						
						| 
							 | 
						        event["trigger"] = { | 
					
					
						
						| 
							 | 
						            "text": trigger["text"].copy(), | 
					
					
						
						| 
							 | 
						            "offsets": trigger["offsets"].copy(), | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						        for argument in event["arguments"]: | 
					
					
						
						| 
							 | 
						            argument["ref_id"] = id_prefix + argument["ref_id"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        unified_example["events"].append(event) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    unified_example["entities"] = [] | 
					
					
						
						| 
							 | 
						    anno_ids = [ref_id["id"] for ref_id in non_event_ann] | 
					
					
						
						| 
							 | 
						    for ann in non_event_ann: | 
					
					
						
						| 
							 | 
						        entity_ann = ann.copy() | 
					
					
						
						| 
							 | 
						        entity_ann["id"] = id_prefix + entity_ann["id"] | 
					
					
						
						| 
							 | 
						        entity_ann["normalized"] = ref_id_to_normalizations[ann["id"]] | 
					
					
						
						| 
							 | 
						        unified_example["entities"].append(entity_ann) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    unified_example["relations"] = [] | 
					
					
						
						| 
							 | 
						    skipped_relations = set() | 
					
					
						
						| 
							 | 
						    for ann in brat_parse["relations"]: | 
					
					
						
						| 
							 | 
						        if ( | 
					
					
						
						| 
							 | 
						            ann["head"]["ref_id"] not in anno_ids | 
					
					
						
						| 
							 | 
						            or ann["tail"]["ref_id"] not in anno_ids | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						            skipped_relations.add(ann["id"]) | 
					
					
						
						| 
							 | 
						            continue | 
					
					
						
						| 
							 | 
						        unified_example["relations"].append( | 
					
					
						
						| 
							 | 
						            { | 
					
					
						
						| 
							 | 
						                "arg1_id": id_prefix + ann["head"]["ref_id"], | 
					
					
						
						| 
							 | 
						                "arg2_id": id_prefix + ann["tail"]["ref_id"], | 
					
					
						
						| 
							 | 
						                "id": id_prefix + ann["id"], | 
					
					
						
						| 
							 | 
						                "type": ann["type"], | 
					
					
						
						| 
							 | 
						                "normalized": [], | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						    if len(skipped_relations) > 0: | 
					
					
						
						| 
							 | 
						        example_id = brat_parse["document_id"] | 
					
					
						
						| 
							 | 
						        logger.info( | 
					
					
						
						| 
							 | 
						            f"Example:{example_id}: The `bigbio_kb` schema allows `relations` only between entities." | 
					
					
						
						| 
							 | 
						            f" Skip (for now): " | 
					
					
						
						| 
							 | 
						            f"{list(skipped_relations)}" | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    unified_example["coreferences"] = [] | 
					
					
						
						| 
							 | 
						    for i, ann in enumerate(brat_parse["equivalences"], start=1): | 
					
					
						
						| 
							 | 
						        is_entity_cluster = True | 
					
					
						
						| 
							 | 
						        for ref_id in ann["ref_ids"]: | 
					
					
						
						| 
							 | 
						            if not ref_id.startswith("T"):   | 
					
					
						
						| 
							 | 
						                is_entity_cluster = False | 
					
					
						
						| 
							 | 
						            elif ref_id not in anno_ids:   | 
					
					
						
						| 
							 | 
						                is_entity_cluster = False | 
					
					
						
						| 
							 | 
						        if is_entity_cluster: | 
					
					
						
						| 
							 | 
						            entity_ids = [id_prefix + i for i in ann["ref_ids"]] | 
					
					
						
						| 
							 | 
						            unified_example["coreferences"].append( | 
					
					
						
						| 
							 | 
						                {"id": id_prefix + str(i), "entity_ids": entity_ids} | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						    return unified_example | 
					
					
						
						| 
							 | 
						
 |