Commit
·
503a2ae
1
Parent(s):
97f60de
upload hubscripts/jnlpba_hub.py to hub from bigbio repo
Browse files
jnlpba.py
ADDED
|
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
"""
|
| 17 |
+
The data came from the GENIA version 3.02 corpus (Kim et al., 2003).
|
| 18 |
+
This was formed from a controlled search on MEDLINE using the MeSH terms human, blood cells and transcription factors.
|
| 19 |
+
From this search 2,000 abstracts were selected and hand annotated according to a small taxonomy of 48 classes based on
|
| 20 |
+
a chemical classification. Among the classes, 36 terminal classes were used to annotate the GENIA corpus.
|
| 21 |
+
"""
|
| 22 |
+
|
| 23 |
+
from typing import Dict, List, Tuple
|
| 24 |
+
|
| 25 |
+
import datasets
|
| 26 |
+
|
| 27 |
+
from .bigbiohub import kb_features
|
| 28 |
+
from .bigbiohub import BigBioConfig
|
| 29 |
+
from .bigbiohub import Tasks
|
| 30 |
+
|
| 31 |
+
_LANGUAGES = ['English']
|
| 32 |
+
_PUBMED = True
|
| 33 |
+
_LOCAL = False
|
| 34 |
+
|
| 35 |
+
# TODO: Add BibTeX citation
|
| 36 |
+
_CITATION = """\
|
| 37 |
+
@inproceedings{collier-kim-2004-introduction,
|
| 38 |
+
title = "Introduction to the Bio-entity Recognition Task at {JNLPBA}",
|
| 39 |
+
author = "Collier, Nigel and Kim, Jin-Dong",
|
| 40 |
+
booktitle = "Proceedings of the International Joint Workshop
|
| 41 |
+
on Natural Language Processing in Biomedicine and its Applications
|
| 42 |
+
({NLPBA}/{B}io{NLP})",
|
| 43 |
+
month = aug # " 28th and 29th", year = "2004",
|
| 44 |
+
address = "Geneva, Switzerland",
|
| 45 |
+
publisher = "COLING",
|
| 46 |
+
url = "https://aclanthology.org/W04-1213",
|
| 47 |
+
pages = "73--78",
|
| 48 |
+
}
|
| 49 |
+
"""
|
| 50 |
+
|
| 51 |
+
_DATASETNAME = "jnlpba"
|
| 52 |
+
_DISPLAYNAME = "JNLPBA"
|
| 53 |
+
|
| 54 |
+
_DESCRIPTION = """\
|
| 55 |
+
NER For Bio-Entities
|
| 56 |
+
"""
|
| 57 |
+
|
| 58 |
+
_HOMEPAGE = "http://www.geniaproject.org/shared-tasks/bionlp-jnlpba-shared-task-2004"
|
| 59 |
+
|
| 60 |
+
_LICENSE = 'Creative Commons Attribution 3.0 Unported'
|
| 61 |
+
|
| 62 |
+
_URLS = {
|
| 63 |
+
_DATASETNAME: "http://www.nactem.ac.uk/GENIA/current/Shared-tasks/JNLPBA/Train/Genia4ERtraining.tar.gz",
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
# TODO: add supported task by dataset. One dataset may support multiple tasks
|
| 67 |
+
_SUPPORTED_TASKS = [
|
| 68 |
+
Tasks.NAMED_ENTITY_RECOGNITION
|
| 69 |
+
] # example: [Tasks.TRANSLATION, Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]
|
| 70 |
+
|
| 71 |
+
# TODO: set this to a version that is associated with the dataset. if none exists use "1.0.0"
|
| 72 |
+
# This version doesn't have to be consistent with semantic versioning. Anything that is
|
| 73 |
+
# provided by the original dataset as a version goes.
|
| 74 |
+
_SOURCE_VERSION = "3.2.0"
|
| 75 |
+
|
| 76 |
+
_BIGBIO_VERSION = "1.0.0"
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class JNLPBADataset(datasets.GeneratorBasedBuilder):
|
| 80 |
+
"""
|
| 81 |
+
The data came from the GENIA version 3.02 corpus
|
| 82 |
+
(Kim et al., 2003).
|
| 83 |
+
This was formed from a controlled search on MEDLINE
|
| 84 |
+
using the MeSH terms human, blood cells and transcription factors.
|
| 85 |
+
From this search 2,000 abstracts were selected and hand annotated
|
| 86 |
+
according to a small taxonomy of 48 classes based on
|
| 87 |
+
a chemical classification.
|
| 88 |
+
Among the classes, 36 terminal classes were used to annotate the GENIA corpus.
|
| 89 |
+
"""
|
| 90 |
+
|
| 91 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
| 92 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
| 93 |
+
|
| 94 |
+
BUILDER_CONFIGS = [
|
| 95 |
+
BigBioConfig(
|
| 96 |
+
name="jnlpba_source",
|
| 97 |
+
version=SOURCE_VERSION,
|
| 98 |
+
description="jnlpba source schema",
|
| 99 |
+
schema="source",
|
| 100 |
+
subset_id="jnlpba",
|
| 101 |
+
),
|
| 102 |
+
BigBioConfig(
|
| 103 |
+
name="jnlpba_bigbio_kb",
|
| 104 |
+
version=BIGBIO_VERSION,
|
| 105 |
+
description="jnlpba BigBio schema",
|
| 106 |
+
schema="bigbio_kb",
|
| 107 |
+
subset_id="jnlpba",
|
| 108 |
+
),
|
| 109 |
+
]
|
| 110 |
+
|
| 111 |
+
DEFAULT_CONFIG_NAME = "jnlpba_source"
|
| 112 |
+
|
| 113 |
+
def _info(self) -> datasets.DatasetInfo:
|
| 114 |
+
|
| 115 |
+
if self.config.schema == "source":
|
| 116 |
+
features = datasets.load_dataset("jnlpba", split="train").features
|
| 117 |
+
|
| 118 |
+
elif self.config.schema == "bigbio_kb":
|
| 119 |
+
features = kb_features
|
| 120 |
+
|
| 121 |
+
return datasets.DatasetInfo(
|
| 122 |
+
description=_DESCRIPTION,
|
| 123 |
+
features=features,
|
| 124 |
+
homepage=_HOMEPAGE,
|
| 125 |
+
license=str(_LICENSE),
|
| 126 |
+
citation=_CITATION,
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
| 130 |
+
"""Returns SplitGenerators."""
|
| 131 |
+
data = datasets.load_dataset("jnlpba")
|
| 132 |
+
|
| 133 |
+
return [
|
| 134 |
+
datasets.SplitGenerator(
|
| 135 |
+
name=datasets.Split.TRAIN,
|
| 136 |
+
# Whatever you put in gen_kwargs will be passed to _generate_examples
|
| 137 |
+
gen_kwargs={"data": data["train"]},
|
| 138 |
+
),
|
| 139 |
+
datasets.SplitGenerator(
|
| 140 |
+
name=datasets.Split.VALIDATION,
|
| 141 |
+
gen_kwargs={"data": data["validation"]},
|
| 142 |
+
),
|
| 143 |
+
]
|
| 144 |
+
|
| 145 |
+
def _generate_examples(self, data: datasets.Dataset) -> Tuple[int, Dict]:
|
| 146 |
+
"""Yields examples as (key, example) tuples."""
|
| 147 |
+
uid = 0
|
| 148 |
+
|
| 149 |
+
if self.config.schema == "source":
|
| 150 |
+
for key, sample in enumerate(data):
|
| 151 |
+
yield key, sample
|
| 152 |
+
|
| 153 |
+
elif self.config.schema == "bigbio_kb":
|
| 154 |
+
for i, sample in enumerate(data):
|
| 155 |
+
feature_dict = {
|
| 156 |
+
"id": uid,
|
| 157 |
+
"document_id": "NULL",
|
| 158 |
+
"passages": [],
|
| 159 |
+
"entities": [],
|
| 160 |
+
"relations": [],
|
| 161 |
+
"events": [],
|
| 162 |
+
"coreferences": [],
|
| 163 |
+
}
|
| 164 |
+
|
| 165 |
+
uid += 1
|
| 166 |
+
offset_start = 0
|
| 167 |
+
for token, tag in zip(sample["tokens"], sample["ner_tags"]):
|
| 168 |
+
offset_start += len(token) + 1
|
| 169 |
+
feature_dict["entities"].append(
|
| 170 |
+
{
|
| 171 |
+
"id": uid,
|
| 172 |
+
"offsets": [[offset_start, offset_start + len(token)]],
|
| 173 |
+
"text": [token],
|
| 174 |
+
"type": tag,
|
| 175 |
+
"normalized": [],
|
| 176 |
+
}
|
| 177 |
+
)
|
| 178 |
+
uid += 1
|
| 179 |
+
|
| 180 |
+
# entities
|
| 181 |
+
yield i, feature_dict
|