import csv import os from pathlib import Path from typing import List import gdown import tempfile import datasets from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME, DEFAULT_SOURCE_VIEW_NAME, Tasks) _DATASETNAME = "su_id_asr" _SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME _UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME _LANGUAGES = ["sun"] _LOCAL = False _CITATION = """\ @inproceedings{sodimana18_sltu, author={Keshan Sodimana and Pasindu {De Silva} and Supheakmungkol Sarin and Oddur Kjartansson and Martin Jansche and Knot Pipatsrisawat and Linne Ha}, title={{A Step-by-Step Process for Building TTS Voices Using Open Source Data and Frameworks for Bangla, Javanese, Khmer, Nepali, Sinhala, and Sundanese}}, year=2018, booktitle={Proc. 6th Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU 2018)}, pages={66--70}, doi={10.21437/SLTU.2018-14} } """ _DESCRIPTION = """\ Sundanese ASR training data set containing ~220K utterances. This dataset was collected by Google in Indonesia. """ _HOMEPAGE = "https://indonlp.github.io/nusa-catalogue/card.html?su_id_asr" _LICENSE = "Attribution-ShareAlike 4.0 International." _URLs = { "su_id_asr_train": "https://drive.google.com/file/d/1-420yS3nkkIJRXb2fVNSQ9oDbQzr3Lua/view?usp=sharing", "su_id_asr_dev": "https://drive.google.com/file/d/16Fqw-wI9498_NtV416v20fN_PvgZ8kl3/view?usp=sharing", "su_id_asr_test": "https://drive.google.com/file/d/1J8AtHRG2LDtUX2EwZsnqz7o71hMUraao/view?usp=sharing", } _SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION] _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" def download_from_gdrive(url, output_dir): """Download a file from Google Drive and save it to the specified directory.""" file_id = url.split("/d/")[-1].split("/")[0] # Extract FILE_ID from URL gdrive_url = f"https://drive.google.com/uc?id={file_id}" output_path = os.path.join(output_dir, f"{file_id}.zip") # Save file gdown.download(gdrive_url, output_path, quiet=False) return output_path class SuIdASR(datasets.GeneratorBasedBuilder): """Javanese ASR training data set containing ~185K utterances.""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) BUILDER_CONFIGS = [ SEACrowdConfig( name="su_id_asr_source", version=SOURCE_VERSION, description="su_id_asr source schema", schema="source", subset_id="su_id_asr", ), SEACrowdConfig( name="su_id_asr_seacrowd_sptext", version=SEACROWD_VERSION, description="su_id_asr Nusantara schema", schema="seacrowd_sptext", subset_id="su_id_asr", ), ] DEFAULT_CONFIG_NAME = "su_id_asr_source" def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" def download_from_gdrive(url, name): # Create a temporary directory for downloads with tempfile.TemporaryDirectory() as temp_dir: file_id = url.split("/d/")[-1].split("/")[0] output_path = os.path.join(temp_dir, f"{name}.zip") # Download using gdown with fuzzy=True gdown.download(url, output_path, fuzzy=True) # Use dl_manager to extract and manage the downloaded file extracted_path = dl_manager.extract(output_path) return extracted_path # Download and extract all splits paths = { "train": download_from_gdrive(_URLs["su_id_asr_train"], 'asr_sundanese_train'), "dev": download_from_gdrive(_URLs["su_id_asr_dev"], 'asr_sundanese_dev'), "test": download_from_gdrive(_URLs["su_id_asr_test"], 'asr_sundanese_test') } return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepath": paths["train"]}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": paths["dev"]}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": paths["test"]}, ), ] def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "id": datasets.Value("string"), "speaker_id": datasets.Value("string"), "path": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=16_000), "text": datasets.Value("string"), } ) elif self.config.schema == "seacrowd_sptext": features = schemas.speech_text_features return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _generate_examples(self, filepath: str): tsv_file = os.path.join(filepath, "asr_sundanese", "utt_spk_text.tsv") with open(tsv_file, "r") as f: tsv_file = csv.reader(f, delimiter="\t") for line in tsv_file: audio_id, sp_id, text = line[0], line[1], line[2] wav_path = os.path.join(filepath, "asr_sundanese", "data", "{}".format(audio_id[:2]), "{}.flac".format(audio_id)) if os.path.exists(wav_path): if self.config.schema == "source": ex = { "id": audio_id, "speaker_id": sp_id, "path": wav_path, "audio": wav_path, "text": text, } yield audio_id, ex elif self.config.schema == "seacrowd_sptext": ex = { "id": audio_id, "speaker_id": sp_id, "path": wav_path, "audio": wav_path, "text": text, "metadata": { "speaker_age": None, "speaker_gender": None, }, } yield audio_id, ex f.close()