baconnier commited on
Commit
d28761f
·
verified ·
1 Parent(s): 3f54f3b

Add comprehensive dataset card with multi-resolution documentation

Browse files
Files changed (1) hide show
  1. README.md +271 -0
README.md ADDED
@@ -0,0 +1,271 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ size_categories:
5
+ - 10K<n<100K
6
+ task_categories:
7
+ - summarization
8
+ - image-to-text
9
+ - text-generation
10
+ tags:
11
+ - summarization
12
+ - vision
13
+ - DeepSeek-OCR
14
+ - multilingual
15
+ - visual-text-encoding
16
+ - random-augmentation
17
+ library_name: datasets
18
+ license: cc0-1.0
19
+ pretty_name: "BillSum Legal Document Summarization"
20
+ dataset_info:
21
+ features:
22
+ - name: text
23
+ dtype: string
24
+ - name: summary
25
+ dtype: string
26
+ - name: image
27
+ dtype: image
28
+ - name: source_dataset
29
+ dtype: string
30
+ - name: original_split
31
+ dtype: string
32
+ - name: original_index
33
+ dtype: int64
34
+ splits:
35
+ - name: train
36
+ num_examples: 22218
37
+ ---
38
+
39
+ # DeepSynth - BillSum Legal Document Summarization
40
+
41
+ ## Dataset Description
42
+
43
+ US Congressional bills with human-written summaries. Specialized for legal document summarization
44
+ with complex structure, formal language, and legislative terminology.
45
+
46
+ This dataset is part of the **DeepSynth** project, which uses visual text encoding for multilingual summarization with the DeepSeek-OCR vision-language model. Text documents are converted into images and processed through a frozen 380M parameter visual encoder, enabling 20x token compression while preserving document layout and structure.
47
+
48
+ ### Key Features
49
+
50
+ - **Original High-Quality Images**: Full-resolution images stored once, augmented on-the-fly during training
51
+ - **Random Augmentation Pipeline**: Rotation, perspective, color jitter, and resize transforms for better generalization
52
+ - **Visual Text Encoding**: 20x compression ratio (1 visual token ≈ 20 text tokens)
53
+ - **Document Structure Preservation**: Layout and formatting maintained through image representation
54
+ - **Human-Written Summaries**: High-quality reference summaries for each document
55
+ - **Deduplication Tracking**: Source dataset and index tracking prevents duplicates
56
+
57
+ ### Dataset Statistics
58
+
59
+ - **Total Samples**: ~22,000
60
+ - **Language(s)**: English
61
+ - **Domain**: US Congressional bills
62
+ - **Average Document Length**: ~3,000 tokens
63
+ - **Average Summary Length**: ~200 tokens
64
+
65
+ ### Source Dataset
66
+
67
+ Based on the **BillSum dataset** of US Congressional bills.
68
+ - **Original Authors**: Kornilova & Eidelman (2019)
69
+ - **Paper**: [BillSum: A Corpus for Automatic Summarization of US Legislation](https://arxiv.org/abs/1910.00523)
70
+ - **License**: CC0 1.0 Universal (Public Domain)
71
+
72
+ ## Image Augmentation Pipeline
73
+
74
+ Images are stored at **original resolution** (up to 1600×2200) and augmented during training for better generalization:
75
+
76
+ ### Available Augmentation Transforms
77
+
78
+ - **Random Rotation**: ±10° rotation for orientation invariance
79
+ - **Random Perspective**: 0.1-0.2 distortion to simulate viewing angles
80
+ - **Random Resize**: 512-1600px range for multi-scale learning
81
+ - **Color Jitter**: Brightness, contrast, saturation adjustments (±20%)
82
+ - **Random Horizontal Flip**: Optional (use with caution for text)
83
+
84
+ All transforms preserve aspect ratio with padding to maintain text readability. This approach:
85
+ - **Reduces storage**: 6x less disk space (single image vs 6 resolutions)
86
+ - **Increases flexibility**: Any resolution on-the-fly vs pre-computed fixed sizes
87
+ - **Improves generalization**: Random transforms prevent overfitting to specific resolutions
88
+
89
+ ## Dataset Structure
90
+
91
+ ### Data Fields
92
+
93
+ - `text` (string): Original document text
94
+ - `summary` (string): Human-written summary
95
+ - `image` (PIL.Image): Original full-size rendered document image (up to 1600×2200)
96
+ - `source_dataset` (string): Origin dataset name
97
+ - `original_split` (string): Source split (train/validation/test)
98
+ - `original_index` (int): Original sample index for deduplication
99
+
100
+ ### Data Example
101
+
102
+ ```python
103
+ {
104
+ 'text': 'A BILL to amend the Internal Revenue Code of 1986...',
105
+ 'summary': 'This bill amends the Internal Revenue Code to...',
106
+ 'image': <PIL.Image>, # Original resolution (up to 1600×2200)
107
+ 'source_dataset': 'billsum',
108
+ 'original_split': 'train',
109
+ 'original_index': 0
110
+ }
111
+ ```
112
+
113
+ ## Usage
114
+
115
+ ### Loading the Dataset
116
+
117
+ ```python
118
+ from datasets import load_dataset
119
+
120
+ # Load full dataset
121
+ dataset = load_dataset("baconnier/deepsynth-en-legal")
122
+
123
+ # Streaming for large datasets
124
+ dataset = load_dataset("baconnier/deepsynth-en-legal", streaming=True)
125
+ ```
126
+
127
+ ### Training Example with DeepSeek-OCR and Augmentation
128
+
129
+ ```python
130
+ from transformers import AutoProcessor, AutoModelForVision2Seq
131
+ from datasets import load_dataset
132
+ from deepsynth.data.transforms import create_training_transform
133
+
134
+ # Load model and processor
135
+ model = AutoModelForVision2Seq.from_pretrained("deepseek-ai/DeepSeek-OCR")
136
+ processor = AutoProcessor.from_pretrained("deepseek-ai/DeepSeek-OCR")
137
+
138
+ # Load dataset
139
+ dataset = load_dataset("baconnier/deepsynth-en-legal")
140
+
141
+ # Create augmentation pipeline (random rotation, perspective, resize, color jitter)
142
+ transform = create_training_transform(
143
+ target_size_range=(512, 1600), # Random resize range
144
+ rotation_degrees=10, # ±10° rotation
145
+ perspective_distortion=0.1, # Perspective transform
146
+ brightness_factor=0.2, # ±20% brightness
147
+ contrast_factor=0.2, # ±20% contrast
148
+ )
149
+
150
+ # Process sample with augmentation
151
+ sample = dataset['train'][0]
152
+ augmented_image = transform(sample['image']) # Apply random transforms
153
+ inputs = processor(
154
+ images=augmented_image,
155
+ text=sample['text'],
156
+ return_tensors="pt"
157
+ )
158
+
159
+ # Fine-tune decoder only (freeze encoder)
160
+ for param in model.encoder.parameters():
161
+ param.requires_grad = False
162
+
163
+ # Training loop with on-the-fly augmentation...
164
+ ```
165
+
166
+ ## Training Recommendations
167
+
168
+ ### DeepSeek-OCR Fine-Tuning
169
+
170
+ ```python
171
+ # Recommended hyperparameters with augmentation
172
+ training_args = {
173
+ "learning_rate": 2e-5,
174
+ "batch_size": 4,
175
+ "gradient_accumulation_steps": 4,
176
+ "num_epochs": 3,
177
+ "mixed_precision": "bf16",
178
+ "freeze_encoder": True, # IMPORTANT: Only fine-tune decoder
179
+
180
+ # Augmentation parameters
181
+ "rotation_degrees": 10, # Random rotation ±10°
182
+ "perspective_distortion": 0.1, # Perspective transform
183
+ "resize_range": (512, 1600), # Random resize 512-1600px
184
+ "brightness_factor": 0.2, # ±20% brightness
185
+ "contrast_factor": 0.2, # ±20% contrast
186
+ }
187
+ ```
188
+
189
+ ### Expected Performance
190
+
191
+ - **Baseline (text-to-text)**: ROUGE-1 ~40-42
192
+ - **DeepSeek-OCR (visual)**: ROUGE-1 ~44-47 (typical SOTA)
193
+ - **Training Time**: ~6-8 hours on A100 (80GB) for full dataset
194
+ - **GPU Memory**: ~40GB with batch_size=4, mixed_precision=bf16
195
+
196
+ ## Dataset Creation
197
+
198
+ This dataset was created using the **DeepSynth** pipeline:
199
+
200
+ 1. **Source Loading**: Original text documents from billsum
201
+ 2. **Text-to-Image Conversion**: Documents rendered as PNG images (DejaVu Sans 12pt, Unicode support)
202
+ 3. **Original Resolution Storage**: Full-quality images stored once (up to 1600×2200)
203
+ 4. **Incremental Upload**: Batches of 5,000 samples uploaded to HuggingFace Hub
204
+ 5. **Deduplication**: Source tracking prevents duplicate samples
205
+
206
+ **Note**: Images are augmented on-the-fly during training using random transformations (rotation, perspective, resize, color jitter) for better generalization across different resolutions and conditions.
207
+
208
+ ### Rendering Specifications
209
+
210
+ - **Font**: DejaVu Sans 12pt (full Unicode support for multilingual text)
211
+ - **Line Wrapping**: 100 characters per line
212
+ - **Margin**: 40px
213
+ - **Background**: White (255, 255, 255)
214
+ - **Text Color**: Black (0, 0, 0)
215
+ - **Format**: PNG with lossless compression
216
+
217
+ ## Citation
218
+
219
+ If you use this dataset in your research, please cite:
220
+
221
+ ```bibtex
222
+ @misc{deepsynth-en-legal,
223
+ title={{DeepSynth BillSum Legal Document Summarization: Visual Text Encoding with Random Augmentation for Summarization}},
224
+ author={Baconnier},
225
+ year={2025},
226
+ publisher={HuggingFace},
227
+ howpublished={\url{https://huggingface.co/datasets/baconnier/deepsynth-en-legal}}
228
+ }
229
+ ```
230
+
231
+ ### Source Dataset Citation
232
+
233
+ ```bibtex
234
+ @inproceedings{kornilova2019billsum,
235
+ title={BillSum: A Corpus for Automatic Summarization of US Legislation},
236
+ author={Kornilova, Anastassia and Eidelman, Vladimir},
237
+ booktitle={Proceedings of the 2nd Workshop on New Frontiers in Summarization},
238
+ year={2019}
239
+ }
240
+ ```
241
+
242
+ ## License
243
+
244
+ CC0 1.0 Universal (Public Domain Dedication)
245
+
246
+ **Note**: This dataset inherits the license from the original source dataset. Please review the source license before commercial use.
247
+
248
+ ## Limitations and Bias
249
+
250
+ - **Legal jargon**: Heavy use of legislative and legal terminology
251
+ - **Complex structure**: Bills have nested sections, subsections, clauses
252
+ - **US-specific**: United States federal legislation only
253
+ - **Formal language**: Very different from conversational or news text
254
+ - **Long documents**: Bills can be 10,000+ tokens
255
+
256
+ ## Additional Information
257
+
258
+ ### Dataset Curators
259
+
260
+ Created by the DeepSynth team as part of multilingual visual summarization research.
261
+
262
+ ### Contact
263
+
264
+ - **Repository**: [DeepSynth GitHub](https://github.com/bacoco/DeepSynth)
265
+ - **Issues**: [GitHub Issues](https://github.com/bacoco/DeepSynth/issues)
266
+
267
+ ### Acknowledgments
268
+
269
+ - **DeepSeek-OCR**: Visual encoder from DeepSeek AI
270
+ - **Source Dataset**: billsum
271
+ - **HuggingFace**: Dataset hosting and infrastructure